Functions

OVERVIEW Functions are f undamental to the study of calculus. In this chupler we review
what functions are and how they are pictured as graphs, how they are combined and trans-

formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators anfi cor.npulers'lo obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic funcuons.. The
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses

are reviewed in the Appendices.

1 . ]. Functions and Their Graphs
Functions are a tool for describing the real world in ma
represented by an equation, a graph, a numerical table, o
all four representations throughout this book. This sectio

thematical terms. A function can be
r a verbal description; we will use
n reviews these function ideas.

Functions; Domain and Range
hich water boils depends on the elevation above sea level (the boiling
st paid on a cash investment depends on the length of
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.
In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x” and write this
symbolically as

The temperature at W
point drops as you ascend). The intere:

y=f (*y equals f of x™).

In this notation, the symbol f represents the function, the letter x is the independent variable
representing the input value of f, and y is the dependent variable or output value of f at.x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique
(single) element f(x) € Y to each element x € D.

The set D of all possible input values is called the domain of the function. The set of
all output values of f(x) as x varies throughout D is called the range of the function. The
range may not include every element in the set Y. The domain and range of a function can
bc'any sets of objects, but often in calculus they are sets of real numbers interpreted as
points of a coordinate line. (In Chapters 13-16, we will encounter functions for which the
elements of the sets are points in the coordinate plane or in space.)
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FIGURE 1.1 A diagram showing u
function as a kind of machine.
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FIGURE 1.2 A function from a set D

1o a set Y assigns a unique element of Y
to cach elementin D.

Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation A = rr? is a rule that calculates the
arca A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not stated
explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, which is called the natural domain. If
we want to restrict the domain in some way, we must say so. The domain of y = a? is the
entire set of real numbers, To restrict the domain of the function to, say, positive values of
x, we would write *y = 2%, x > 0."

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x? is [0,00). The range of y = x% x = 2, is the set of all numbers
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1),
the range is {x*|x = 2} or {y|y = 4} or [4,00).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider arc intervals or combinations of intervals. The intervals may be open, closed, or half
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function f is like & machine that produces an output value f(x) in its range whenever we
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an
example of a function as a machine. For instance, the Vi key on a calculator gives an output
value (the square root) whenever you enter a nonnegative number v and press the Vx key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates
an clement of the domain D with a unique or single clement in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but cach input element v is assigned a single output value f(x).

EXAMPLE 1 Let's verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)
y = x? (—00, 00) [0, c0)
y=1/x (—o0, 0) U (0, 00) (=09, 0) U (0, o0)
y =V [0, 00) [0, o)

y=Va-x  (-0,4] [0, 00)
y=VIi-2&  [-L1] [0.1]

Solution The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x* is [ 0,00) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = \/\_)’
fory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
y = 1/(1/y). Thatis, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vix gives a real y-value only if x = 0. The range of y = Vi is
[0, 00) because every nonnegative number is some number's square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 —x =0, or
x = 4. The formula gives real y-values for all x = 4, The range of V4 — x is [0, 00),
the set of all nonnegative numbers.
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Time

0.00091
0.00108
0.00125
0.00144
0.00162
0.00180
0.00198
0.00216
0.00234
0.00253
0.00271
0.00289
0.00307

0.00325
0.00344

Pressure

=0.080
0.200
0.480
0.693
0.816
0.844
0.771
0.603
0.368
0.099
=0.141
=0.309
=(0.348

—=0.248
—0.041

To find out, we could plot more points. But how would we then connect them? The basic
question still remains: How do we know for sure what the graph looks like between the
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile,
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values, Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note
produced by a tuning fork. The table provides a representation of the pressure function
over time. If we first make a scatterplot and then connect approximately the data points
(¢, p) from the table, we obtain the graph shown in the figure.

