Unit Operations

Flow of Fluids through Granular Beds
and Packed Columns

The flow of fluids through beds composed of stationary granular
particles is a frequent occurrence in the chemical industry and therefore
expressions are needed to predict pressure drop across beds due to the
resistance caused by the presence of the particles.

Darcy’s law and permeability

The first experimental work on the subject was carried out by
DARCY:in 1830 in Dijon when he examined the rate of flow of water
from the local fountains through beds of sand of various thicknesses. It
was shown that the average velocity, as measured over the whole area of
the bed, was directly proportional to the driving pressure and inversely
proportional to the thickness of the bed. This relation, often termed
Darcy’s law, has subsequently been confirmed by a number of workers
and can be written as follows:
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where —A P is the pressure drop across the bed.
[ is the thickness of the bed.
u. is the average velocity of flow of the fluid, defined as (1/A)(dV/dt).
A s the total cross sectional area of the bed.
V  is the volume of fluid flowing in time t. and
K is a constant depending on the physical properties of the bed and fluid.

The linear relation between the rate of flow and the pressure difference

leads one to suppose that the flow was streamline, because the Reynolds

number for the flow through the pore spaces in a granular material is low,

since both the velocity of the fluid and the width of the channels are

normally small. The resistance to flow then arises mainly from viscous

drag. Equation 4.1 can then be expressed as:
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where u is the viscosity of the fluid and B is termed the permeability
coefficient for the bed, and depends only on the properties of the bed.

Specific surface and voidage

The general structure of a bed of particles can often be characterised
by the specific surface area of the bed Sg and the fractional voidage of the
bed e.
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Sg Is the surface area presented to the fluid per unit volume of bed when
the particles are packed in a bed. Its units are (length) .
e is the fraction of the volume of the bed not occupied by solid material
and is termed the fractional voidage, or porosity. It is dimensionless.
Thus the fractional volume of the bed occupied by solid material is (1 —
e).
S is the specific surface area of the particles and is the surface area of a
particle divided by its volume. Its units are again (length) ™. For a sphere,
for example:
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It can be seen that S and Sp are not equal due to the voidage which is present when
the particles are packed into a bed. If point contact occurs between particles so that only
a very small fraction of surface area is lost by overlapping, then:

Sp=S8(1—e¢) 4.4
Streamline flow—Carman-Kozeny equation
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where: g is the viscosity of the fluid,
u is the mean velocity of the fluid,
d,; is the diameter of the tube, and
I, is the length of the tube.

If the free space in the bed is assumed to consist of a series of tortuous channels,
equation 4.5 may be rewritten for flow through a bed as:

dy (—AP)
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where: d,, is some equivalent diameter of the pore channels,
K’ is a dimensionless constant whose value depends on the structure of the bed,
I" is the length of channel, and
u is the average velocity through the pore channels.
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In a cube of side X, the volume of free space is eX? so that the mean cross-sectional
area for flow is the free volume divided by the height, or eX2. The volume flowrate
through this cube is u.X2, so that the average linear velocity through the pores, u,.
is given by:

u. X2 U,

Uy = X2 = - 4.7

Although equation 4.7 is reasonably true for random packings, it does not apply to all
regular packings. Thus with a bed of spheres arranged in cubic packing, e = 0.476, but
the fractional free area varies continuously, from 0.215 in a plane across the diameters to
1.0 between successive layers.

For equation 4.6 to be generally useful, an expression is needed for d,,, the equivalent
diameter of the pore space. Kozeny™® proposed that d/, may be taken as:
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where: e volume of voids filled with fluid
’ Sp wetted surface area of the bed

cross-sectional area normal to flow
wetted perimeter

The hydraulic mean diameter for such a flow passage has been shown in Volume 1,
Chapter 3 to be:

4 cross-sectional area
wetted perimeter

It is then seen that:
e
5 = % (hydraulic mean diameter)
B
Then taking u; = u_/e and ! oc I, equation 4.6 becomes:
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K" is generally known as Kozeny’s constant and a commonly accepted value for K”
is 5. As will be shown later, however, K” is dependent on porosity, particle shape, and
other factors. Comparison with equation 4.2 shows that B the permeability coefficient is
given by:

1 el

B= K" S2(1—e)?

