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4/1 INTRODUCTION

In Chapter 3 we studied the equilibrium of a single rigid body or a
system of connected members treated as a single rigid body. We first
drew a free-body diagram of the body showing all forces external to
the isolated body and then we applied the force and moment equa-
tions of equilibrium. In Chapter 4 we focus on the determination of
the forces internal to a structure, that is, forces of action and reaction
between the connected members. An engineering structure is any
connected system of members built to support or transfer forces and
to safely withstand the loads applied to it. To determine the forces in-
ternal to an engineering structure, we must dismember the structure
and analyze separate free-body diagrams of individual members or
combinations of members. This analysis requires careful application
of Newton’s third law, which states that each action is accompanied
by an equal and opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types
of structures, namely, trusses, frames, and machines. In this treatment
we consider only statically determinate structures, which do not have
more supporting constraints than are necessary to maintain an equilib-
rium configuration. Thus, as we have already seen, the equations of
equilibrium are adequate to determine all unknown reactions.

The analysis of trusses, frames and machines, and beams under
concentrated loads constitutes a straightforward application of the ma-
terial developed in the previous two chapters. The basic procedure de-
veloped in Chapter 3 for isolating a body by constructing a correct
free-body diagram is essential for the analysis of statically determinate
structures.
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4/2 PLANE TRUSSES

B
A framework composed of members joined at their ends to form a
rigid structure is called a truss. Bridges, roof supports, derricks, and
other such structures are common examples of trusses. Structural mem-
bers commonly used are I-beams, channels, angles, bars, and special

shapes which are fastened together at their ends by welding, riveted

connections, or large bolts or pins. When the members of the truss lie

essentially in a single plane, the truss is called a plane truss. (@)
For bridges and similar structures, plane trusses are commonly uti-

lized in pairs with one truss assembly placed on each side of the struc-

ture. A section of a typical bridge structure is shown in Fig. 4/1. The

combined weight of the roadway and vehicles is transferred to the longi- /

tudinal stringers, then to the cross beams, and finally, with the weights

of the stringers and cross beams accounted for, to the upper joints of the

two plane trusses which form the vertical sides of the structure. A sim-

plified model of the truss structure is indicated at the left side of the il-

>}

lustration; the forces L represent the joint loadings. A C
Several examples of commonly used trusses which can be analyzed
as plane trusses are shown in Fig. 4/2. (®)

Simple Trusses

F
The basic element of a plane truss is the triangle. Three bars joined e —— D
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid / \
is used to mean noncollapsible and also to mean that deformation of the E

members due to induced internal strains is negligible. On the other

hand, four or more bars pin-jointed to form a polygon of as many sides

constitute a nonrigid frame. We can make the nonrigid frame in Fig.

4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and C —
and thereby forming two triangles. We can extend the structure by A ¢
adding additional units of two end-connected bars, such as DE and CE (e)

or AF and DF, Fig. 4/3c, which are pinned to two fixed joints. In this
way the entire structure will remain rigid.

Structures built from a basic triangle in the manner described are
known as simple trusses. When more members are present than are

needed to prevent collapse, the truss is statically indeterminate. A stati- T
cally indeterminate truss cannot be analyzed by the equations of equi- C
librium alone. Additional members or supports which are not necessary
for maintaining the equilibrium configuration are called redundant. T
To design a truss we must first determine the forces in the various / c
C C
T T

Figure 4/3

members and then select appropriate sizes and structural shapes to

withstand the forces. Several assumptions are made in the force analy-

sis of simple trusses. First, we assume all members to be two-force mem-

bers. A two-force member is one in equilibrium under the action of two

forces only, as defined in general terms with Fig. 3/4 in Art. 3/3. Each

member of a truss is normally a straight link joining the two points of

application of force. The two forces are applied at the ends of the mem-

ber and are necessarily equal, opposite, and collinear for equilibrium. Tension Compression
The member may be in tension or compression, as shown in Fig.

4/4. When we represent the equilibrium of a portion of a two-force mem-

ber, the tension 7" or compression C acting on the cut section is the same Figure 4/4

Two-Force Members
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for all sections. We assume here that the weight of the member is small
compared with the force it supports. If it is not, or if we must account
for the small effect of the weight, we can replace the weight W of the
member by two forces, each W/2 if the member is uniform, with one
force acting at each end of the member. These forces, in effect, are
treated as loads externally applied to the pin connections. Accounting
for the weight of a member in this way gives the correct result for the
average tension or compression along the member but will not account
for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural
members, we may usually assume that the connection is a pin joint if
the centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external
forces are applied at the pin connections. This condition is satisfied in
most trusses. In bridge trusses the deck is usually laid on cross beams
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used
at one of the supports to provide for expansion and contraction due to
temperature changes and for deformation from applied loads. Trusses
and frames in which no such provision is made are statically indetermi-
nate, as explained in Art. 3/3. Figure 3/1 shows examples of such joints.