P (pressure)

Time Pressure |
- O
0.00362 0.217 g: - @ Data
0.00379 0.480 sk
0.00398 0.681 02}

L L L '/ 1(sec)
0.00416 0.810 —02} 0901 0.002 W(L(XM ().(Wob

0.00435 0.827 —04F

=06
0.00453 0.749
0.00471 0.581 FIGURE 1.6 A smooth curve through the plotted points
0.00489 0.346 gives a graph of the pressure function represented by the
0.00507 0.077 accompanying tabled data (Example 3),
0.00525 —=0.164
0.00543 —-0.320
0.00562 —0.354
0.00579 —0.248
0.00598 =0.035

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can
have only one value f(x) for each x in its domain, 50 no vertical line can intersect the
graph of a function more than once. If @ is in the domain of the function f. then the vertical
line x = a will intersect the graph of f at the single point (a, f(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of
X, such as the upper semicircle defined by the function f(x) = V1 — x? and the lower
semicircle defined by the function g(x) = = V1 = 12 (Figures 1.7b and 1.7¢).
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FIGURE 1.5 Graph of the function

in Example 2.
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The formula y = V1 — x? gives a real y-value for every x in the closed interval from
—1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real number.
The values of 1 — x? vary from 0 to 1 on the given domain, and the square roots of these
values do the same. The range of V1 — x*is [0, 1]. O

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f. In set notation, the graph is
{(x, f(x)) | xeD}.

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, ¥) is a point on the
graph, then y = f(x) is the height of the graph above (or below) the point x. The height
may be positive or negative, depending on the sign of f(x) (Figure 1.4).

FIGURE 1.3 The graphof f(x) = x + 2

FIGURE 1.4 If (x, y) lies on the graph of
is the set of points (x, y) for which y has the

£, then the value y = f(x) is the height of

value x + 2. the graph above the point x (or below x if
f(x) is negative).
EXAMPLE 2 Graph the function y = x% over the interval [—2,2].

Solution Make a table of xy-pairs that satisfy the equation y = x?. Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5). O

How do we know that the graph of y = x* doesn’t look like one of these curves?
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FIGURE 1.8 The absolute value
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range [ 0, 00).

o
T

-2 -1 0

FIGURE 1.9 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain

(Example 4).
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FIGURE 1.10 The graph of the

greatest integer function y = | x|
lies on or below the line y = x, so
it provides an integer floor for x

(Example 5).
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FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test, (b) The
upper semicircle is the graph of a function f(x) = V1 = x% (c) The lower semicircle is the graph
of a function g(x) = —V1 — x°,

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts
of its domain. One example is the absolute value function

X, x=0
Iz]'= {

-X, x<0,

Fuest tormula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if x = 0, and equals —x if x < 0. Piecewise-defined functions often
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4 The function
-X, x<0 st formula
fx) = 2, O0=sx=s1 Second formula
1, x> 1 Third formula
is defined on the entire real line but has values given by different formulas, depending on
the position of x. The values of f are given by y = —x when x < 0, y = x> when
0= x=1,and y = | when x > 1. The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9). =]

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. It
is denoted | x ). Figure 1.10 shows the graph. Observe that

|24] =2 [19)=1, [0]=0, |-1.2] = -2,
2] =2, |02] =0 |-03]=-1, [-2]=-2 m
EXAMPLE 6 The function whose value at any number x is the smallest integer

greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted [ x]. Figure 1.11 shows the graph. For positive values of x, this function
might represent, for example, the cost of parking x hours in a parking lot that charges Sl
for each hour or part of an hour. ]
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FIGURE 1.11 The graph

of the least integer function

y = [x] lies on or above the line
¥ = x, so it provides an integer
ceiling for x (Example 6).

y=x*
(=x,y) (EOD]
X
0
(a)
¥
y=x
x, ¥
X
0
(=x, —y)
(b)

FIGURE 1.12 (a) The graphof y = *
(an even function) is symmetric about the
y-axis. (b) The graph of y = x* (an odd
function) is symmetric about the origin.