(4.10)



Unit Operations Hiba A. bdulkareem

Inserting a value of 5 for K” in equation 4.9:
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For spheres: S = 6/d and: (equation 4.3)
1 & —APd

c= == : 4.12

“TI80(—e? (4.12)

i —APd?

= 0.0055—— (4.12a)

(1—e) ul

For non-spherical particles, the Sauter mean diameter d, should be used in place of d.
This is given in Chapter 1., equation 1.15.

Streamline and turbulent flow

The modified Reynolds number Re, is obtained by taking the same velocity and charac-
teristic linear dimension d, as were used in deriving equation 4.9. Thus:
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The friction factor, which is plotted against the modified Reynolds number, is R,/ puf,
where R; is the component of the drag force per unit area of particle surface in the
direction of motion. R; can be related to the properties of the bed and pressure gradient
as follows. Considering the forces acting on the fluid in a bed of unit cross-sectional
area and thickness /, the volume of particles in the bed is /(1 — ¢) and therefore the total
surface is SI(1 — e). Thus the resistance force is R SI(1 — e). This force on the fluid must
be equal to that produced by a pressure difference of AP across the bed. Then, since the
free cross-section of fluid is equal to e:

(—AP)e = R\ SI(1 —e)

_ e (—AP)
and R, = Si—o 1 4.14)
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pT;f=S(l—e) I pu?

Carman found that when R;/pui was plotted against Re; using logarithmic coordinates,
his data for the flow through randomly packed beds of solid particles could be correlated
approximately by a single curve (curve A, Figure 4.1), whose general equation is:

2 1 . 1 ( - ]
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From equation 4.16 it can be seen that for values of Re, less than about 2, the second
term is small and, approximately:
R,

2

puy
Sawistowsk1™ compared the results obtained for flow of fluids through beds of hollow
packings (discussed later) and has noted that equation 4.16 gives a consistently low result
for these materials. He proposed:

= 5Re;! (4.18)

R,y —1 —0.1
5 =5Re; + Re (4.19)
Al
For flow through ring packings which as described later are often used in industrial
packed columns, Ercun''"” obtained a good semi-empirical correlation for pressure drop

as follows:

—AP _ (1 —e)? e, (1—e) pu;’.
= 150 = 7 + 1.75 3 p (4.20)
Writing d = 6/ (from equation 4.3):
_ 3
AP e _ 417831029 L a9
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or: 5 =4.17Re;” +0.29 (4.21)
puy
Dependence of K__ on bed structure
Carman'’! has shown that:
Ir 2
K" = (T) x Ky (4.22)

where (I'/1) is the tortuosity and is a measure of the fluid path length through the bed
compared with the actual depth of the bed.
Ko is a factor which depends on the shape of the cross-section of a channel
through which fluid is passing.

Ko is equal to 2.0, and for streamline flow through a rectangle where the
ratio of the lengths of the sides is 10 : 1, Ky = 2.65.

Wall effect. In a packed bed, the particles will not pack as closely in the region near
the wall as in the centre of the bed, so that the actual resistance to flow in a bed of
small diameter is less than it would be in an infinite container for the same flowrate per
unit area of bed cross-section. A correction factor f,, for this effect has been determined
experimentally by Courson'". This takes the form:

\ 2
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where S, is the surface of the container per unit volume of bed.
Equation 4.9 then becomes:

1 e 1 (-AP)

S ’ 4.24
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Equations 4.9 and 4.16, which involve e/Sg as a measure of the effective
pore diameter, are developed from a relatively sound theoretical basis and
are recommended for beds of small particles when they are nearly
spherical in shape. The correction factor for wall effects, given by
equation 4.23, should be included where appropriate. With larger
particles which will frequently be far from spherical in shape, the
correlations are not so reliable. As shown in Figure 4.1, deviations can
occur for rings at higher values of Re;. Efforts to correct for non-
sphericity, though frequently useful, are not universally effective, and in
such cases it will often be more rewarding to use correlations, such as

equation 4.19, which are based on experimental data for large packings.

