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4.1 INTRODUCTION
We saw in the preceding chapter that the external forces acting on 
a rigid body can be reduced to a force-couple system at some arbi-
trary point O. When the force and the couple are both equal to zero, 
the external forces form a system equivalent to zero, and the rigid 
body is said to be in equilibrium.
 The necessary and sufficient conditions for the equilibrium of 
a rigid body, therefore, can be obtained by setting R and MR

O equal 
to zero in the relations (3.52) of Sec. 3.17:

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

 Resolving each force and each moment into its rectangular 
components, we can express the necessary and sufficient conditions 
for the equilibrium of a rigid body with the following six scalar 
equations:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

The equations obtained can be used to determine unknown forces 
applied to the rigid body or unknown reactions exerted on it by its 
supports. We note that Eqs. (4.2) express the fact that the compo-
nents of the external forces in the x, y, and z directions are balanced; 
Eqs. (4.3) express the fact that the moments of the external forces 
about the x, y, and z axes are balanced. Therefore, for a rigid body 
in equilibrium, the system of the external forces will impart no trans-
lational or rotational motion to the body considered.
 In order to write the equations of equilibrium for a rigid body, 
it is essential to first identify all of the forces acting on that body 
and then to draw the corresponding free-body diagram. In this 
chapter we first consider the equilibrium of two-dimensional struc-
tures subjected to forces contained in their planes and learn how to 
draw their free-body diagrams. In addition to the forces applied to 
a structure, the reactions exerted on the structure by its supports 
will be considered. A specific reaction will be associated with each 
type of support. You will learn how to determine whether the struc-
ture is properly supported, so that you can know in advance whether 
the equations of equilibrium can be solved for the unknown forces 
and reactions.
 Later in the chapter, the equilibrium of three-dimensional 
structures will be considered, and the same kind of analysis will be 
given to these structures and their supports.
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1594.2 FREE-BODY DIAGRAM
In solving a problem concerning the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body; it is 
equally important to exclude any force which is not directly applied 
to the body. Omitting a force or adding an extraneous one would 
destroy the conditions of equilibrium. Therefore, the first step in 
the solution of the problem should be to draw a free-body diagram 
of the rigid body under consideration. Free-body diagrams have 
already been used on many occasions in Chap. 2. However, in view 
of their importance to the solution of equilibrium problems, we 
summarize here the various steps which must be followed in draw-
ing a free-body diagram.

 1. A clear decision should be made regarding the choice of the 
free body to be used. This body is then detached from the 
ground and is separated from all other bodies. The contour of 
the body thus isolated is sketched.

 2. All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free 
body by the ground and by the bodies which have been 
detached; they should be applied at the various points where 
the free body was supported by the ground or was connected 
to the other bodies. The weight of the free body should also 
be included among the external forces, since it represents the 
attraction exerted by the earth on the various particles forming 
the free body. As will be seen in Chap. 5, the weight should 
be applied at the center of gravity of the body. When the free 
body is made of several parts, the forces the various parts exert 
on each other should not be included among the external 
forces. These forces are internal forces as far as the free body 
is concerned.

 3. The magnitudes and directions of the known external forces 
should be clearly marked on the free-body diagram. When indi-
cating the directions of these forces, it must be remembered 
that the forces shown on the free-body diagram must be those 
which are exerted on, and not by, the free body. Known exter-
nal forces generally include the weight of the free body and 
forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions, 
through which the ground and other bodies oppose a possible 
motion of the free body. The reactions constrain the free body 
to remain in the same position, and, for that reason, are some-
times called constraining forces. Reactions are exerted at the 
points where the free body is supported by or connected to 
other bodies and should be clearly indicated. Reactions are dis-
cussed in detail in Secs. 4.3 and 4.8.

 5. The free-body diagram should also include dimensions, since 
these may be needed in the computation of moments of forces. 
Any other detail, however, should be omitted.

4.2 Free-Body Diagram

Photo 4.1 A free-body diagram of the tractor 
shown would include all of the external forces 
acting on the tractor: the weight of the tractor, 
the weight of the load in the bucket, and the 
forces exerted by the ground on the tires.

Photo 4.2 In Chap. 6, we will discuss how to 
determine the internal forces in structures made of 
several connected pieces, such as the forces in the 
members that support the bucket of the tractor of 
Photo 4.1.
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160 Equilibrium of Rigid Bodies
EQUILIBRIUM IN TWO DIMENSIONS

4.3  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional 
structure is considered; i.e., it is assumed that the structure being 
analyzed and the forces applied to it are contained in the same plane. 
Clearly, the reactions needed to maintain the structure in the same 
position will also be contained in this plane.
 The reactions exerted on a two-dimensional structure can be 
divided into three groups corresponding to three types of supports, 
or connections:

 1. Reactions Equivalent to a Force with Known Line of Action. 
Supports and connections causing reactions of this type include 
rollers, rockers, frictionless surfaces, short links and cables, col-
lars on frictionless rods, and frictionless pins in slots. Each of 
these supports and connections can prevent motion in one 
direction only. They are shown in Fig. 4.1, together with the 
reactions they produce. Each of these reactions involves one 
unknown, namely, the magnitude of the reaction; this magni-
tude should be denoted by an appropriate letter. The line of 
action of the reaction is known and should be indicated clearly 
in the free-body diagram. The sense of the reaction must be 
as shown in Fig. 4.1 for the cases of a frictionless surface 
(toward the free body) or a cable (away from the free body). 
The reaction can be directed either way in the case of double-
track rollers, links, collars on rods, and pins in slots. Single-
track rollers and rockers are generally assumed to be reversible, 
and thus the corresponding reactions can also be directed 
either way.

 2. Reactions Equivalent to a Force of Unknown Direction and 
Magnitude. Supports and connections causing reactions of this 
type include frictionless pins in fitted holes, hinges, and rough 
surfaces. They can prevent translation of the free body in all 
directions, but they cannot prevent the body from rotating 
about the connection. Reactions of this group involve two 
unknowns and are usually represented by their x and y com-
ponents. In the case of a rough surface, the component normal 
to the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions 
are caused by fixed supports, which oppose any motion of the 
free body and thus constrain it completely. Fixed supports actu-
ally produce forces over the entire surface of contact; these 
forces, however, form a system which can be reduced to a force 
and a couple. Reactions of this group involve three unknowns, 
consisting usually of the two components of the force and the 
moment of the couple.

Photo 4.3 As the link of the awning window 
opening mechanism is extended, the force it 
exerts on the slider results in a normal force being 
applied to the rod, which causes the window to 
open.

Photo 4.4 The abutment-mounted rocker 
bearing shown is used to support the roadway 
of a bridge.

Photo 4.5 Shown is the rocker expansion 
bearing of a plate girder bridge. The convex 
surface of the rocker allows the support of the 
girder to move horizontally.
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 When the sense of an unknown force or couple is not readily 
apparent, no attempt should be made to determine it. Instead, the 
sense of the force or couple should be arbitrarily assumed; the sign 
of the answer obtained will indicate whether the assumption is cor-
rect or not.

4.3 Reactions at Supports and Connections for 
a Two-Dimensional Structure

Fig. 4.1 Reactions at supports and connections.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a
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162 Equilibrium of Rigid Bodies 4.4  EQUILIBRIUM OF A RIGID BODY 
IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body 
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure, 
we have

Fz 5 0  Mx 5 My 5 0  Mz 5 MO

for each of the forces applied to the structure. Thus, the six equa-
tions of equilibrium derived in Sec. 4.1 reduce to

 oFx 5 0  oFy 5 0  oMO 5 0 (4.4)

and to three trivial identities, 0 5 0. Since oMO 5 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more 
general form

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.
 We saw in the preceding section that unknown forces include 
reactions and that the number of unknowns corresponding to a given 
reaction depends upon the type of support or connection causing 
that reaction. Referring to Sec. 4.3, we observe that the equilibrium 
equations (4.5) can be used to determine the reactions associated 
with two rollers and one cable, one fixed support, or one roller and 
one pin in a fitted hole, etc.
 Consider Fig. 4.2a, in which the truss shown is subjected to 
the given forces P, Q, and S. The truss is held in place by a pin at 
A and a roller at B. The pin prevents point A from moving by exert-
ing on the truss a force which can be resolved into the components 
Ax and Ay; the roller keeps the truss from rotating about A by exert-
ing the vertical force B. The free-body diagram of the truss is shown 
in Fig. 4.2b; it includes the reactions Ax, Ay, and B as well as the 
applied forces P, Q, S and the weight W of the truss. Expressing 
that the sum of the moments about A of all of the forces shown 
in Fig. 4.2b is zero, we write the equation oMA 5 0, which can be 
used to determine the magnitude B since it does not contain Ax or Ay. 
Next, expressing that the sum of the x components and the sum 
of the y components of the forces are zero, we write the equations 
oFx 5 0 and oFy 5 0, from which we can obtain the components 
Ax and Ay, respectively.
 An additional equation could be obtained by expressing that 
the sum of the moments of the external forces about a point other than 
A is zero. We could write, for instance, oMB 5 0. Such a statement, 
however, does not contain any new information, since it has already 
been established that the system of the forces shown in Fig. 4.2b is 
equivalent to zero. The additional equation is not independent and 
cannot be used to determine a fourth unknown. It will be useful, 

Fig. 4.2 
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163however, for checking the solution obtained from the original three 
equations of equilibrium.
 While the three equations of equilibrium cannot be augmented 
by additional equations, any of them can be replaced by another 
equation. Therefore, an alternative system of equations of equilib-
rium is

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where the second point about which the moments are summed (in 
this case, point B) cannot lie on the line parallel to the y axis that 
passes through point A (Fig. 4.2b). These equations are sufficient 
conditions for the equilibrium of the truss. The first two equations 
indicate that the external forces must reduce to a single vertical force 
at A. Since the third equation requires that the moment of this 
force be zero about a point B which is not on its line of action, the 
force must be zero, and the rigid body is in equilibrium.
 A third possible set of equations of equilibrium is