Two methods for the force analysis of simple trusses will be given.
Each method will be explained for the simple truss shown in Fig. 4/6a.
The free-body diagram of the truss as a whole is shown in Fig. 4/6b. The
external reactions are usually determined first, by applying the equilib-
rium equations to the truss as a whole. Then the force analysis of the re-
mainder of the truss is performed.

4/3 METHOD OF JOINTS

This method for finding the forces in the members of a truss con-
sists of satisfying the conditions of equilibrium for the forces acting on
the connecting pin of each joint. The method therefore deals with the
equilibrium of concurrent forces, and only two independent equilibrium
equations are involved.

We begin the analysis with any joint where at least one known load
exists and where not more than two unknown forces are present. The
solution may be started with the pin at the left end. Its free-body dia-
gram is shown in Fig. 4/7. With the joints indicated by letters, we usu-
ally designate the force in each member by the two letters defining the
ends of the member. The proper directions of the forces should be evi-
dent by inspection for this simple case. The free-body diagrams of por-
tions of members AF and AB are also shown to clearly indicate the
mechanism of the action and reaction. The member AB actually makes
contact on the left side of the pin, although the force AB is drawn from
the right side and is shown acting away from the pin. Thus, if we consis-
tently draw the force arrows on the same side of the pin as the member,
then tension (such as AB) will always be indicated by an arrow away
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from the pin, and compression (such as AF) will always be indicated by
an arrow toward the pin. The magnitude of AF is obtained from the
equation XF, = 0 and AB is then found from XF, = 0.

Joint F may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than
two unknowns, we subsequently analyze joints B, C, E, and D in that
order. Figure 4/8 shows the free-body diagram of each joint and its cor-
responding force polygon, which represents graphically the two equilib-
rium conditions XF, = 0 and XF, = 0. The numbers indicate the order in
which the joints are analyzed. We note that, when joint D is finally
reached, the computed reaction R, must be in equilibrium with the
forces in members CD and ED, which were determined previously from
the two neighboring joints. This requirement provides a check on the
correctness of our work. Note that isolation of joint C shows that the
force in CE is zero when the equation XF, = 0 is applied. The force in
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Figure 4/8
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This New York City bridge structure
suggests that members of a simple
truss need not be straight.

© Stephen Wilkes/The Image Bank/Getty Images
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this member would not be zero, of course, if an external vertical load
were applied at C.

It is often convenient to indicate the tension 7' and compression C of
the various members directly on the original truss diagram by drawing
arrows away from the pins for tension and toward the pins for compres-
sion. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one or
both of the unknown forces acting on a given pin. If so, we may make an
arbitrary assignment. A negative computed force value indicates that
the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to
ensure a stable equilibrium configuration, the truss as a whole is stati-
cally indeterminate, and the extra supports constitute external redun-
dancy. If a truss has more internal members than are necessary to
prevent collapse when the truss is removed from its supports, then the
extra members constitute internal redundancy and the truss is again
statically indeterminate.

For a truss which is statically determinate externally, there is a def-
inite relation between the number of its members and the number of its
joints necessary for internal stability without redundancy. Because we
can specify the equilibrium of each joint by two scalar force equations,
there are in all 2j such equations for a truss with j joints. For the entire
truss composed of m two-force members and having the maximum of
three unknown support reactions, there are in all m + 3 unknowns (m
tension or compression forces and three reactions). Thus, for any plane
truss, the equation m + 3 = 2j will be satisfied if the truss is statically
determinate internally.

A simple plane truss, formed by starting with a triangle and adding
two new members to locate each new joint with respect to the existing
structure, satisfies the relation automatically. The condition holds for
the initial triangle, where m = j = 3, and m increases by 2 for each
added joint while j increases by 1. Some other (nonsimple) statically de-
terminate trusses, such as the K-truss in Fig. 4/2, are arranged differ-
ently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be
arranged in such a way as not to contribute to a stable configuration of
Harbour Bridge in Sydney, Australia  the entire truss. If m + 3 > 2j, there are more members than indepen-

dent equations, and the truss is statically indeterminate internally
with redundant members present. If m + 3 < 2j, there is a deficiency
of internal members, and the truss is unstable and will collapse under
load.