The values of K” shown on Figure 4.2 apply to equation 4.24.
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Figure 4.2. Variation of Kozeny’s constant K” with voidage for various shapes
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Figure 4.1. Carman’s graph of R)/puj against Re,

PACKED COLUMNS

packed towers are used for bringing two phases in contact with one another
and there will be strong interaction between the fluids. Normally one of the
fluids will preferentially wet the packing and will flow as a film over its
surface; the second fluid then passes through the remaining volume of the
column. With gas (or vapour)-liquid systems, the liquid will normally be the
wetting fluid and the gas or vapour will rise through the column making close
contact with the down-flowing liquid and having little direct contact with the
packing elements. An example of the liquid—gas system is an absorption
process where a soluble gas is scrubbed from a mixture of gases by means of a
liquid, as shown in Figure below In a packed column used for distillation, the
more volatile component
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of, say, a binary mixture is progressively transferred to the vapour phase and
the less volatile condenses out in the liquid. Packed columns have also been
used extensively for liquid-liquid extraction processes where a solute is
transferred from one solvent to another.

In order to obtain a good rate of transfer per unit volume of the tower, a
packing is selected which will promote a high interfacial area between the two
phases and a high degree of turbulence in the fluids. Usually increased area and
turbulence are achieved at the expense of increased capital cost and/or pressure
drop, and a balance must be made between these factors when arriving at an
economic design.
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Figure 4.9, Packed absorption column
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The packing

The packing should be of as uniform size as possible so as to produce a
bed of uniform characteristics with a desired voidage. The most
commonly used packings are Raschig rings, Pall rings, Lessing rings, and
Berl saddles. Newer packings include Nutter rings, Intalox and Intalox
metal saddles, Hy-Pak, and Mini rings and, because of their high
performance characteristics and low pressure drop, these packings now
account for a large share of the market. Commonly used packing
elements are illustrated in Figure 4.13. Most of these packings are
available in a widenrange of materials such as ceramics, metals, glass,
plastics, carbon, and sometimes rubber. Ceramic packings are resistant to
corrosion and comparatively cheap, but are heavy and may require a
stronger packing support and foundations. The smaller metal rings are
also available made from wire mesh, and these give much-improved
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transfer characteristics in small columns.

Agure 4.13.  {a) Cermmic Raschig rings; (&) Cemmic Lessing ring: (c) Ceramic Berl saddle; {d}) Pall ring
{plastick; () Pall ring {metal): () Metal Natter rings; {g) Plastic Nutter ring
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Figure 4.14. Visco Coolfio 3 extended surface. cooling tower packing
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Figure 4.15. Structured packings (o) metal gauze (b) carbon (c) corosion-resistant plastic

Fluid flow in packed columns

In the majority of cases the gas flow is turbulent and the general form of
the relation between the drop in pressure AP and the volumetric gas
flowrate per unit area of column ug is shown on curve A of Figure 4.16.
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Pressure drop

Gas wvelocity

Figure 4.16. Pressure drops in wet packings (logarithmic axes)

Loading and flooding points

Although the loading and flooding points have been shown on Figure 4.16, there is no
completely generalised expression for calculating the onset of loading, although one of
the following semi-empirical correlations will often be adequate. Morris and Jackson®”
gave their results in the form of plots of yr(ug /uy) at the loading rate for various wetting
rates Ly (m*/s m). ug and u; are average gas and liquid velocities based on the empty
column and ¥ = (/(pg/pa) is a gas density correction factor, where p, is the density
of air at 293 K.

A useful graphical correlation for flooding rates was first presented by SHErRwOOD
et al.'® and later developed by Loso ef al.®” for random-dumped packings, as shown
in Figure 4.17 in which:

2 S 0.2 L
“G ;B (ﬁ_c) (E) is plotted against — ('O—G)
g | \pr) \ G'V \ e
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Figure 4.17. Ceneralisad coerelation for flooding rates in packed towers™s!!