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). 
The first equation requires that the external forces reduce to a single 
force at A; the second equation requires that this force pass through 
B; and the third equation requires that it pass through C. Since the 
points A, B, C do not lie in a straight line, the force must be zero, 
and the rigid body is in equilibrium.
 The equation oMA 5 0, which expresses that the sum of the 
moments of the forces about pin A is zero, possesses a more defi-
nite physical meaning than either of the other two equations (4.7). 
These two equations express a similar idea of balance, but with 
respect to points about which the rigid body is not actually hinged. 
They are, however, as useful as the first equation, and our choice 
of equilibrium equations should not be unduly influenced by the 
physical meaning of these equations. Indeed, it will be desirable in 
practice to choose equations of equilibrium containing only one 
unknown, since this eliminates the necessity of solving simulta neous 
equations. Equations containing only one unknown can be obtained 
by summing moments about the point of intersection of the lines 
of action of two unknown forces or, if these forces are parallel, by 
summing components in a direction perpendicular to their com-
mon direction. For example, in Fig. 4.3, in which the truss shown 
is held by rollers at A and B and a short link at D, the reactions at 
A and B can be eliminated by summing x components. The reac-
tions at A and D will be eliminated by summing moments about 
C, and the reactions at B and D by summing moments about D. 
The equations obtained are

oFx 5 0  oMC 5 0  oMD 5 0

Each of these equations contains only one unknown. Fig. 4.3 
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4.4 Equilibrium of a Rigid Body in 
Two Dimensions
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164 Equilibrium of Rigid Bodies 4.5  STATICALLY INDETERMINATE REACTIONS. 
PARTIAL CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2 
and 4.3), the types of supports used were such that the rigid body 
could not possibly move under the given loads or under any other 
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding 
to these supports involved three unknowns and could be determined 
by solving the three equations of equilibrium. When such a situation 
exists, the reactions are said to be statically determinate.
 Consider Fig. 4.4a, in which the truss shown is held by pins at 
A and B. These supports provide more constraints than are necessary 
to keep the truss from moving under the given loads or under any 
other loading conditions. We also note from the free-body diagram 
of Fig. 4.4b that the corresponding reactions involve four unknowns. 
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the 
equations oMA 5 0 and oMB 5 0 yield the vertical components By 
and Ay, respectively, the equation oFx 5 0 gives only the sum Ax 1 Bx 
of the horizontal components of the reactions at A and B. The com-
ponents Ax and Bx are said to be statically indeterminate. They could 
be determined by considering the deformations produced in the 
truss by the given loading, but this method is beyond the scope of 
statics and belongs to the study of mechanics of materials.
 The supports used to hold the truss shown in Fig. 4.5a consist of 
rollers at A and B. Clearly, the constraints provided by these supports are 
not sufficient to keep the truss from moving. While any vertical motion 
is prevented, the truss is free to move horizontally. The truss is said to 
be partially constrained.† Turning our attention to Fig. 4.5b, we note that 
the reactions at A and B involve only two unknowns. Since three equa-
tions of equilibrium must still be satisfied, there are fewer unknowns than 
equations, and, in general, one of the equilibrium equations will not be 
satisfied. While the equations oMA 5 0 and oMB 5 0 can be satisfied by 
a proper choice of reactions at A and B, the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied forces 
happens to be zero. We thus observe that the equlibrium of the truss 
of Fig. 4.5 cannot be maintained under general loading conditions.
 It appears from the above that if a rigid body is to be com-
pletely constrained and if the reactions at its supports are to be 
statically determinate, there must be as many unknowns as there are 
equations of equilibrium. When this condition is not satisfied, we can 
be certain that either the rigid body is not completely constrained 
or that the reactions at its supports are not statically determinate; it 
is also possible that the rigid body is not completely constrained and 
that the reactions are statically indeterminate.
 We should note, however, that, while necessary, the above con-
dition is not sufficient. In other words, the fact that the number of 

Fig. 4.4 Statically indeterminate 
reactions.
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B †Partially constrained bodies are often referred to as unstable. However, to avoid confusion 
between this type of instability, due to insufficient constraints, and the type of instability 
considered in Chap. 10, which relates to the behavior of a rigid body when its equilibrium 
is disturbed, we shall restrict the use of the words stable and unstable to the latter case.
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165unknowns is equal to the number of equations is no guarantee that 
the body is completely constrained or that the reactions at its supports 
are statically determinate. Consider Fig. 4.6a, in which the truss 
shown is held by rollers at A, B, and E. While there are three unknown 
reactions, A, B, and E (Fig. 4.6b), the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied 
forces happens to be zero. Although there are a sufficient number of 
constraints, these constraints are not properly arranged, and the truss 
is free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate. 
Thus, improper constraints also produce static indeterminacy.
 Another example of improper constraints—and of static inde-
terminacy—is provided by the truss shown in Fig. 4.7. This truss is 
held by a pin at A and by rollers at B and C, which altogether involve 
four unknowns. Since only three independent equilibrium equations 
are available, the reactions at the supports are statically indetermi-
nate. On the other hand, we note that the equation oMA 5 0 cannot 
be satisfied under general loading conditions, since the lines of action 
of the reactions B and C pass through A. We conclude that the truss 
can rotate about A and that it is improperly constrained.†
 The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid 
body is improperly constrained whenever the supports, even though 
they may provide a sufficient number of reactions, are arranged in such 
a way that the reactions must be either concurrent or parallel.‡
 In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically 
determinate, we should verify that the reactions involve three—and only 
three—unknowns and that the supports are arranged in such a way that 
they do not require the reactions to be either concurrent or parallel.
 Supports involving statically indeterminate reactions should be 
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analysis 
of structures possessing statically indeterminate reactions often can 
be partially carried out by the methods of statics. In the case of the 
truss of Fig. 4.4, for example, the vertical components of the reactions 
at A and B were obtained from the equilibrium equations.
 For obvious reasons, supports producing partial or improper 
constraints should be avoided in the design of stationary structures. 
However, a partially or improperly constrained structure will not nec-
essarily collapse; under particular loading conditions, equilibrium can 
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be 
in equilibrium if the applied forces P, Q, and S are vertical. Besides, 
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were 
completely constrained by having its brakes applied permanently.
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Fig. 4.6 Improper constraints.

Fig. 4.7 Improper constraints.
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4.5 Statically Indeterminate Reactions. 
Partial Constraints

†Rotation of the truss about A requires some “play” in the supports at B and C. In 
practice such play will always exist. In addition, we note that if the play is kept small, the 
displacements of the rollers B and C and, thus, the distances from A to the lines of action of 
the reactions B and C will also be small. The equation oMA 5 0 then requires that B and 
C be very large, a situation which can result in the failure of the supports at B and C.

‡Because this situation arises from an inadequate arrangement or geometry of the 
supports, it is often referred to as geometric instability.
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SOLUTION

Free-Body Diagram. A free-body diagram of the crane is drawn. By mul-
tiplying the masses of the crane and of the crate by g 5 9.81 m/s2, we obtain 
the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N or 
23.5 kN. The reaction at pin A is a force of unknown direction; it is repre-
sented by its components Ax and Ay. The reaction at the rocker B is per-
pendicular to the rocker surface; thus, it is horizontal. We assume that Ax, 
Ay, and B act in the directions shown.

Determination of B. We express that the sum of the moments of all external 
forces about point A is zero. The equation obtained will contain neither Ax 
nor Ay, since the moments of Ax and Ay about A are zero. Multiplying the 
magnitude of each force by its perpendicular distance from A, we write

1loMA 5 0:  1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0
 B 5 1107.1 kN B 5 107.1 kN n ◀

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. The magnitude of Ax is determined by expressing 
that the sum of the horizontal components of all external forces is zero.

n1 oFx 5 0:  Ax 1 B 5 0
 Ax 1 107.1 kN 5 0
 Ax 5 2107.1 kN  Ax 5 107.1 kN m ◀

Since the result is negative, the sense of Ax is opposite to that assumed 
originally.

Determination of Ay. The sum of the vertical components must also equal 
zero.

1hoFy 5 0:   Ay 2 9.81 kN 2 23.5 kN 5 0
 Ay 5 133.3 kN Ay 5 33.3 kN h ◀

 Adding vectorially the components Ax and Ay, we find that the reac-
tion at A is 112.2 kN b17.3°.

Check. The values obtained for the reactions can be checked by recalling 
that the sum of the moments of all of the external forces about any point 
must be zero. For example, considering point B, we write

1loMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It 
is held in place by a pin at A and a rocker at B. The center of gravity of 
the crane is located at G. Determine the components of the reactions at A 
and B.

2400 kg
A

B

G

4 m2 m

1.5 m

A

BB

23.5 kN

Ay

Ax

9.81 kN

1.5 m

4 m2 m

33.3 kN

107.1 kN

107.1 kN

A

B

23.5 kN

9.81 kN

4 m2 m

1.5 m
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SOLUTION

Free-Body Diagram. A free-body diagram of the beam is drawn. The reac-
tion at A is vertical and is denoted by A. The reaction at B is represented 
by components Bx and By. Each component is assumed to act in the direc-
tion shown.

Equilibrium Equations. We write the following three equilibrium equa-
tions and solve for the reactions indicated:

n1 oFx 5 0: Bx 5 0 Bx 5 0 ◀

1loMA 5 0:
2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0

 By 5 121.0 kips By 5 21.0 kips h ◀

1loMB 5 0:
2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0

 A 5 16.00 kips A 5 6.00 kips h ◀

Check. The results are checked by adding the vertical components of all 
of the external forces:

1hoFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem the reactions at both A and B are vertical; how-
ever, these reactions are vertical for different reasons. At A, the beam is 
supported by a roller; hence the reaction cannot have any horizontal com-
ponent. At B, the horizontal component of the reaction is zero because it 
must satisfy the equilibrium equation oFx 5 0 and because none of the 
other forces acting on the beam has a horizontal component.
 We could have noticed at first glance that the reaction at B was verti-
cal and dispensed with the horizontal component Bx. This, however, is a bad 
practice. In following it, we would run the risk of forgetting the component 
Bx when the loading conditions require such a component (i.e., when a 
horizontal load is included). Also, the component Bx was found to be zero 
by using and solving an equilibrium equation, oFx 5 0. By setting Bx equal 
to zero immediately, we might not realize that we actually make use of this 
equation and thus might lose track of the number of equations available for 
solving the problem.

SAMPLE PROBLEM 4.2

Three loads are applied to a beam as shown. The beam is supported by a 
roller at A and by a pin at B. Neglecting the weight of the beam, determine 
the reactions at A and B when P 5 15 kips.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The reac-
tion at each wheel is perpendicular to the track, and the tension force T is 
parallel to the track. For convenience, we choose the x axis parallel to the 
track and the y axis perpendicular to the track. The 5500-lb weight is then 
resolved into x and y components.

 Wx 5 1(5500 lb) cos 25° 5 14980 lb
Wy 5 2(5500 lb) sin 25° 5 22320 lb

Equilibrium Equations. We take moments about A to eliminate T and R1 
from the computation.

1loMA 5 0:  2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0
 R2 5 11758 lb R2 5 1758 lb p ◀

Now, taking moments about B to eliminate T and R2 from the computation, 
we write

1loMB 5 0:  (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0
 R1 5 1562 lb R1 5 1562 lb p ◀

The value of T is found by writing

q1oFx 5 0:  14980 lb 2 T 5 0
 T 5 14980 lb T 5 4980 lb r ◀

The computed values of the reactions are shown in the adjacent sketch.

Check. The computations are verified by writing

p1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

The solution could also have been checked by computing moments about 
any point other than A or B.

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical. 
The gross weight of the car and its load is 5500 lb, and it is applied at a 
point 30 in. from the track, halfway between the two axles. The car is held 
by a cable attached 24 in. from the track. Determine the tension in the 
cable and the reaction at each pair of wheels.

24 in.

25º
G

25 in.

25 in.
30 in.

y

x

R1

R2

2320 lb 6 in.

A

T

B

G

25 in.

25 in.

4980 lb

562 lb

1758 lb

y

x

4980 lb

25 in.

25 in.

2320 lb
6 in.

A

B

G

4980 lb
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SAMPLE PROBLEM 4.4

The frame shown supports part of the roof of a small building. Knowing that 
the tension in the cable is 150 kN, determine the reaction at the fixed end E.

SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the cable BDF 
is drawn. The reaction at the fixed end E is represented by the force compo-
nents Ex and Ey and the couple ME. The other forces acting on the free body 
are the four 20-kN loads and the 150-kN force exerted at end F of the cable.