Photodisc/Media Bakery

©

Special Conditions

We often encounter several special conditions in the analysis of
trusses. When two collinear members are under compression, as indi-
cated in Fig. 4/9a, it is necessary to add a third member to maintain
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Figure 4/9

alignment of the two members and prevent buckling. We see from a
force summation in the y-direction that the force F3 in the third mem-
ber must be zero and from the x-direction that F'; = F,. This conclusion
holds regardless of the angle 6 and holds also if the collinear members
are in tension. If an external force with a component in the y-direction
were applied to the joint, then F5 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b,
then in the absence of an externally applied load at this joint, the
forces in both members must be zero, as we can see from the two force
summations.

When two pairs of collinear members are joined as shown in Fig.
4/9c, the forces in each pair must be equal and opposite. This conclusion
follows from the force summations indicated in the figure.

D B D B
Truss panels are frequently cross-braced as shown in Fig. 4/10a.
Such a panel is statically indeterminate if each brace can support ei-
ther tension or compression. However, when the braces are flexible
A C A C

members incapable of supporting compression, as are cables, then only
the tension member acts and we can disregard the other member. It is
usually evident from the asymmetry of the loading how the panel will (@) ®)
deflect. If the deflection is as indicated in Fig. 4/106, then member AB
should be retained and CD disregarded. When this choice cannot be
made by inspection, we may arbitrarily select the member to be re-
tained. If the assumed tension turns out to be positive upon calcula-
tion, then the choice was correct. If the assumed tension force turns o \ x
out to be negative, then the opposite member must be retained and \\\ \/\////
the calculation redone. 7.

We can avoid simultaneous solution of the equilibrium equations for
two unknown forces at a joint by a careful choice of reference axes.
Thus, for the joint indicated schematically in Fig. 4/11 where L is known
and F; and F, are unknown, a force summation in the x-direction elimi- / \

F, F,

Figure 4/10

—],

nates reference to F; and a force summation in the x'-direction elimi-

nates reference to F,. When the angles involved are not easily found,

then a simultaneous solution of the equations using one set of reference Figure 4/11
directions for both unknowns may be preferable.
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Sample Problem 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution. 1f it were not desired to calculate the external reactions at D and E,
the analysis for a cantilever truss could begin with the joint at the loaded end.
However, this truss will be analyzed completely, so the first step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as a

whole. The equations of equilibrium give 30 kN 20 kN
[XMy = 0] 5T — 20(5) — 30(10) = 0 T = 80 kN
[XF, = 0] 80 cos 30°—E, =0 E, = 69.3kN
[ZF, = 0] 80sin 30° + K, — 20 — 30 = 0 E, = 10kN

Next we draw free-body diagrams showing the forces acting on each of the
connecting pins. The correctness of the assigned directions of the forces is veri-
fied when each joint is considered in sequence. There should be no question
about the correct direction of the forces on joint A. Equilibrium requires

[ZF, = 0] 0.866AB — 30 =0 AB=346kNT Ans.
[XF, = 0] AC - 0.5(34.6) = 0 AC=1732kN C Ans. y
I 4AB
(D where T stands for tension and C stands for compression. |
Joint B must be analyzed next, since there are more than two unknown I .
forces on joint C. The force BC must provide an upward component, in which I _(ti AC — —x BD
case BD must balance the force to the left. Again the forces are obtained from 3?13 I:N 60°
. 600
BC
[ZF, = 0] 0.866BC — 0.866(34.6) = 0 BC =346kNC Ans. 30 kKN
[ZFx = 0] BD - 2(05)(346) = 0 BD = 346 kN T Ans. Joint A Joint B

Joint C now contains only two unknowns, and these are found in the same Helpful Hint

way as before:
(@ Tt should be stressed that the ten-

[ZF = 0] 086GCD — 0866(346) — 20 = 0 SiOIl/COHlpI‘eSSiOIl designation refers
7 to the member, not the joint. Note
CD =577kNT Ans. that we draw the force arrow on the

[ZF, = 0] CE — 17.32 — 0.5(34.6) — 0.5(57.7) = 0 same side of the joint as the member

which exerts the force. In this way
CE = 63.5kN C Ans. tension (arrow away from the joint)
is distinguished from compression

Finally, from joint E there results (oo el (i

[ZF, = 0] 0.866DE = 10 DE = 11.55 kN C Ans. BC =
34.6 kN

and the equation XF, = 0 checks. . DE
GM" 6(& 69.3 kN
AC = CE CE =
17.32 kN 63.5 kN
10 kN

20 kN

Joint C Joint E