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

DEFINITIONS Let f be a function defined on an interval / and let x; and x; be
any two points in /.

L If f(x,) > f(x,) whenever x; < x,, then f is said to be increasing on /.

2. If f(x;) < f(x,) whenever x; < x,, then f is said to be decreasing on /.

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points x; and x; in / with x; < x,. Because we use the
inequality < to compare the function values, instead of =, it is sometimes said that f is
strictly increasing or decreasing on /. The interval / may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on (=00, 0] and increas-
ing on [0, 1]. The function is neither increasing nor decreasing on the interval [ 1, 00)
because of the strict inequalities used to compare the function values in the definitions. B
Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmeltry properties.

DEFINITIONS A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function's domain,

The names even and odd come from powers of x. If y is an even power of x, as in
y = x?ory = x% itis an even function of x because (—x)? = x% and (—=x)* = ¥\ If yis an
odd power of x, as in y = x or y = x7, it is an odd function of x because (—x)! = —x and
—x) = -2

The graph of an even function is symmetric about the y-axis. Since f(—x) = f(x), a
point (x, y) lies on the graph if and only if the point (—x, y) lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f(—x) = —f(x), a
point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the
graph unchanged. Notice that the definitions imply that both x and —x must be in the domain of f.

EXAMPLE 8 Here are several functions illustrating the definition.
fx) = x? Even function: (—x)? = x? for all x; symmetry about y-axis.
f) =x*+1 Even function; (—=x)> + 1 = x? + 1 for all x; symmetry about

y-axis (Figure 1.13a).

flx) =x 0dd function: (—x) = —x for all x; symmetry about the origin.
fx)y =x+1 Not odd: f(=x) = —x + 1, but =f(x) = —x — . The two are not
equal,

Noteven: (—x) + 1 # x + | forall x # 0 (Figure 1.13b). O
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FIGURE 1.13 (a) When we add the constant term 1 to the function

y = x?, the resulting function y = x? + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd,
since the symmetry about the origin is lost. The function y = x + 1 is
also not even (Example 8).

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is called
a linear function. Figure 1.14a shows an array of lines f(x) = mx where b = 0, so these
lines pass through the origin. The function f(x) = x where m = | and b = 0 is called the
identity function. Constant functions result when the slope m = 0 (Figure 1.14b).
A lincar function with positive slope whose graph passes through the origin is called a
proportionality relationship.

m= =3 m=2

_3
2k \"—;
1+
1 1 1 1 1 1 X
0 12
(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

DEFINITION Two variables y and x are proportional (to one another) if one
is always a constant multiple of the other; that is, if y = kv for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x“, where a is a constant, is called a power function.
There are several important cases to consider.
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(a) a = n, aposilive integer.

The graphs of f(x) = x”, for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (=1, 1), and to rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval
(=00, 0] and increasing on [0, 00); the odd-powered functions are increasing over the
entire real line (—oo, c0).

¥ ya? Y oy= ¥ gyt ¥opmad
1+ 1 —/ \l - 1+
L 1 " 1 1 " 1 1 . 1 1 .
T o[ t Y T-oiZo 1+ Y T=ro 1 Y Toago 1
-1t -1t -1k -1}
FIGURE 1.15 Graphsof f(x) = x",n = 1,2,3,4, 5, defined for —oo < x < oo.
() a=-1 or a=-2
The graphs of the functions f(x) = x~' = I/x and g(x) = 72 = 1/x? are shown in

Figure 1.16. Both functions are defined for all x # 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1, which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes. The graph of the
function f is symmetric about the origin; f is decreasing on the intervals (—00, 0) and
(0, 00). The graph of the function g is symmetric about the y-axis; g is increasing on
(—00, 0) and decreasing on (0, 00),

Domain: x # 0
Range: v# 0

Domain: x # 0
Range: y» >0

(@) (b)

FIGURE 1.16 Graphs of the power functions f(x) = x“ for part (a) ¢ = —1
and for part (b) a = —2.