Equilibrium Equations. Noting that DF 5 2 (4.5 m)2 1 (6 m)2 5 7.5 m, 
we write

n1 oFx 5 0: Ex 1
4.5
7.5

(150 kN) 5 0

 Ex 5 290.0 kN Ex 5 90.0 kN z ◀

1hoFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

 Ey 5 1200 kN Ey 5 200 kNx ◀

1loME 5 0:  (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

1 (20 kN)(1.8 m) 2 
6

7.5
(150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN ? m ME 5 180.0 kN ? m l ◀

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m

SAMPLE PROBLEM 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 
spring BC is k 5 250 lb/in., and the spring is unstretched when u 5 0. 
Determine the position of equilibrium.

A
s

O
W

F = ks

Ry

R x

Undeformed
position

q

r

l sin q

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and 
 cylinder. Denoting by s the deflection of the spring from its undeformed 
position, and noting that s 5 ru, we have F 5 ks 5 kru.

Equilibrium Equation. Summing the moments of W and F about O, we write

1loMO 5 0:  Wl sin u 2 r(kru) 5 0  sin u 5 
kr2

Wl
 u

Substituting the given data, we obtain

sin u 5
(250 lb/in.) (3 in.)2

(400 lb) (8 in.)
 u   sin u 5 0.703 u

Solving by trial and error, we find  u 5 0  u 5 80.3˚ ◀

A
B C

O

k = 250 lb/in.

r = 3 in.

l = 8 in.

W = 400 lb

q
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You saw that the external forces acting on a rigid body in equilibrium form a 
system equivalent to zero. To solve an equilibrium problem your first task is 

to draw a neat, reasonably large free-body diagram on which you will show all 
external forces. Both known and unknown forces must be included.

For a two-dimensional rigid body, the reactions at the supports can involve one, 
two, or three unknowns depending on the type of support (Fig. 4.1). For the suc-
cessful solution of a problem, a correct free-body diagram is essential. Never pro-
ceed with the solution of a problem until you are sure that your free-body diagram 
includes all loads, all reactions, and the weight of the body (if appropriate).

1. You can write three equilibrium equations and solve them for three unknowns.
The three equations might be

oFx 5 0  oFy 5 0  oMO 5 0

However, there are usually several sets of equations that you can write, such as

oFx 5 0  oMA 5 0  oMB 5 0

where point B is chosen in such a way that the line AB is not parallel to the y 
axis, or

oMA 5 0  oMB 5 0  oMC 5 0

where the points A, B, and C do not lie in a straight line.

2. To simplify your solution, it may be helpful to use one of the following solu-
tion techniques if applicable.
 a. By summing moments about the point of intersection of the lines of 
action of two unknown forces, you will obtain an equation in a single unknown.
 b. By summing components in a direction perpendicular to two unknown 
parallel forces, you will obtain an equation in a single unknown.

3. After drawing your free-body diagram, you may find that one of the fol-
lowing special situations exists.
 a. The reactions involve fewer than three unknowns; the body is said to be 
partially constrained and motion of the body is possible.
 b. The reactions involve more than three unknowns; the reactions are said 
to be statically indeterminate. While you may be able to calculate one or two 
reactions, you cannot determine all of the reactions.
 c. The reactions pass through a single point or are parallel; the body is 
said to be improperly constrained and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS
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4.1 A 2100-lb tractor is used to lift 900 lb of gravel. Determine the 
reaction at each of the two (a) rear wheels A, (b) front wheels B.

20 in. 40 in. 50 in.

900 lb

A B

G

Fig. P4.1

0.15 m 0.15 m

60 N

250 N

A

0.7 m

Fig. P4.2

A

C

B

15 lb 20 lb 35 lb 15 lb20 lb

6 in. 8 in. 8 in. 6 in.

Fig. P4.4

 4.2 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of 
fertilizer. What force must she exert on each handle?

 4.3 The gardener of Prob. 4.2 wishes to transport a second 250-N bag 
of fertilizer at the same time as the first one. Determine the maxi-
mum allowable horizontal distance from the axle A of the wheel-
barrow to the center of gravity of the second bag if she can hold 
only 75 N with each arm.

 4.4 For the beam and loading shown, determine (a) the reaction at A, 
(b) the tension in cable BC.
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172 Equilibrium of Rigid Bodies  4.5 Two crates, each of mass 350 kg, are placed as shown in the bed 
of a 1400-kg pickup truck. Determine the reactions at each of the 
two (a) rear wheels A, (b) front wheels B.

A
C D

B

P 4 kN 20 kN

2 m 2 m3 m 3 m

Fig. P4.12 and P4.13

a

A
D C

B

6 in.
300 lb 300 lb

50 lb

8 in. 4 in. 12 in.

Fig. P4.14

 4.6 Solve Prob. 4.5, assuming that crate D is removed and that the 
position of crate C is unchanged.

 4.7 A T-shaped bracket supports the four loads shown. Determine the 
reactions at A and B (a) if a 5 10 in., (b) if a 5 7 in.

 4.8 For the bracket and loading of Prob. 4.7, determine the smallest 
distance a if the bracket is not to move.

 4.9 The maximum allowable value of each of the reactions is 180 N. 
Neglecting the weight of the beam, determine the range of the 
distance d for which the beam is safe.

 4.10 Solve Prob. 4.9 if the 50-N load is replaced by an 80-N load.

 4.11 For the beam of Sample Prob. 4.2, determine the range of values 
of P for which the beam will be safe, knowing that the maximum 
allowable value of each of the reactions is 30 kips and that the 
reaction at A must be directed upward.

 4.12 The 10-m beam AB rests upon, but is not attached to, supports at 
C and D. Neglecting the weight of the beam, determine the range 
of values of P for which the beam will remain in equilibrium.

 4.13 The maximum allowable value of each of the reactions is 50 kN, 
and each reaction must be directed upward. Neglecting the weight 
of the beam, determine the range of values of P for which the 
beam is safe.

 4.14 For the beam and loading shown, determine the range of the dis-
tance a for which the reaction at B does not exceed 100 lb down-
ward or 200 lb upward.

Fig. P4.7

6 in. 6 in. 8 in.

10 lb30 lb50 lb40 lb

A

B

a

C D

G

1.7 m 2.8 m

A B

1.8 m 1.2 m 0.75 m

Fig. P4.5

50 N 100 N 150 N

450 mm

d

A

B

450 mm

Fig. P4.9
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173Problems 4.15 Two links AB and DE are connected by a bell crank as shown. 
Knowing that the tension in link AB is 720 N, determine (a) the 
tension in link DE, (b) the reaction at C.

A

B

E

D

C

90°60 mm
90 mm

80 mm 120 mm

Fig. P4.15 and P4.16

P

D

A B

C

15 in.

7 in.

60°

Fig. P4.17 and P4.18

240 N 240 N

0.24 m
0.4 m 0.4 m

A

B

C
D

a = 0.18 m

Fig. P4.19

60°

300 mm

250 mm 250 mm

150 N

G
B

A
h

Fig. P4.21

 4.16 Two links AB and DE are connected by a bell crank as shown. 
Determine the maximum force that can be safely exerted by link 
AB on the bell crank if the maximum allowable value for the reac-
tion at C is 1600 N.

 4.17 The required tension in cable AB is 200 lb. Determine (a) the 
vertical force P that must be applied to the pedal, (b) the corre-
sponding reaction at C.

 4.18 Determine the maximum tension that can be developed in cable 
AB if the maximum allowable value of the reaction at C is 250 lb.

 4.19 The bracket BCD is hinged at C and attached to a control cable 
at B. For the loading shown, determine (a) the tension in the cable, 
(b) the reaction at C.

 4.20 Solve Prob. 4.19, assuming that a 5 0.32 m.

 4.21 Determine the reactions at A and B when (a) h 5 0, (b) h 5 200 mm.

10 in.
3 in.

20 lb

20 lb

a

A B

DE

C

8 in.

5 in.

3 in.

Fig. P4.22
 4.22 For the frame and loading shown, determine the reactions at A 

and E when (a) a 5 30°, (b) a 5 45°.
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174 Equilibrium of Rigid Bodies

B

D

30°

500 N

C

200 mm

250 mm

250 mm

A

Fig. P4.28

 4.27 A rod AB, hinged at A and attached at B to cable BD, supports 
the loads shown. Knowing that d 5 150 mm, determine (a) the 
tension in cable BD, (b) the reaction at A.

 4.28 A lever AB is hinged at C and attached to a control cable at A. If 
the lever is subjected to a 500-N horizontal force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.23 and 4.24 For each of the plates and loadings shown, determine 
the reactions at A and B.

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30°

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

20 in.

Fig. P4.23

40 lb 40 lb

50 lb 50 lb

A
B

(a)

30º

20 in.

10 in.

A
B

(b)

20 in.

10 in.

4 in. 4 in.

Fig. P4.24

 4.25 Determine the reactions at A and B when (a) a 5 0, (b) a 5 90°, 
(c) a 5 30°.

 4.26 A rod AB, hinged at A and attached at B to cable BD, supports 
the loads shown. Knowing that d 5 200 mm, determine (a) the 
tension in cable BD, (b) the reaction at A.

10 in. 10 in.

12 in.

a

A

B

750 lb ⋅ in.

Fig. P4.25

90 N

100 mm

100 mm100 mm100 mm

A

B

d

D

90 N

Fig. P4.26 and P4.27
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175Problems 4.29 A force P of magnitude 280 lb is applied to member ABCD, which 
is supported by a frictionless pin at A and by the cable CED. Since 
the cable passes over a small pulley at E, the tension may be 
assumed to be the same in portions CE and ED of the cable. For 
the case when a 5 3 in., determine (a) the tension in the cable, 
(b) the reaction at A.

 4.30 Neglecting friction, determine the tension in cable ABD and the 
reaction at support C.

A

B C

D
E

P

a 12 in.

5 in.

12 in.

12 in.

Fig. P4.29A E

C

120 N

100 mm 100 mm

B D

250 mm

Fig. P4.30

A

BC

R

P

q

Fig. P4.31 and P4.32

A

B

D

C

90°

P

q

a a

2a

Fig. P4.33 and P4.34

 4.31 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing that u 5 30°, determine the reaction (a) at B, (b) at C.

 4.32 Rod ABC is bent in the shape of an arc of circle of radius R. Know-
ing that u 5 60°, determine the reaction (a) at B, (b) at C.

 4.33 Neglecting friction, determine the tension in cable ABD and the 
reaction at C when u 5 60°.

 4.34 Neglecting friction, determine the tension in cable ABD and the 
reaction at C when u 5 45°.
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176 Equilibrium of Rigid Bodies

120 lb

30°
A

B
C

D

8 in.

8 in.

8 in.

Fig. P4.35

A
50 lb

B

C

D

E

5 in.

8 in.

7 in.
3 in.

Fig. P4.36

400 N

400 N

100 mm

150 mm

100 mm
300 mm

500 mm

A

B

C

D

250 mm

Fig. P4.37

600 N

100 mm100 mm100 mm

80 mm

80 mm
A B C D

E

F

Fig. P4.38

 4.35 A light rod AD is supported by frictionless pegs at B and C and 
rests against a frictionless wall at A. A vertical 120-lb force is 
applied at D. Determine the reactions at A, B, and C.

 4.36 A light bar AD is suspended from a cable BE and supports a 50-lb 
block at C. The ends A and D of the bar are in contact with fric-
tionless vertical walls. Determine the tension in cable BE and the 
reactions at A and D.

 4.37 Bar AC supports two 400-N loads as shown. Rollers at A and C 
rest against frictionless surfaces and a cable BD is attached at B. 
Determine (a) the tension in cable BD, (b) the reaction at A, 
(c) the reaction at C.

