Tikrit University

The College of Petroleum Processes Engineering

Petroleum Systems Control Engineering

Department

Properties of Petroleum & Natural Gas

Third Class

Lecture 13

By

Jasim I. Humadi

Figures

Figure (1): Characterizing Boiling Points of Petroleum Fractions

Q4: The ASTM D86 data of crude oil fraction having specific gravity of 0.720 at 60/60 °F is shown below.

Vol % distilled	IBP	5	10	30	50	70	90	95	EP
ASTM D86 °C	37	42	49	66	93	133	203	211	217

- a)Calculate VABP, also find MeABP and WABP from Figure 1.
- b) Find the molecular weight of the fraction and compare with the value obtained from Figure 2.
- c)Find the base of the fraction.
- d)Give suitable name for the fraction.

Solution

a)

$$VABP = \frac{120.2 + 150.8 + 199.4 + 271.4 + 397.4}{5} = 227.84 \text{ °F}$$

$$SL = \frac{397.4 - 120.2}{90.10} = 3.465 \text{ °F}$$

Refer to Figure 1. Read down from a slope of 3.465°F to the interpolated curve to 227.84 °F in the set drawn with dashed lines (MeABP). Read a correction value of -25 on the ordinate. Then find MeABP from equation below. Do the same for WABP, then read a correction of +10.

$$MeABP = 227.84°F - 25°F = 203.84°F$$

 $WABP = 227.84°F + 10°F = 238.84°F$

b)

$$Tb = \frac{T30 + T50 + T70}{3} = \frac{66 + 93 + 133}{3} = 97.33 = 370.48$$

M =

42.965[exp(2.097 x 10⁻⁴
$$T_b$$
 - 7.7812 SG + 2.08476 x 10⁻³ T_bSG)] $T_b^{1.26007}SG^{4.90300}$ = 100.264

c)

$$kw = \frac{\sqrt[3]{MeABP R}}{SG} = 12.11 \text{ paraffinic base}$$

The name of the fraction is Gasoline

The API of the fraction from the calculation for gravity is 65. Using Figure (2) and the MeABP obtained from Figure (1A), a molecular weight of 100 is read off.

Figure (2): Correlation between boiling point, molecular weight, and gravity

Example: Consider the petroleum cut has 197-222 °C (387-432 °F) boiling range for the curve given in Figure (3).

Step 1: Volumetric range: According to the Figure (3), the volumetric range corresponding to these cuts is 20-25 i.e. vol % distilled of the fraction is 5% vol. This gives us directly the volumetric flowrate of this fraction, that is, a 5% of the total flowrate

Figure (4): Relationships between the slopes of various distillation curves

Figure (5) Relationships between distillation temperatures at 50% vaporized and the flash (E.F.V.) Temp. at 50% vol vaporized

Q5: Find $T_{100\%}$ and $T_{0\%}$ for EFV curve knowing that TBP ($T_{50\%} = 570$ °F) and Slope = 9.4 °F Solution

Step 1: find the EVF slope from Figure 4.

 $SL(EFV) = 6.5 \,^{\circ}F$

Step 2: find T_{50%} for EFV curve from TBP (T_{50%} = 570 °F) using Figure 5.

The T_{50%} of the flash curve will be about 64 °F below the T_{50%} of the TBP curve

T_{50%} EFV = 570-64=506 °F

Step 3:

$$6.5 = \frac{T_{100} - 506}{50 - 0} \rightarrow T_{100} = 831^{\circ}F$$

$$6.5 = \frac{506 - T_0}{100 - 50} \rightarrow T_0 = 181^{\circ}F$$

ASTM D1160

- Boiling point ranges of heavy petroleum fractions such as products of a vacuum distillation column cannot be measured due to the thermal decomposition of heavy hydrocarbons at high temperatures.
- For this reason distillation data are performed at reduced pressures of 1-50 mmHg, as described under ASTM D 1160 test method.
- In this part we present calculation methods for the conversion of ASTM D 1160 to atmospheric distillation curve and for the prediction of atmospheric TBP curves from ASTM D 1160.

ASTM D1160 apparatus diagram

Conversion of a Boiling Point at Sub- or Super-Atmospheric Pressures to the Normal Boiling Point or Vice Versa.

$$T_b'(760 \ mmHg) = \frac{748.1 \ QT}{1 + T(0.3861Q - 0.00051606)} \dots 1$$

Equation 1 is used to convert boiling point at sub-atmospheric (P < 760 mm Hg) or super-atmospheric (P > 760 mm Hg) conditions to normal boiling point.

$$Q = \frac{6.761560 - 0.987672 \log_{10} P}{3000.538 - 43 \log_{10} P} \qquad (P < 2 \text{ mm Hg})$$

$$Q = \frac{5.994296 - 0.972546 \log_{10} P}{2663.129 - 95.76 \log_{10} P} \qquad (2 \le P \le 760 \text{ mm Hg})$$

$$Q = \frac{6.412631 - 0.989679 \log_{10} P}{2770.085 - 36 \log_{10} P} \qquad (P > 760 \text{ mm Hg})$$

Where P = pressure at which boiling point or distillation data is available, mm Hg.

T = boiling point available at given pressure P, in kelvin.

 T_b = normal atmospheric boiling point, in kelvin.

At P = 10 mmHg, Q = 0.001956 and as a result **Eq. (1)** reduces to the following simple form:

$$T(10mmHg) = \frac{0.683398 \, T_b'}{1 - 1.63434 \, x 10^{-4} \, T_b'} \dots 2$$

- To use equations (1,2) for the conversion of boiling point from one low pressure to another low pressure (i.e., from 1 to 10 mm Hg), two steps are required.
- In the first step, normal boiling point or T (760 mm Hg) is calculated from T (1 mmHg) by Eq. (1) and in the second step T (10 mm Hg) is calculated from T (760 mm Hg) or T_b via Eq. (2).