The functions f(x) = x'2 = Vx and g(x) = x'/3 = Vx are the square root and cube
root functions, respectively. The domain of the square root function is [0, 09), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along
with the graphs of y = 7 and y= 2. (Recall that X% = (x'/2)? and 2 = (7))

Polynomials A function p is a polynomial if
p) =ax"+a,_ X'+ .- +ax+a,

where n is a nonnegative integer and the numbers a,, a,, a5, . . ., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (-0, 00). If the
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FIGURE 1.17  Graphs of the power functions f(x) = a“ fora = 3, 35 and 3

leading coefficient @, # 0 and n > 0, then n is called the degree of the polynomial. Lin-
car functions with m # () are polynomials of degree 1. Polynomials of degree 2, usually
written as p(x) = ax* + bx + c¢, are called quadratic functions. Likewise, cubic functions
are polynomials p(x) = ax' + bx? + ex + d of degree 3. Figure 1.18 shows the graphs
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

L) 2
y=3 —%-—21*%
y
4F ¥
y e e — N 4 1V —
- Poy=8at o 1 - - L) b
ok \ 5l J 16
N N
=1 i 1 2 '
1 X _— I~
4 _ L [P :
’ AN 1 2 *
_('_
-8
-10} \
—4f -12}
(@) (b) (©)

FIGURE 1.18 Graphs of three polynomial functions.

Rational Functions A rational function is a quotient or ratio f(x) = p(x)/q(x), where
p and ¢ are polynomials. The domain of a rational function is the set of all real x for which
q(x) # 0. The graphs of several rational functions are shown in Figure 1.19,

8 |-
¥ Sx2 4+ 8v—3
g p=A" 8 -3 L
' 42 6
5 -[\\
2 N
\ (l  tiney=3 i
X L L b X L X
2 4 -5 0 5 10 -4 =20
1t -2k
-4
NOTTO SCALLE
)
-8
(n) (b (c)

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6,
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Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the
class of algebraic functions. All rational functions are algebraic, but also included are
more complicated functions (such as those satisfying an equation like y* — 9xy + x* = 0,
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

. AP VX VI
¥ y=x'(x-4 N
' : ¢ ) ¥ y=a(l -x)¥3

|
—
|
-
=
=]
A
i

(a) (b) (c)

FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

N

A AN A
VA E VARV,

_ﬂ\/lli’ n\/zv

-

F)

(a) f(x) = sinx (b) f(x) = cos x

FIGURE 1.21 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a* where the base a > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—09, 00) and range (0, ©0), so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

v = 10%/
) IO"

FIGURE 1.22 Graphs of exponential functions.
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]. .2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients
Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x e D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

f + W) = flx) + g)

f = W) = f(x) — g(x)

(f9)x) = flx)gx).
Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition
of the real numbers f(x) and g(x).
Atany point of D(f) N D(g) at which g(x) # 0, we can also define the function f/g

by the formula
I\, _ f&)
(-“)(") e

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by

€f)x) = cfx).

(where g(x) # 0).

EXAMPLE 1

The functions defined by the formulas
fx) = Vax and g) = VI —x
have domains D(f) = [0,00) and D(g) = (=00, 1]. The points common to these
domains are the points
[0,00)N (=00, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f + g for the product function fg.

Function Formula Domain

f+g f+w=Vx+ Vi-x [0, 1] = D(f) N D(g)

f-g f-0Ww=Vx-VIi-x [0,1]

g-f @-NW=V1-x-Vx [0, 1]

f-g (f )W) = f(x)gx) = V(1 = x) [0, 1]

(x) X

f/g %(.\‘) = f:(—:) = ,/ﬁ [0, )(x = 1 excluded)

g/f }—"(x) = }% = /! : b (0, 1] (x = 0 excluded)
“ |

The graph of the function f + g is obtained from the graphs of f and g by adding the
corresponding y-coordinates f(x) and g(x) at cach point x € D(f) N D(g), as in Figure 1.25.
The graphs of f + g and f+ g from Example 1 are shown in Figure 1.26.
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v (f+gX
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FIGURE 1.25 Graphical addition of two

functions.