 4.38 Determine the tension in each cable and the reaction at D.
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177Problems 4.39 Two slots have been cut in plate DEF, and the plate has been 
placed so that the slots fit two fixed, frictionless pins A and B. 
Knowing that P 5 15 lb, determine (a) the force each pin exerts 
on the plate, (b) the reaction at F.

P A

B

D E

F

4 in. 4 in. 7 in. 2 in.

30º

30 lb

3 in.

Fig. P4.39

 4.40 For the plate of Prob. 4.39 the reaction at F must be directed 
downward, and its maximum allowable value is 20 lb. Neglecting 
friction at the pins, determine the required range of values of P.

 4.41 Bar AD is attached at A and C to collars that can move freely on 
the rods shown. If the cord BE is vertical (a 5 0), determine the 
tension in the cord and the reactions at A and C.

A B

E

C
D

30°

80 Na

0.2 m 0.2 m

30°

0.2 m

Fig. P4.41

 4.42 Solve Prob. 4.41 if the cord BE is parallel to the rods (a 5 30°).

 4.43 An 8-kg mass can be supported in the three different ways shown. 
Knowing that the pulleys have a 100-mm radius, determine the 
reaction at A in each case.

B

A A A

B B

8 kg 8 kg 8 kg

(a) (b) (c)

1.6 m 1.6 m 1.6 m

Fig. P4.43
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178 Equilibrium of Rigid Bodies  4.44 A tension of 5 lb is maintained in a tape as it passes through the 
support system shown. Knowing that the radius of each pulley is 
0.4 in., determine the reaction at C.

 4.45 Solve Prob. 4.44, assuming that 0.6-in.-radius pulleys are used.

 4.46 A 6-m telephone pole weighing 1600 N is used to support the ends 
of two wires. The wires form the angles shown with the horizontal 
and the tensions in the wires are, respectively, T1 5 600 N and 
T2 5 375 N. Determine the reaction at the fixed end A.

C

5 lb

5 lb

3 in. 3 in.

1.8 in.

A B

Fig. P4.44

A

B

6 m

20°
T1

T2

10°

Fig. P4.46

A B C D

40 lb 40 lb

E5 ft

4 ft4 ft

W

Fig. P4.47 and P4.48

 4.47 Beam AD carries the two 40-lb loads shown. The beam is held by 
a fixed support at D and by the cable BE that is attached to the 
counterweight W. Determine the reaction at D when (a) W 5 100 lb, 
(b) W 5 90 lb.

 4.48 For the beam and loading shown, determine the range of values 
of W for which the magnitude of the couple at D does not exceed 
40 lb ? ft.
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179Problems 4.49 Knowing that the tension in wire BD is 1300 N, determine the 
reaction at the fixed support C of the frame shown.

 4.50 Determine the range of allowable values of the tension in wire BD 
if the magnitude of the couple at the fixed support C is not to 
exceed 100 N ? m.

 4.51 A vertical load P is applied at end B of rod BC. (a) Neglecting the 
weight of the rod, express the angle u corresponding to the equilib-
rium position in terms of P, l, and the counterweight W. (b) Deter-
mine the value of u corresponding to equilibrium if P 5 2W.

750 N

500 mm

150 mm
250 mm

600 mm

450 N
A

B

C D

400 mm

Fig. P4.49 and P4.50

P

B

C

l

l

q

W

A

Fig. P4.51
A

B

C

W

q

l

Fig. P4.52

 4.52 A slender rod AB, of weight W, is attached to blocks A and B, which 
move freely in the guides shown. The blocks are connected by an 
elastic cord that passes over a pulley at C. (a) Express the tension 
in the cord in terms of W and u. (b) Determine the value of u for 
which the tension in the cord is equal to 3W.

 4.53 Rod AB is acted upon by a couple M and two forces, each of 
magnitude P. (a) Derive an equation in u, P, M, and l that must 
be satisfied when the rod is in equilibrium. (b) Determine the 
value of u corresponding to equilibrium when M 5 150 N ? m, 
P 5 200 N, and l 5 600 mm.

A

B

C

l

l

P

P

q

M

Fig. P4.53

A

B

C

Q

P

q

l

a

Fig. P4.54

 4.54 Rod AB is attached to a collar at A and rests against a small roller 
at C. (a) Neglecting the weight of rod AB, derive an equation in 
P, Q, a, l, and u that must be satisfied when the rod is in equilib-
rium. (b) Determine the value of u corresponding to equilibrium 
when P 5 16 lb, Q 5 12 lb, l 5 20 in., and a 5 5 in.
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180 Equilibrium of Rigid Bodies  4.55 A collar B of weight W can move freely along the vertical rod shown. 
The constant of the spring is k, and the spring is unstretched when 
u 5 0. (a) Derive an equation in u, W, k, and l that must be satisfied 
when the collar is in equilibrium. (b) Knowing that W 5 300 N, 
l 5 500 mm, and k 5 800 N/m, determine the value of u corre-
sponding to equilibrium.

 4.56 A vertical load P is applied at end B of rod BC. The constant of 
the spring is k, and the spring is unstretched when u 5 90°. 
(a) Neglecting the weight of the rod, express the angle u corre-
sponding to equilibrium in terms of P, k, and l. (b) Determine the 
value of u corresponding to equilibrium when P 5 1

4 kl.

 4.57 Solve Sample Prob. 4.5, assuming that the spring is unstretched 
when u 5 90°.

 4.58 A slender rod AB, of weight W, is attached to blocks A and B that 
move freely in the guides shown. The constant of the spring is k, 
and the spring is unstretched when u 5 0. (a) Neglecting the weight 
of the blocks, derive an equation in W, k, l, and u that must be 
satisfied when the rod is in equilibrium. (b) Determine the value 
of u when W 5 75 lb, l 5 30 in., and k 5 3 lb/in.

 4.59 Eight identical 500 3 750-mm rectangular plates, each of mass 
m 5 40 kg, are held in a vertical plane as shown. All connections 
consist of frictionless pins, rollers, or short links. In each case, 
determine whether (a) the plate is completely, partially, or improp-
erly constrained, (b) the reactions are statically determinate or 
indeterminate, (c) the equilibrium of the plate is maintained in the 
position shown. Also, wherever possible, compute the reactions.

A

B

q

l

Fig. P4.55
A

B

C

P

q

l

l

Fig. P4.56

A

BW

q

l

Fig. P4.58

Fig. P4.59

A B

CD

1 2 3 4

5 6 7 8
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181 4.60 The bracket ABC can be supported in the eight different ways 
shown. All connections consist of smooth pins, rollers, or short 
links. For each case, answer the questions listed in Prob. 4.59, and, 
wherever possible, compute the reactions, assuming that the mag-
nitude of the force P is 100 lb.

4.6 EQUILIBRIUM OF A TWO-FORCE BODY
A particular case of equilibrium which is of considerable interest is 
that of a rigid body subjected to two forces. Such a body is commonly 
called a two-force body. It will be shown that if a two-force body is 
in equilibrium, the two forces must have the same magnitude, the 
same line of action, and opposite sense.
 Consider a corner plate subjected to two forces F1 and F2 act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F1 and F2 about any axis must 
be zero. First, we sum moments about A. Since the moment of F1 
is obviously zero, the moment of F2 must also be zero and the line 
of action of F2 must pass through A (Fig. 4.8b). Summing moments 
about B, we prove similarly that the line of action of F1 must pass 
through B (Fig. 4.8c). Therefore, both forces have the same line of 
action (line AB). From either of the equations oFx 5 0 and oFy 5 0 
it is seen that they must also have the same magnitude but opposite 
sense.

B

A
C

13 ft

2 ft 2 ft

2 3
4

5 6 7 8

PPP

P P P P

P

Fig. P4.60

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8

1814.6 Equilibrium of a Two-Force Body
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182 Equilibrium of Rigid Bodies

 If several forces act at two points A and B, the forces acting at 
A can be replaced by their resultant F1 and those acting at B can be 
replaced by their resultant F2. Thus a two-force body can be more 
generally defined as a rigid body subjected to forces acting at only 
two points. The resultants F1 and F2 then must have the same line 
of action, the same magnitude, and opposite sense (Fig. 4.8).
 In the study of structures, frames, and machines, you will see 
how the recognition of two-force bodies simplifies the solution of 
certain problems.

4.7 EQUILIBRIUM OF A THREE-FORCE BODY
Another case of equilibrium that is of great interest is that of a three-
force body, i.e., a rigid body subjected to three forces or, more gen-
erally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces which can be 
reduced to three forces F1, F2, and F3 acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium, 
the lines of action of the three forces must be either concurrent or 
parallel.
 Since the rigid body is in equilibrium, the sum of the moments 
of F1, F2, and F3 about any axis must be zero. Assuming that the 
lines of action of F1 and F2 intersect and denoting their point of 
intersection by D, we sum moments about D (Fig. 4.9b). Since the 
moments of F1 and F2 about D are zero, the moment of F3 about 
D must also be zero, and the line of action of F3 must pass through 
D (Fig. 4.9c). Therefore, the three lines of action are concurrent. 
The only exception occurs when none of the lines intersect; the lines 
of action are then parallel.
 Although problems concerning three-force bodies can be solved 
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically 
from simple trigonometric or geometric relations.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 (repeated)

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9
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SOLUTION

Free-Body Diagram. The joist is a three-force body, since it is acted upon 
by three forces: its weight W, the force T exerted by the rope, and the 
reaction R of the ground at A. We note that

W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Three-Force Body. Since the joist is a three-force body, the forces acting 
on it must be concurrent. The reaction R, therefore, will pass through the 
point of intersection C of the lines of action of the weight W and the ten-
sion force T. This fact will be used to determine the angle a that R forms 
with the horizontal.
 Drawing the vertical BF through B and the horizontal CD through C, 
we note that

 AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m
CD 5 EF 5 AE 5 1

2(AF) 5 1.414 m
BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m
 CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

We write

tan a 5
CE
AE

5
2.313 m
1.414 m

5 1.636

a 5 58.68 ◀

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior angles 
are computed from the known directions of the forces. Using the law of 
sines, we write

T
sin 31.4°

5
R

sin 110°
5

98.1 N
sin 38.6°

T 5 81.9 N ◀

R 5 147.8 N a58.68 ◀

SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the 
tension T in the rope and the reaction at A.

45°

25°
4 m

B

A

A

B

C

G

T

R

W = 98.1 Na

45°

45°
4 m

A

B
C

G

D

E F

25°

a

T

R98.1 N

110°

38.6°
20°

31.4°

a = 58.6°
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The preceding sections covered two particular cases of equilibrium of a rigid 
body.

1. A two-force body is a body subjected to forces at only two points. The 
resultants of the forces acting at each of these points must have the same magni-
tude, the same line of action, and opposite sense. This property will allow you to 
simplify the solutions of some problems by replacing the two unknown compo-
nents of a reaction by a single force of unknown magnitude but of known 
direction.

2. A three-force body is subjected to forces at only three points. The resul-
tants of the forces acting at each of these points must be concurrent or parallel. 
To solve a problem involving a three-force body with concurrent forces, draw your 
free-body diagram showing that these three forces pass through the same point. 
The use of simple geometry may then allow you to complete the solution by using 
a force triangle [Sample Prob. 4.6].

Although the principle noted above for the solution of problems involving three-
force bodies is easily understood, it can be difficult to sketch the needed geo-
metric constructions. If you encounter difficulty, first draw a reasonably large 
free-body diagram and then seek a relation between known or easily calculated 
lengths and a dimension that involves an unknown. This was done in Sample 
Prob. 4.6, where the easily calculated dimensions AE and CE were used to 
determine the angle a.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS
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 4.61 Determine the reactions at A and B when a 5 180 mm.

 4.62 For the bracket and loading shown, determine the range of values 
of the distance a for which the magnitude of the reaction at B does 
not exceed 600 N.

4.63 Using the method of Sec. 4.7, solve Prob. 4.17.

4.64 Using the method of Sec. 4.7, solve Prob. 4.18.

4.65 The spanner shown is used to rotate a shaft. A pin fits in a hole at 
A, while a flat, frictionless surface rests against the shaft at B. If a 
60-lb force P is exerted on the spanner at D, find the reactions at 
A and B.

A
B

C

240 mm

300 N

a

Fig. P4.61 and P4.62

Fig. P4.65

15 in.
3 in.

PA

B

C D
50º

4.66 Determine the reactions at B and D when b 5 60 mm.

4.67 Determine the reactions at B and D when b 5 120 mm.

4.68 Determine the reactions at B and C when a 5 1.5 in.

Fig. P4.66 and P4.67

A B

C

D

75 mm80 N

90 mm

b

250 mm

5 in.2 in.3 in.

3 in.

50 lb

A

C

B

D

a

Fig. P4.68

4.69 A 50-kg crate is attached to the trolley-beam system shown. Know-
ing that a 5 1.5 m, determine (a) the tension in cable CD, (b) the 
reaction at B.

4.70 Solve Prob. 4.69, assuming that a 5 3 m.

A

B

C

D

55° 1.4 m

0.4 m

a

W

Fig. P4.69
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186 Equilibrium of Rigid Bodies  4.71 One end of rod AB rests in the corner A and the other end is 
attached to cord BD. If the rod supports a 40-lb load at its  midpoint 
C, find the reaction at A and the tension in the cord.

40 lbA

B

C

D

12 in. 12 in.

18 in.

10 in.

Fig. P4.71

 4.72 Determine the reactions at A and D when b 5 308.

 4.73 Determine the reactions at A and D when b 5 608.

 4.74 A 40-lb roller, of diameter 8 in., which is to be used on a tile floor, 
is resting directly on the subflooring as shown. Knowing that the 
thickness of each tile is 0.3 in., determine the force P required to 
move the roller onto the tiles if the roller is (a) pushed to the left, 
(b) pulled to the right.

Fig. P4.72 and P4.73

A

B

C

D

150 Nb

180 mm

100 mm

280 mm

30°

P

Fig. P4.74

A B

D

C

72 lb a = 12 in.

7 in.

24 in.

Fig. P4.75

A

B

CD

75 N

250 mm

a = 120 mm

160 mm

Fig. P4.76

 4.75 and 4.76 Member ABC is supported by a pin and bracket at B 
and by an inextensible cord attached at A and C and passing over 
a frictionless pulley at D. The tension may be assumed to be the 
same in portions AD and CD of the cord. For the loading shown 
and neglecting the size of the pulley, determine the tension in the 
cord and the reaction at B.
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187Problems 4.77 Rod AB is supported by a pin and bracket at A and rests against 
a frictionless peg at C. Determine the reactions at A and C when 
a 170-N vertical force is applied at B.

 4.78 Solve Prob. 4.77, assuming that the 170-N force applied at B is 
horizontal and directed to the left.

 4.79 Using the method of Sec. 4.7, solve Prob. 4.21.

 4.80 Using the method of Sec. 4.7, solve Prob. 4.28.

 4.81 Knowing that u 5 308, determine the reaction (a) at B, (b) at C.

 4.82 Knowing that u 5 608, determine the reaction (a) at B, (b) at C.

 4.83 Rod AB is bent into the shape of an arc of circle and is lodged 
between two pegs D and E. It supports a load P at end B. Neglecting 
friction and the weight of the rod, determine the distance c corre-
sponding to equilibrium when a 5 20 mm and R 5 100 mm.

 4.84 A slender rod of length L is attached to collars that can slide freely 
along the guides shown. Knowing that the rod is in equilibrium, 
derive an expression for the angle u in terms of the angle b.

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.77

A

BC

R

P

q

Fig. P4.81 and P4.82

P

A
R

C

D

E

a

a

c

B

Fig. P4.83

A

B

q

b

L

Fig. P4.84 and P4.85

 4.85 An 8-kg slender rod of length L is attached to collars that can slide 
freely along the guides shown. Knowing that the rod is in equilib-
rium and that b 5 308, determine (a) the angle u that the rod 
forms with the vertical, (b) the reactions at A and B.
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188 Equilibrium of Rigid Bodies  4.86 A slender uniform rod of length L is held in equilibrium as shown, 
with one end against a frictionless wall and the other end attached 
to a cord of length S. Derive an expression for the distance h in 
terms of L and S. Show that this position of equilibrium does not 
exist if S . 2L.

B

A

C
S

L

h

Fig. P4.86 and P4.87

A

B

q

2R

Fig. P4.88

 4.87 A slender uniform rod of length L 5 20 in. is held in equilibrium 
as shown, with one end against a frictionless wall and the other 
end attached to a cord of length S 5 30 in. Knowing that the 
weight of the rod is 10 lb, determine (a) the distance h, (b) the 
tension in the cord, (c) the reaction at B.

 4.88 A uniform rod AB of length 2R rests inside a hemispherical bowl 
of radius R as shown. Neglecting friction, determine the angle u 
corresponding to equilibrium.

 4.89 A slender rod of length L and weight W is attached to a collar at 
A and is fitted with a small wheel at B. Knowing that the wheel 
rolls freely along a cylindrical surface of radius R, and neglecting 
friction, derive an equation in u, L, and R that must be satisfied 
when the rod is in equilibrium.

R

L
A

B

C

q

Fig. P4.89

 4.90 Knowing that for the rod of Prob. 4.89, L 5 15 in., R 5 20 in., 
and W 5 10 lb, determine (a) the angle u corresponding to equi-
librium, (b) the reactions at A and B.

bee29400_ch04_156-217.indd Page 188  11/29/08  3:33:52 PM user-s172bee29400_ch04_156-217.indd Page 188  11/29/08  3:33:52 PM user-s172 /Volumes/204/MHDQ076/work%0/indd%0/Volumes/204/MHDQ076/work%0/indd%0



189EQUILIBRIUM IN THREE DIMENSIONS

4.8  EQUILIBRIUM OF A RIGID BODY 
IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express 
the conditions for the equilibrium of a rigid body in the general 
three-dimensional case:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be solved for no more than six unknowns, which 
generally will represent reactions at supports or connections.
 In most problems the scalar equations (4.2) and (4.3) will be 
more conveniently obtained if we first express in vector form the con-
ditions for the equilibrium of the rigid body considered. We write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar 
components and unit vectors. Next, we compute all vector products, 
either by direct calculation or by means of determinants (see Sec. 3.8). 
We observe that as many as three unknown reaction components 
may be eliminated from these computations through a judicious 
choice of the point O. By equating to zero the coefficients of the 
unit vectors in each of the two relations (4.1), we obtain the desired 
scalar equations.†

4.9  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single 
force of known direction exerted by a frictionless surface to the 
force-couple system exerted by a fixed support. Consequently, in 
problems involving the equilibrium of a three-dimensional structure, 
there can be between one and six unknowns associated with the 
reaction at each support or connection. Various types of supports and 

†In some problems, it will be found convenient to eliminate the reactions at two points 
A and B from the solution by writing the equilibrium equation oMAB 5 0, which 
involves the determination of the moments of the forces about the axis AB joining 
points A and B (see Sample Prob. 4.10).

4.9 Reactions at Supports and Connections for 
a Three-Dimensional Structure
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190 Equilibrium of Rigid Bodies connections are shown in Fig. 4.10 with their corresponding reac-
tions. A simple way of determining the type of reaction correspond-
ing to a given support or connection and the number of unknowns 
involved is to find which of the six fundamental motions (translation in 
the x, y, and z directions, rotation about the x, y, and z axes) are 
allowed and which motions are prevented.
 Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose 
line of action is known; each of these supports involves one unknown, 
namely, the magnitude of the reaction. Rollers on rough surfaces and 
wheels on rails prevent translation in two directions; the corresponding 
reactions consist of two unknown force components. Rough surfaces in 
direct contact and ball-and-socket supports prevent translation in three 
directions; these supports involve three unknown force components.
 Some supports and connections can prevent rotation as well 
as translation; the corresponding reactions include couples as well as 
forces. For example, the reaction at a fixed support, which prevents 
any motion (rotation as well as translation), consists of three unknown 
forces and three unknown couples. A universal joint, which is designed 
to allow rotation about two axes, will exert a reaction consisting of 
three unknown force components and one unknown couple.
 Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent 
some rotations. The corresponding reactions consist essentially of 
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support 
radial loads only (for example, journal bearings, roller bearings). The 
corresponding reactions consist of two force components but may 
also include two couples. Another group includes pin-and-bracket 
supports, hinges, and bearings designed to support an axial thrust as 
well as a radial load (for example, ball bearings). The corresponding 
reactions consist of three force components but may include two 
couples. However, these supports will not exert any appreciable cou-
ples under normal conditions of use. Therefore, only force compo-
nents should be included in their analysis unless it is found that 
couples are necessary to maintain the equilibrium of the rigid body, 
or unless the support is known to have been specifically designed to 
exert a couple (see Probs. 4.119 through 4.122).
 If the reactions involve more than six unknowns, there are 
more unknowns than equations, and some of the reactions are stati-
cally indeterminate. If the reactions involve fewer than six unknowns, 
there are more equations than unknowns, and some of the equations 
of equilibrium cannot be satisfied under general loading conditions; 
the rigid body is only partially constrained. Under the particular 
loading conditions corresponding to a given problem, however, the 
extra equations often reduce to trivial identities, such as 0 5 0, and 
can be disregarded; although only partially constrained, the rigid 
body remains in equilibrium (see Sample Probs. 4.7 and 4.8). Even 
with six or more unknowns, it is possible that some equations of 
equilibrium will not be satisfied. This can occur when the reactions 
associated with the given supports either are parallel or intersect the 
same line; the rigid body is then improperly constrained.

Photo 4.6 Universal joints, easily seen on the 
drive shafts of rear-wheel-drive cars and trucks, 
allow rotational motion to be transferred between 
two noncollinear shafts.

Photo 4.7 The pillow block bearing shown 
supports the shaft of a fan used in an industrial 
facility.
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Fig. 4.10 Reactions at supports and connections.

Ball Frictionless surface
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(My)
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SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 
two flanged wheels A and B mounted on a rail and by an unflanged wheel 
C resting against a rail fixed to the wall. An 80-kg man stands on the ladder 
and leans to the right. The line of action of the combined weight W of the 
man and ladder intersects the floor at point D. Determine the reactions at 
A, B, and C.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

–(981 N)j

Ayj

Azk

Bzk Byj

3 m

192

A

B

C

D
0.6 m

0.6 m

0.9 m 0.3 m

W

3 m

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn. The 
forces involved are the combined weight of the man and ladder,

W 5 2mg j 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

and five unknown reaction components, two at each flanged wheel and one 
at the unflanged wheel. The ladder is thus only partially constrained; it is 
free to roll along the rails. It is, however, in equilibrium under the given 
load since the equation oFx 5 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the ladder 
form a system equivalent to zero:

 oF 5 0:  Ay j 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0
 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)
oMA 5 o(r 3 F) 5 0:   1.2i 3 (By j 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)

1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products, we have†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0
 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

 Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain 
the following three scalar equations, which express that the sum of the 
moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N
 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N
 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k ◀

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar 
equations expressing that the sums of the components in the y and z directions 
are zero. Substituting for By, Bz, and C the values obtained above, we write

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N
 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

We conclude that the reaction at A is A 5 1(245 N)j 2 (98.1 N)k ◀

†The moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be 
expressed in the form of determinants (see Sample Prob. 3.10).
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SAMPLE PROBLEM 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 
ball-and-socket joint at A and by two cables. Determine the tension in each 
cable and the reaction at A.