Composite Functions
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FIGURE 1.26 The domain of the function f + g
is the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

Composition is another method for combining functions.

DEFINITION
posed with g”) is defined by

lies in the domain of f.

If f and g are functions, the composite function feo g (*f com-

(fo

The domain of f ¢ g consists of the numbers x in the domain of g for which g(x)

) = f(g)).

The definition implies that f ° g can be formed when the range of g lies in the domain
of f. To find (f ° g)(x), first find g(x) and second find f(g(x)). Figure 1.27 pictures f o g as
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

X — g8  —g)— S — fle(x)
FIGURE 1.27 A composite function f o g uses
the output g(x) of the first function g as the input

for the second function f.

fog

J(g(x)

8

8(x)

FIGURE 1.28 Arrow diagram for f o g. If x lies in the
domain of g and g(x) lies in the domain of f, then the
functions f and g can be composed to form (f °© g)(x).

To evaluate the composite function g o f (when defined), we find f(x) first and then
g(f(x)). The domain of g o f is the set of numbers x in the domain of f such that f(x) lies

in the domain of g.

The functions f e g and g ° f are usually quite different.
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1 unit

-2\ o] N2
& "~ l\'.’. units

FIGURE 1.29 To shift the graph
of f(x) = x* up (or down), we add
positive (or negative) constants

to the formula for f (Examples 3a
and b).

EXAMPLE 2 If f(v) = Virand g(x) = x + 1, find
(@) (feg)w) (b) (g°f)x) (€) (fof)x) (d) (g°g)x).

Solution

Composite Domain
@) (Fe0) = fg) = Ve = Vi + | [~1,00)
) (g°NW = gfW) = f(x) + 1= Vx+1 [0, 00)
© (FoNW = fUW) = VIKX) = VVx = x4 [0,00)
d) geg)) =gE)=gx)+ 1=+ DH+1=x+2 (=00, 00)

To see why the domain of f o g is [— 1, 00), notice that g(x) = x + | is defined for all real
x but belongs to the domain of f only if x + 1 = 0, that is to say, when v = —1. =]

Notice that if f(x) = x2and ) = \/: then (f o g)(x) = (\/T)2 = x. However, the
domain of fo g is [0, 00), not (=00, 00), since Vax requires x = (.

Shifting a Graph of a Function

A common way o obtain a new function from an existing onc is by adding a constant to
cach output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y=f(x)+k Shifts the graph of f up kunits itk > 0
Shifts it down |k| units if k < 0

Horizontal Shifts

y=fx+1n Shifits the graph of fleft hunitsif h > 0
Shifts it right | h| unitsif h < 0

EXAMPLE 3

(1) Adding 1 to the right-hand side of the formula y = x* to get y = x* + 1 shifts the
graph up 1 unit (Figure 1.29).

(b) Adding =2 to the right-hand side of the formula y = x? to get y = x* — 2 shifts the
graph down 2 units (Figure 1.29).

(¢) Adding3toxiny = x2togety = (x + 3)? shifts the graph 3 units to the left, while
adding —2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding =2 toxiny = |x|, and then adding =1 to the result, gives y = |x = 2| = 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). O

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally, This is accomplished by multiplying the function f, or the independent variable
x, by an appropriate constant ¢. Reflections across the coordinate axes are special cases
where ¢ = —1.



FIGURE 1.32 Vertically stretching
and compressing the graph y = Vx by a
factor of 3 (Example 4a).
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Add a positive Add a negative

constant to x. constant to x, ¥
4 -
y=(x+3)? / y=x [y=@-2)7?