193

W = – (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The forces 
acting on the free body are the weight W 5 2(270 lb)j and the reactions 
at A, B, and E. The reaction at A is a force of unknown direction and is 
represented by three unknown components. Since the directions of the 
forces exerted by the cables are known, these forces involve only one 
unknown each, namely, the magnitudes TBD and TEC. Since there are only 
five unknowns, the sign is partially constrained. It can rotate freely about 
the x axis; it is, however, in equilibrium under the given loading, since the 
equation oMx 5 0 is satisfied.
 The components of the forces TBD and TEC can be expressed in terms 
of the unknown magnitudes TBD and TEC by writing

 BD
¡

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft
 EC
¡

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBDaBD
¡

BD
b 5 TBD(22

3i 1 1
3 j 2 2

3k)

 TEC 5 TECaEC
¡

EC
b 5 TEC(26

7 i 1 3
7 j 2 2

7k)

Equilibrium Equations. We express that the forces acting on the sign form 
a system equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0
(Ax 2 2

3 TBD 2 6
7 TEC)i 1 (Ay 1 1

3 TBD 1 3
7 TEC 2 270 lb)j

1 (Az 2 2
3 TBD 1 2

7 TEC)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:
(8 ft)i 3 TBD(22

3 
i 1 1

3 
j 2 2

3 
k) 1 (6 ft)i 3 TEC(26

7 
i 1 3

7 
j 1 2

7 
k)

1 (4 ft)i 3 (2270 lb)j 5 0
(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

 Setting the coefficients of j and k equal to zero in Eq. (2), we obtain 
two scalar equations which can be solved for TBD and TEC:

TBD 5 101.3 lb  TEC 5 315 lb ◀

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain 
three more equations, which yield the components of A. We have

A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k ◀

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft

8 ft

3 ft
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SAMPLE PROBLEM 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in a 
horizontal position by the cable CD. Assuming that the bearing at B does 
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

194

r = 240 mm

A

B

C

D

W = – (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr = 240 mm

r = 240 mm

x

y

z

240 mm

r = 240 mm

A

B

C

D

160 mm

240 mm
240 mm

240 mm

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordinate 
axes shown. The forces acting on the free body are the weight of the cover,

W 5 2mg j 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T 
exerted by the cable, three force components at hinge A, and two at hinge B. 
The components of T are expressed in terms of the unknown magnitude T 
by resolving the vector DC

¡
 into rectangular components and writing

DC
¡

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T 
DC
¡

DC
5 26

7 
Ti 1 3

7 
Tj 2 2

7 
T  k

Equilibrium Equations. We express that the forces acting on the pipe 
cover form a system equivalent to zero:

oF 5 0:    Axi 1 Ay j 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0
 (Ax 1 Bx 2 6

7T)i 1 (Ay 1 By 1 3
7T 2 294 N)j 1 (Az 2 2

7T)k 5 0 (1)

oMB 5 o(r 3 F) 5 0:
2rk 3 (Axi 1 Ayj 1 Azk)
 1 (2r i 1 rk) 3 (2 67Ti 1  37Tj 2  27Tk)
  1 (ri 1 rk) 3 (2294 N)j 5 0
 (22Ay 2 3

7T 1 294 N)r i 1 (2Ax 2 2
7T)rj 1 (6

7T 2 294 N)rk 5 0 (2)

 Setting the coefficients of the unit vectors equal to zero in Eq. (2), 
we write three scalar equations, which yield

Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N ◀

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain 
three more scalar equations. After substituting the values of T, Ax, and Ay 
into these equations, we obtain

Az 5 198.0 N  Bx 5 1245 N  By 5 173.5 N

The reactions at A and B are therefore

A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k ◀

B 5 1(245 N)i 1 (73.5 N)j       ◀
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SAMPLE PROBLEM 4.10

A 450-lb load hangs from the corner C of a rigid piece of 
pipe ABCD which has been bent as shown. The pipe is 
supported by the ball-and-socket joints A and D, which are 
fastened, respectively, to the floor and to a vertical wall, 
and by a cable attached at the midpoint E of the portion 
BC of the pipe and at a point G on the wall. Determine 
(a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value 
of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by the 
cable. To eliminate the reactions at A and D from the computations, we 
express that the sum of the moments of the forces about AD is zero. Denot-
ing by l the unit vector along AD, we write

 oMAD 5 0:    L ? (AE
¡

3 T) 1 L ? (AC
¡

3 W) 5 0 (1)

 The second term in Eq. (1) can be computed as follows:

 AC
¡

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 L 5
AD
¡

AD
5

12i 1 12j 2 6k

18
5 2

3 i 1 2
3 j 2 1

3 k

 L ? (AC
¡

3 W) 5 (2
3 
i 1 2

3 
j 2 1

3 
k) ? (25400k) 5 11800

Substituting the value obtained into Eq. (1), we write

 L ? (AE
¡

3 T) 5 21800 lb ? ft (2)

Minimum Value of Tension. Recalling the commutative property for 
mixed triple products, we rewrite Eq. (2) in the form

 T ? (L 3 AE
¡

) 5 21800 lb ? ft (3)

which shows that the projection of T on the vector L 3 AE
¡

 is a constant. 
It follows that T is minimum when parallel to the vector

L 3 AE
¡

5 (2
3 i 1 2

3 j 2 1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

Since the corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 k, we write

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and L 3 AE
¡

 in Eq. (3) and computing the dot products, 
we obtain 6T 5 21800 and, thus, T 5 2300. Carrying this value into (4), 
we obtain

Tmin 5 2200i 1 100j 2 200k  Tmin 5 300 lb ◀

Location of G. Since the vector EG
¡

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordinates 
of G by x, y, 0, we write

x 2 6
2200

5
y 2 12

1100
5

0 2 6
2200

    x 5 0    y 5 15 ft ◀
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The equilibrium of a three-dimensional body was considered in the sections you 
just completed. It is again most important that you draw a complete free-body 

diagram as the first step of your solution.

1. As you draw the free-body diagram, pay particular attention to the reac-
tions at the supports. The number of unknowns at a support can range from one 
to six (Fig. 4.10). To decide whether an unknown reaction or reaction component 
exists at a support, ask yourself whether the support prevents motion of the body 
in a certain direction or about a certain axis.
 a. If motion is prevented in a certain direction, include in your free-body 
diagram an unknown reaction or reaction component that acts in the same 
direction.
 b. If a support prevents rotation about a certain axis, include in your free-
body diagram a couple of unknown magnitude that acts about the same axis.

2. The external forces acting on a three-dimensional body form a system 
equivalent to zero. Writing oF 5 0 and oMA 5 0 about an appropriate point A, 
and setting the coefficients of i, j, k in both equations equal to zero will provide 
you with six scalar equations. In general, these equations will contain six unknowns 
and may be solved for these unknowns.

3. After completing your free-body diagram, you may want to seek equations 
involving as few unknowns as possible. The following strategies may help you.
 a. By summing moments about a ball-and-socket support or a hinge, you will 
obtain equations from which three unknown reaction components have been elimi-
nated [Sample Probs. 4.8 and 4.9].
 b. If you can draw an axis through the points of application of all but one of the 
unknown reactions, summing moments about that axis will yield an equation in a 
single unknown [Sample Prob. 4.10].

4. After drawing your free-body diagram, you may find that one of the 
following situations exists.
 a. The reactions involve fewer than six unknowns; the body is said to be 
partially constrained and motion of the body is possible. However, you may be 
able to determine the reactions for a given loading condition [Sample Prob. 4.7].
 b. The reactions involve more than six unknowns; the reactions are said to 
be statically indeterminate. Although you may be able to calculate one or two 
reactions, you cannot determine all of the reactions [Sample Prob. 4.10].
 c. The reactions are parallel or intersect the same line; the body is said to 
be improperly constrained, and motion can occur under a general loading 
condition.

SOLVING PROBLEMS
ON YOUR OWN
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PROBLEMS

197

4.91 A 4 3 8-ft sheet of plywood weighing 34 lb has been temporarily 
placed among three pipe supports. The lower edge of the sheet 
rests on small collars at A and B and its upper edge leans against 
pipe C. Neglecting friction at all surfaces, determine the reactions 
at A, B, and C.

4 ft

y

z

B

A

x

1 ft

3.75 ft
3 ft

5 ft

3 ft

4 ft

C

 Fig. P4.91  

TB

x

D

C

B

A

z

y

90 mm

90 mm

120 mm TC

 Fig. P4.92  

4.92 Two tape spools are attached to an axle supported by bearings at A
and D. The radius of spool B is 30 mm and the radius of spool C
is 40 mm. Knowing that TB 5 80 N and that the system rotates at 
a constant rate, determine the reactions at A and D. Assume that 
the bearing at A does not exert any axial thrust and neglect the 
weights of the spools and axle.

4.93 Solve Prob. 4.92, assuming that the spool C is replaced by a spool 
of radius 50 mm.
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198 Equilibrium of Rigid Bodies  4.94 Two transmission belts pass over sheaves welded to an axle supported 
by bearings at B and D. The sheave at A has a radius of 2.5 in., and 
the sheave at C has a radius of 2 in. Knowing that the system rotates 
at a constant rate, determine (a) the tension T, (b) the reactions at B 
and D. Assume that the bearing at D does not exert any axial thrust 
and neglect the weights of the sheaves and axle.

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

 Fig. P4.95  

 4.95 A 200-mm lever and a 240-mm-diameter pulley are welded to the 
axle BE that is supported by bearings at C and D. If a 720-N verti-
cal load is applied at A when the lever is horizontal, determine 
(a) the tension in the cord, (b) the reactions at C and D. Assume 
that the bearing at D does not exert any axial thrust.

30 lb

T

24 lb

18 lb

y
8 in.

6 in.

A

B
C

D

x

z

6 in.

 Fig. P4.94  

 4.96 Solve Prob. 4.95, assuming that the axle has been rotated clockwise 
in its bearings by 30° and that the 720-N load remains vertical.
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199Problems 4.97 An opening in a floor is covered by a 1 3 1.2-m sheet of plywood 
of mass 18 kg. The sheet is hinged at A and B and is maintained in 
a position slightly above the floor by a small block C. Determine the 
vertical component of the reaction (a) at A, (b) at B, (c) at C.

y

z
x

A

B

E C

0.15 m

0.2 m

0.2 m
0.6 m

1.2 m

D

 Fig. P4.97  

x
C

A

60 in.

60 in.
60 in. 30 in.

15 in.

15 in.

B

z

y

 Fig. P4.99   and P4.100

 4.98 Solve Prob. 4.97, assuming that the small block C is moved and 
placed under edge DE at a point 0.15 m from corner E.

 4.99 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the tension in each wire.

 4.100 The rectangular plate shown weighs 80 lb and is supported by 
three vertical wires. Determine the weight and location of the 
lightest block that should be placed on the plate if the tensions in 
the three wires are to be equal.
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200 Equilibrium of Rigid Bodies  4.101 Two steel pipes AB and BC, each having a mass per unit length of 
8 kg/m, are welded together at B and supported by three wires. 
Knowing that a 5 0.4 m, determine the tension in each wire.

 4.102 For the pipe assembly of Prob. 4.101, determine (a) the largest 
permissible value of a if the assembly is not to tip, (b) the corre-
sponding tension in each wire.

 4.103 The 24-lb square plate shown is supported by three vertical wires. 
Determine (a) the tension in each wire when a 5 10 in., (b) the 
value of a for which the tension in each wire is 8 lb.

 4.104 The table shown weighs 30 lb and has a diameter of 4 ft. It is sup-
ported by three legs equally spaced around the edge. A vertical 
load P of magnitude 100 lb is applied to the top of the table at D. 
Determine the maximum value of a if the table is not to tip over. 
Show, on a sketch, the area of the table over which P can act 
without tipping the table.

B

A

C

D

y

x

z

a

1.2 m
0.6 m

 Fig. P4.101

y

x

B C

A

a

30 in.

a

30 in.

z

 Fig. P4.103

A
B

C

D

aP

 Fig. P4.104
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201Problems 4.105 A 10-ft boom is acted upon by the 840-lb force shown. Determine 
the tension in each cable and the reaction at the ball-and-socket 
joint at A.

x

y

E

G

A

B

C D22.5 ft

16.5 ft

5 ft

6.6 ft5 ft

13 ft

6 ft

2.8 ft
3.2 ft

F

H

z

6.6 ft

 Fig. P4.108

 4.106 A 2.4-m boom is held by a ball-and-socket joint at C and by two 
cables AD and AE. Determine the tension in each cable and the 
reaction at C.

 4.107 Solve Prob. 4.106, assuming that the 3.6-kN load is applied at 
point A.

 4.108 A 600-lb crate hangs from a cable that passes over a pulley B and 
is attached to a support at H. The 200-lb boom AB is supported 
by a ball-and-socket joint at A and by two cables DE and DF. The 
center of gravity of the boom is located at G. Determine (a) the 
tension in cables DE and DF, (b) the reaction at A.

840 lb

x

y

z

E

A
B

C

D

4 ft
6 ft

7 ft

6 ft

6 ft

 Fig. P4.105

A

B

C

x

y

z

D

E

3.6 kN

1.2 m

1.2 m

1.2 m

0.6 m

0.8 m

0.8 m

 Fig. P4.106
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202 Equilibrium of Rigid Bodies  4.109 A 3-m pole is supported by a ball-and-socket joint at A and by the 
cables CD and CE. Knowing that the 5-kN force acts vertically 
downward (f 5 0), determine (a) the tension in cables CD and 
CE, (b) the reaction at A.

x

y

z

E

D

C

A
1.5 m

2 m 1 m

1.2 m

1.2 m

B

5 kN f

 Fig. P4.109 and P4.110

 4.110 A 3-m pole is supported by a ball-and-socket joint at A and by the 
cables CD and CE. Knowing that the line of action of the 5-kN force 
forms an angle f 5 30° with the vertical xy plane, determine 
(a) the tension in cables CD and CE, (b) the reaction at A.

 4.111 A 48-in. boom is held by a ball-and-socket joint at C and by two 
cables BF and DAE; cable DAE passes around a frictionless pulley 
at A. For the loading shown, determine the tension in each cable 
and the reaction at C.

A

B
C

F

x

y

z

D

E

20 in.

16 in.

320 lb

30 in.

20 in.

48 in.

 Fig. P4.111
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203Problems 4.112 Solve Prob. 4.111, assuming that the 320-lb load is applied at A.

 4.113 A 20-kg cover for a roof opening is hinged at corners A and B. The 
roof forms an angle of 30° with the horizontal, and the cover is 
maintained in a horizontal position by the brace CE. Determine 
(a) the magnitude of the force exerted by the brace, (b) the reac-
tions at the hinges. Assume that the hinge at A does not exert any 
axial thrust.

 4.114 The bent rod ABEF is supported by bearings at C and D and by 
wire AH. Knowing that portion AB of the rod is 250 mm long, 
determine (a) the tension in wire AH, (b) the reactions at C and 
D. Assume that the bearing at D does not exert any axial thrust.

250 mm50 mm 300 mm

400 N

C

D

E

F x
z

50 mm

250 mm

A B

H

y

30°

 Fig. P4.114

E

C

D

z

A

y

x

B

0.9 m

0.9 m0.6 m

30°

 Fig. P4.113
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204 Equilibrium of Rigid Bodies

 4.116 Solve Prob. 4.115, assuming that cable DCE is replaced by a cable 
attached to point E and hook C.

 4.117 The rectangular plate shown weighs 75 lb and is held in the posi-
tion shown by hinges at A and B and by cable EF. Assuming that 
the hinge at B does not exert any axial thrust, determine 
(a) the tension in the cable, (b) the reactions at A and B.

x

y

z

D

H

F

E

A

B

C

25 in.

20 in.

4 in.

12 in.

8 in.

4 in.

30 in.

 Fig. P4.117

 4.115 A 100-kg uniform rectangular plate is supported in the position 
shown by hinges A and B and by cable DCE that passes over a 
frictionless hook at C. Assuming that the tension is the same in 
both parts of the cable, determine (a) the tension in the cable, 
(b) the reactions at A and B. Assume that the hinge at B does not 
exert any axial thrust.

690 mm

960 mm

x

y

z

E

D

A

B

C

675 mm
90 mm

450 mm

270 mm

90 mm

 Fig. P4.115

 4.118 Solve Prob. 4.117, assuming that cable EF is replaced by a cable 
attached at points E and H.
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205Problems 4.119 Solve Prob. 4.114, assuming that the bearing at D is removed and 
that the bearing at C can exert couples about axes parallel to the 
y and z axes.

 4.120 Solve Prob. 4.117, assuming that the hinge at B is removed and 
that the hinge at A can exert couples about axes parallel to the y 
and z axes.

 4.121 The assembly shown is used to control the tension T in a tape that 
passes around a frictionless spool at E. Collar C is welded to rods 
ABC and CDE. It can rotate about shaft FG but its motion along 
the shaft is prevented by a washer S. For the loading shown, 
determine (a) the tension T in the tape, (b) the reaction at C.

 4.122 The assembly shown is welded to collar A that fits on the vertical 
pin shown. The pin can exert couples about the x and z axes but 
does not prevent motion about or along the y axis. For the load-
ing shown, determine the tension in each cable and the reaction 
at A.

T

A

B

C

F

D

E

S

G

x

y

z

6 lb
2 in.

1.6 in.

4.2 in.

2.4 in.

T

 Fig. P4.121

480 N

A

C

D

E

F

x

y

z

60 mm

45 mm

90 mm

120 mm

80 mm

 Fig. P4.122
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206 Equilibrium of Rigid Bodies  4.123 The rigid L-shaped member ABC is supported by a ball-and-socket 
joint at A and by three cables. If a 450-lb load is applied at F, 
determine the tension in each cable.

x

z

y

A

B

C

D

EF

450 lb

24 in.

32 in.
21 in.

21 in.

42 in.

42 in.

 Fig. P4.123

 4.124 Solve Prob. 4.123, assuming that the 450-lb load is applied at C.

 4.125 Frame ABCD is supported by a ball-and-socket joint at A and by 
three cables. For a 5 150 mm, determine the tension in each cable 
and the reaction at A.

 4.126 Frame ABCD is supported by a ball-and-socket joint at A and by three 
cables. Knowing that the 350-N load is applied at D (a 5 300 mm), 
determine the tension in each cable and the reaction at A.

 4.127 Three rods are welded together to form a “corner” that is 
 supported by three eyebolts. Neglecting friction, determine the 
reactions at A, B, and C when P 5 240 lb, a 5 12 in., b 5 8 in., 
and c 5 10 in.

 4.128 Solve Prob. 4.127, assuming that the force P is removed and is 
replaced by a couple M 5 1(600 lb ? in.)j acting at B.

A

B

C
H

DE

F

G

x

y

z

140 mm

350 N
300 mm

140 mm

200 mm

a480 mm

 Fig. P4.125 and P4.126

x

y

z

b

cA

B

C

P

a

 Fig. P4.127
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207Problems 4.129 In order to clean the clogged drainpipe AE, a plumber has discon-
nected both ends of the pipe and inserted a power snake through 
the opening at A. The cutting head of the snake is connected by a 
heavy cable to an electric motor that rotates at a constant speed as 
the plumber forces the cable into the pipe. The forces exerted by 
the plumber and the motor on the end of the cable can be rep-
resented by the wrench F 5 2(48 N)k, M 5 2(90 N ? m)k. Deter-
mine the additional reactions at B, C, and D caused by the cleaning 
operation. Assume that the reaction at each support consists of two 
force components perpendicular to the pipe.

0.5 m x

y

z

A

B

D
E

O

3 m
1 m

2 m

1 m

C

 Fig. P4.129

 4.130 Solve Prob. 4.129, assuming that the plumber exerts a force 
F 5 2(48 N)k and that the motor is turned off (M 5 0).

 4.131 The assembly shown consists of an 80-mm rod AF that is welded to 
a cross consisting of four 200-mm arms. The assembly is supported 
by a ball-and-socket joint at F and by three short links, each of which 
forms an angle of 45° with the vertical. For the loading shown, deter-
mine (a) the tension in each link, (b) the reaction at F.

x

y

z

E

F

A

B

P

CD

45º

45º

45º

200 mm 200 mm

200 mm
200 mm

80 mm

 Fig. P4.131
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208 Equilibrium of Rigid Bodies  4.132 The uniform 10-kg rod AB is supported by a ball-and-socket joint 
at A and by the cord CG that is attached to the midpoint G of the 
rod. Knowing that the rod leans against a frictionless vertical wall 
at B, determine (a) the tension in the cord, (b) the reactions at A 
and B.

x

y

z

GO  

A

B

C
150 mm

150 mm

400 mm

600 mm

 Fig. P4.132

x

y

z

A

B

C

D

E

F

8 in.

7 in.

9 in.

60 lb11 in.

16 in.

10 in.

14 in.

 Fig. P4.133

x

y

z

A

B

C

D

E

240 mm

400 mm

400 mm

200 mm
200 mm

480 mm

240 mm

 Fig. P4.135

 4.133 The bent rod ABDE is supported by ball-and-socket joints at A and 
E and by the cable DF. If a 60-lb load is applied at C as shown, 
determine the tension in the cable.

 4.134 Solve Prob. 4.133, assuming that cable DF is replaced by a cable 
connecting B and F.

 4.135 The 50-kg plate ABCD is supported by hinges along edge AB and 
by wire CE. Knowing that the plate is uniform, determine the ten-
sion in the wire.

 4.136 Solve Prob. 4.135, assuming that wire CE is replaced by a wire 
connecting E and D.
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209Problems 4.137 Two rectangular plates are welded together to form the assembly 
shown. The assembly is supported by ball-and-socket joints at B 
and D and by a ball on a horizontal surface at C. For the loading 
shown, determine the reaction at C.

B

A

y

z

D

C
x

6 in.

12 in.
8 in.

9 in.