(/ L
/ 1 4 X
L 1 q L
-3 of 1 2 !

FIGURE 1.30 To shift the graphof y = 2 to
the left, we add a positive constant to x (Example
3c). To shift the graph to the right, we add a nega-

tive constant to x.

FIGURE 1.31 The graphof y = |x|
shifted 2 units to the right and 1 unit
down (Example 3d).

(c) Reflection: The graph of y = —

Vertical and Horizontal Scaling and Reflecting Formulas
For ¢ > 1, the graph is scaled:
y = cf(x) Stretches the graph of f vertically by a factor of c.
y= -‘l.- f(x) Compresses the graph of f vertically by a factor of c.
¥y = flex) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
For ¢ = =1, the graph is reflected:
y=—fx) Reflects the graph of f across the x-axis.
y = f(—x) Reflects the graph of f across the y-axis.
EXAMPLE 4 Here we scale and reflect the graph of y = V/x.

(a) Vertical: Multiplying the right-hand side of y = Vx by 3togety = 3V/x stretches

the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of y = V3x is a horizontal compression of the graph of

y=Vx by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3
(Figure 1.33). Note that y \/_ = V3V s0 a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

x is a reflection of y = Vx across the x-axis, and

—, stretch

¥ = V—xis areflection across the y-axis (Figure 1.34). |
¥ y= \/:x 3
4} -
3 =N
.| e compress o \/_ , , .
Vi/3

1

y=

1
-1 0 2

4

Ry

FIGURE 1.33 Horizontally stretching and
compressing the graph y = VX by a factor of
3 (Example 4b).

FIGURE 1.34 Reflections of the graph
y = VX across the coordinate axes
(Example 4¢).
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Graphing Combining Functions
In Exercises 67-74, graph each function, not by plotting points, but by 77. Assume that f is an even function, g is an odd function, and both
starting with the graph of one of the standard functions presented in f and g are defined on the entire real line (—o0, 00). Which of the
Figures 1.14-1.17 and applying an appropriate transformation, following (where defined) are even? odd?
r o » b. J o J

67. y = =V2x +1 68. y = 1—% i ff’ f{’* c ¢/f

d. f°=ff €8t =8 f. fog
69. _\'z(.t—l)}+2 70. y=(l—.\‘)3+2 2 gof h_fo! i. gog

2 ot . R 2 Give reasons ,
M y= _zl_ -1 2. y=%+ 1 78. Can a function be both even and odd? Give reasons for your
X X2 answer.

73y = —\V; 74, y = (—2x)¥? m79. (Continuation of Example 1.) Graph the functions f(x) = Vi

75. Graph the function y = |x? - 1
76. Graph the function y = V|x|.

and g(x) = V1 — x together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

[T]80. Let f(x) = x = 7 and g(x) = x* Graph f and g together with
fegand geof.
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Cirele of n\\\‘“s

FIGURE 1.36 The radian measure
of the central angle A'CB' is the num-
ber @ = s/r. For a unit circle of radius
r =1, 0 is the length of arc AB that
central angle ACB cuts from the unit
circle.

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle
A'CB' within a circle of radius r is defined as the number of “radius units™ contained in
the arc s subtended by that central angle. If we denote this central angle by 0 when mea-
sured in radians, this means that 6 = s/r (Figure 1.36), or

s=10 (@ in radians). n

If the circle is a unit circle having radius » = 1, then from Figure 1.36 and Equation (1),
we see that the central angle @ measured in radians is just the length of the arc that the
angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or
27 radians, we have

a radians = 180° (2)
and

| radian = l.,}ﬂ(w57.3) degrees or 1 degree = ﬁ(%ﬂ.Ol?) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic
angles.

TABLE 1.1 Angles measured in degrees and radians

Degrees -180 ~-135
0 (radians) - —‘::‘n'

-9% =45 0 30 45 60 90 120 135 150 180 270 360

- -=
2 a0

2m 3w Sm 3w
2

eNE
INE
w3
E

2o
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hypotenuse ,
opposite
\o
adjacent

sinf = opR csc 0 = m
hyp opp
_ adj _ hyp
cos = m sec O = :I_dj
tan § = ﬂ) cot = a—d“-
adj opp

FIGURE 1.39 Trigonometric
ratios of an acute angle.

FIGURE 1.40 The trigonometric
functions of a general angle 0 are
defined in terms of x, y, and r.

An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

y ¥

Terminal ray

Initial ray

Positive lnili/nl ray \j_/Negmve

measure Terminal measure

ray .

FIGURE 1.37 Angles in standard position in the xy-plane.
Angles describing counterclockwise rotations can go arbitrarily far beyond 27 radi-
ans or 360°. Similarly, angles describing clockwise rotations can have negative measures
of all sizes (Figure 1.38).

¥

wn
3

P

N

/ \ |
gl R U

“m\/

FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 27,

Angle Convention: Use Radians From now on, in this book it is assumed that all angles
are measured in radians unless degrees or some other unit is stated explicitly. When we talk
about the angle 7 /3, we mean 7 /3 radians (which is 60°), not 77 /3 degrees. We use radians
because it simplifies many of the operations in calculus, and some results we will obtain
involving the trigonometric functions are not true when angles are measured in degrees.

The Six Basic Trigonometric Functions

You are probably familiar with defining the trigonometric functions of an acute angle in
terms of the sides of a right triangle (Figure 1.39). We extend this definition to obtuse and
negative angles by first placing the angle in standard position in a circle of radius r. We
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.40).

»

. . )
sine: sinf =73 cosecant: cscf = ‘ﬂ
. X r
cosine: cost =% secant: sect = 3
_Y 3
tangent: tanf =3  cotangent: cotf = y

These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,

_ sinf . _ 1
lanf)—coso wlo_l_anﬂ
o f) = 1 e =
secd = 5500 cscd = sin @
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FIGURE 1.41 Radian angles and side
lengths of two common triangles.

S A
sin pos all pos
A
T c
tan pos COS PON

FIGURE 1.42 The CAST rule,
remembered by the statement
“Calculus Activates Student Thinking,"
tells which trigonometric functions

are positive in cach quadrant,

As you can see, tan 0 and sec 0 are not defined if x
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cos @ = 0. This means they are not

defined if 0 is /2, £37/2,.... Similarly, cot 8 and csc 0 are not defined for values
of 6 for which y = 0, namely 6§ = 0, £, +2, .. ..
The exact values of these trigonometric ratios for some angles can be read from the

triangles in Figure 1.41. For instance,

s‘in£=L sin =
RV %
'(NE=L os =
Petva e
™ _ ™
t.m4 | mn6

S5

]

sin£=—
3 2
e = L
t.o:.3 =3
lun%r-=\/5

The CAST rule (Figure 1.42) is useful for remembering when the basic trigonomeltric func-
tions are positive or negative. For instance, from the triangle in Figure 1,43, we sce that

tan %’r =-\3.

2w

cO)
-

co2m) ()

E N T) N (_5'
¥

P—

3

1
2'

-

FIGURE 1.43 The triangle for
calculating the sine and cosine of 27 /3
radians. The side lengths come from the

geometry of right triangles.

Using a similar method we determined the values of sin 8, cos 6, and tan 6 shown in Table 1.2.