80 lb

 Fig. P4.137 z 2 ft

2 ft

2 ft

2 ft

2 ft

x

x

y

y

A

B

C

O

H

D

E

F
12 lb12 lb

 Fig. P4.138

640 N

x

y

z

A B

C

D
E

F

240 mm

160 mm

480 mm

200 mm

490 mm

 Fig. P4.140

 4.138 Two 2 3 4-ft plywood panels, each of weight 12 lb, are nailed 
together as shown. The panels are supported by ball-and-socket 
joints at A and F and by the wire BH. Determine (a) the location 
of H in the xy plane if the tension in the wire is to be minimum, 
(b) the corresponding minimum tension.

 4.139 Solve Prob. 4.138, subject to the restriction that H must lie on the 
y axis.

 4.140 The pipe ACDE is supported by ball-and-socket joints at A and E 
and by the wire DF. Determine the tension in the wire when a 
640-N load is applied at B as shown.

 4.141 Solve Prob. 4.140, assuming that wire DF is replaced by a wire 
connecting C and F.
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210

REVIEW AND SUMMARY

This chapter was devoted to the study of the equilibrium of rigid 
bodies, i.e., to the situation when the external forces acting on a rigid 
body form a system equivalent to zero [Sec. 4.1]. We then have

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular compo-
nents, we can express the necessary and sufficient conditions for the 
equilibrium of a rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0   oFz 5 0 (4.2)
oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be used to determine unknown forces applied 
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body. Therefore, 
the first step in the solution of the problem should be to draw a 
free-body diagram showing the body under consideration and all of 
the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium of a 
two-dimensional structure; i.e., we assumed that the structure con-
sidered and the forces applied to it were contained in the same 
plane. We saw that each of the reactions exerted on the structure by 
its supports could involve one, two, or three unknowns, depending 
upon the type of support [Sec. 4.3].
 In the case of a two-dimensional structure, Eqs. (4.1), or Eqs. 
(4.2) and (4.3), reduce to three equilibrium equations, namely

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.4]. 
These equations can be used to solve for three unknowns. While the 
three equilibrium equations (4.5) cannot be augmented with addi-
tional equations, any of them can be replaced by another equation. 
Therefore, we can write alternative sets of equilibrium equations, 
such as

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where point B is chosen in such a way that the line AB is not parallel 
to the y axis, or

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line.

Equilibrium equationsEquilibrium equations

Free-body diagramFree-body diagram

Equilibrium of a two-dimensional 
structure

Equilibrium of a two-dimensional 
structure
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211 Since any set of equilibrium equations can be solved for only three 
unknowns, the reactions at the supports of a rigid two-dimensional 
structure cannot be completely determined if they involve more 
than three unknowns; they are said to be statically indeterminate 
[Sec. 4.5]. On the other hand, if the reactions involve fewer than 
three unknowns, equilibrium will not be maintained under general 
loading conditions; the structure is said to be partially constrained. 
The fact that the reactions involve exactly three unknowns is no 
guarantee that the equilibrium equations can be solved for all three 
unknowns. If the supports are arranged in such a way that the reactions 
are either concurrent or parallel, the reactions are statically indeter-
minate, and the structure is said to be improperly constrained.

 Two particular cases of equilibrium of a rigid body were given 
special attention. In Sec. 4.6, a two-force body was defined as a rigid 
body subjected to forces at only two points, and it was shown that 
the resultants F1 and F2 of these forces must have the same mag-
nitude, the same line of action, and opposite sense (Fig. 4.11), a 
property which will simplify the solution of certain problems in later 
chapters. In Sec. 4.7, a three-force body was defined as a rigid body 
subjected to forces at only three points, and it was shown that the 
resultants F1, F2, and F3 of these forces must be either concurrent 
(Fig. 4.12) or parallel. This property provides us with an alternative 
approach to the solution of problems involving a three-force body 
[Sample Prob. 4.6].

Statical indeterminacyStatical indeterminacy

Partial constraintsPartial constraints

Improper constraintsImproper constraints

Two-force bodyTwo-force body

Three-force bodyThree-force body

A

B

F1

F2

 Fig. 4.11

F2

F3

F1

B C

D
A

 Fig. 4.12

 In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions 
exerted on the body by its supports could involve between one and 
six unknowns, depending upon the type of support [Sec. 4.8].
 In the general case of the equilibrium of a three-dimensional 
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed 
at the beginning of this review should be used and solved for six 
unknowns [Sec. 4.9]. In most problems, however, these equations 
will be more conveniently obtained if we first write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. The vector products can then be  computed 
either directly or by means of determinants, and the desired scalar 
equations obtained by equating to zero the coefficients of the unit vec-
tors [Sample Probs. 4.7 through 4.9].

Equilibrium of a three-dimensional 
body
Equilibrium of a three-dimensional 
body

Review and Summary
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212 Equilibrium of Rigid Bodies  We noted that as many as three unknown reaction components 
may be eliminated from the computation of oMO in the second of 
the relations (4.1) through a judicious choice of point O. Also, the 
reactions at two points A and B can be eliminated from the solution 
of some problems by writing the equation oMAB 5 0, which involves 
the computation of the moments of the forces about an axis AB join-
ing points A and B [Sample Prob. 4.10].
 If the reactions involve more than six unknowns, some of the 
reactions are statically indeterminate; if they involve fewer than six 
unknowns, the rigid body is only partially constrained. Even with six 
or more unknowns, the rigid body will be improperly constrained if 
the reactions associated with the given supports either are parallel 
or intersect the same line.
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213

REVIEW PROBLEMS

 4.142 A hand truck is used to move two kegs, each of mass 40 kg. 
Neglecting the mass of the hand truck, determine (a) the vertical 
force P that should be applied to the handle to maintain equilib-
rium when a 5 35°, (b) the corresponding reaction at each of the 
two wheels.

A

P

B

G1

G2
80 mm

350 mm

300 mm

500 mm

a

Fig. P4.142

800 mm

200 mm300 N

200 mm300 N

a

A
B

C

Fig. P4.143

A

B

D

12 in.

20°
75 lb

C10 in.

15 in.

Fig. P4.144 A B C

150 mm

200 mm
80 mm 80 mm

120 N

D

Fig. P4.145

 4.143 Determine the reactions at A and C when (a) a 5 0, (b) a 5 30°.

 4.144 A lever AB is hinged at C and attached to a control cable at A. 
If the lever is subjected to a 75-lb vertical force at B, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.145 Neglecting friction and the radius of the pulley, determine (a) the 
tension in cable ADB, (b) the reaction at C.
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214 Equilibrium of Rigid Bodies  4.146 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
the reactions at C, D, and E when u 5 30°.

 4.147 The T-shaped bracket shown is supported by a small wheel at E 
and pegs at C and D. Neglecting the effect of friction, determine 
(a) the smallest value of u for which the equilibrium of the bracket 
is maintained, (b) the corresponding reactions at C, D, and E.

 4.148 For the frame and loading shown, determine the reactions at A 
and C.

 4.149 Determine the reactions at A and B when b 5 50°.

A B

C

D

E
3 in.

3 in.

2 in.

20 lb 40 lb

q

4 in. 4 in.

Fig. P4.146 
and P4.147

 4.150 The 6-m pole ABC is acted upon by a 455-N force as shown. The 
pole is held by a ball-and-socket joint at A and by two cables BD 
and BE. For a 5 3 m, determine the tension in each cable and 
the reaction at A.

A

B

C

D

30 lb

4 in. 6 in.

3 in.

Fig. P4.148
A

B

C

100 N

250 mm

150 mm

25°

b

Fig. P4.149

A

B

C

F

x

y

z

D

E

455 N

1.5 m

1.5 m

a

2 m

3 m

3 m

3 m

3 m

Fig. P4.150

 4.151 Solve Prob. 4.150 for a 5 1.5 m.
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215Review Problems 4.152 The rigid L-shaped member ABF is supported by a ball-and-socket 
joint at A and by three cables. For the loading shown, determine 
the tension in each cable and the reaction at A.

A
A

B B

C C

P

A

B

C

P

P

A

B

C

P

45°

45°

(a) (b)

(c) (d)

a = 30°

30°

aa

a

aa

a

aa

a

aa

a

Fig. P4.153

x

y

z

A

B

C D

E F

G

J

H

24 lb

24 lb

9 in.

16 in.

16 in.

8 in.

12 in.

16 in.

8 in.

8 in.

8 in.

O

Fig. P4.152

 4.153 A force P is applied to a bent rod ABC, which may be supported in 
four different ways as shown. In each case, if possible, determine 
the reactions at the supports.
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COMPUTER PROBLEMS

 4.C1 The position of the L-shaped rod shown is controlled by a cable 
attached at B. Knowing that the rod supports a load of magnitude P 5 50 lb, 
write a computer program that can be used to calculate the tension T in 
the cable for values of u from 0 to 120° using 10° increments. Using appro-
priate smaller increments, calculate the maximum tension T and the corre-
sponding value of u.

Fig. P4.C1

E

A

B
D

C

T

P

q

8 in.

16 in.

12 in.

15 in.

4 in.

A

B

D P
400 mm

x

1000 mm

Fig. P4.C2

W

A

a

q

B

C

R

Fig. P4.C3

R

B

R

A

W

a

y

z

x

q

Fig. P4.C4

 4.C2 The position of the 10-kg rod AB is controlled by the block shown, 
which is slowly moved to the left by the force P. Neglecting the effect of 
friction, write a computer program that can be used to calculate the mag-
nitude P of the force for values of x decreasing from 750 mm to 0 using 
50-mm increments. Using appropriate smaller increments, determine the 
maximum value of P and the corresponding value of x.

 4.C3 and 4.C4 The constant of spring AB is k, and the spring is unstretched 
when u 5 0. Knowing that R 5 10 in., a 5 20 in., and k 5 5 lb/in., write 
a computer program that can be used to calculate the weight W correspond-
ing to equilibrium for values of u from 0 to 90° using 10° increments. Using 
appropriate smaller increments, determine the value of u corresponding to 
equilibrium when W 5 5 lb.
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217Computer Problems 4.C5 A 200 3 250-mm panel of mass 20 kg is supported by hinges along 
edge AB. Cable CDE is attached to the panel at C, passes over a small 
pulley at D, and supports a cylinder of mass m. Neglecting the effect of 
friction, write a computer program that can be used to calculate the mass 
of the cylinder corresponding to equilibrium for values of u from 0 to 90° 
using 10° increments. Using appropriate smaller increments, determine the 
value of u corresponding to m 5 10 kg.

0.2 m

0.2 m

0.1 m

0.125 m

0.125 m

A

B

C

D

E
z

x

y

�
m

Fig. P4.C5

y

x

z

B

E

D

C

A
f

2000 kg

3 m

3 m

2 m
1.5

 m

1.5
 m

3 m

Fig. P4.C6

 4.C6 The derrick shown supports a 2000-kg crate. It is held by a ball-and-
socket joint at A and by two cables attached at D and E. Knowing that the 
derrick stands in a vertical plane forming an angle f with the xy plane, write 
a computer program that can be used to calculate the tension in each cable 
for values of f from 0 to 60° using 5° increments. Using appropriate smaller 
increments, determine the value of f for which the tension in cable BE is 
maximum.
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The Revelstoke Dam, located on the 

Columbia River in British Columbia, is 

subjected to three different kinds of 

distributed forces: the weights of its 

constituent elements, the pressure forces 

exerted by the water of its submerged 

face, and the pressure forces exerted 

by the ground on its base.
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