TABLE 1.2 Values of sin 0, cos #, and tan 0 for selected values of @

Degrees -180 =135
0 (radians) -1 -—-:—"
-\
sin 0 0 \'/'_'
2
cos 0 o | - 5 2
tan 0 0 |

-90

ok /8

0

-45 0 30 45 60 9 120
- o, ®m @ m 2w
4 ¢ 4 3 2 3
V2 V2 V3 V3
2 2 2 2
V2 yV2ooLo, L
2 2 2

1 V3

.n|<| N|<| -
w w

g o

V.)

w
3

& NIS =|

[55]

-5 &

g (35 ol
w

|
.»|g 2
w

180 270 360
§2£, 2
0o -1 0
-1 0 1
0 0
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Periods of Trigonometric Functions

Period 7: tan(x + ) = tanx
cot(x + ) = cotx

Period 27r:  sin(x + 2#%) = sinx
cos(x + 27) = cos x
sec(x + 2m) = secx
csc(x + 2m) = cscx

Even

cos(—x) = cos x
sec(—x) = secx

Odd

sin(—x) = —sinx
tan(—x) = —lanx
csc(—x) = —cscx
cot(—x) = —cot x

P(cos 8, sin 6)

|sin 8]

[

icos 8| o 1

FIGURE 1.45 The reference
triangle for a general angle 0.

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure 8 + 2 are in standard position,
their terminal rays coincide. The two angles therefore have the same trigonometric func-
tion values: sin(@ + 27) = sinf, tan(f + 27) = tan 6, and so on. Similarly,
cos(0 — 2m) = cos 0, sin(@ — 27) = sin 6, and so on. We describe this repeating behav-
ior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period of f.

When we graph trigonometric functions in the coordinate plane, we usually denote the
independent variable by x instead of . Figure 1.44 shows that the tangent and cotangent
functions have period p = a, and the other four functions have period 2. Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other
four functions are odd (although this does not prove those results).

y=tanx
¥y y
y=cosx y=xsinx / /‘
| 1
1 1
/I 1 x
Lox :
T ,, 2 T :tr
2 2 l
[
Domain: =% < x < % Domain: —% <x< % Domuain: r#‘E,:T’r....
Range: —-l=y=1 Range: —-l=y=1 rar 081y =
Period: 2 Period: 2mr v
@ (b) s T (@
¥y v
y=secx y=cscx y=colx
1 1 X 1 1
_Jg-m 30 T 7 p T T 3n
R 3 2 7 2

1 .
AT AT T

Domuain: x * 37-" X Domain: x # 0, 27, 227, ... Domain: x # 0, 7, £27,...
- Range: y=-—lory=1 Ronge: —= <y<=
Range: ys —lory=1 iod: 2 ' Period:
Period: 27 Period:. 2w s
(d) (e) (0}

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading

for each trigonometric function indicates its periodicity.

Trigonometric Identities
The coordinates of any point P(x, ¥) in the plane can be expressed in terms of the point’s
distance r from the origin and the angle  that ray OP makes with the positive x-axis (Fig-
ure 1.40). Since x/r = cos 8 and y/r = sin 6, we have

X = rcos 6, y = rsin 0.
When r = 1 we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.45 and obtain the equation

cos? @ + sin?6 = 1. 3)
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This equation, true for all values of 8, is the most {requently used identity in trigonometry.
Dividing this identity in turn by cos? 6 and sin® 6 gives

1 + tan20 = sec? o

1 + cot?0 = cse?

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

cos(A + B) = cosAcos B — sinAsin B 4
sin(A + B) = sinAcos B + cos Asin B @

There are similar formulas for cos(A — B) and sin(A — B) (Exercises 35 and 36).
All the trigonometric identities needed in this book derive from Equations (3) and (4). For
example, substituting 6 for both A and B in the addition formulas gives

Double-Angle Formulas

cos 20 = cos* O — sin? 0

. . (5)
sin 20 = 2sin 6 cos 0

Additional formulas come from combining the equations
cos’ 0 + sin0 =1,  cos*6 — sin® 0 = cos 26.
We add the two equations to get 2cos® @ = 1 + cos 26 and subtract the second from the

first to get 2sin?@ = 1 — cos 26. This results in the following identities, which are useful
in integral calculus.

Half-Angle Formulas

_ 1+ cos 20

cos? O = eyt (6)
= )
sin? @ = # )]

The Law of Cosines

If a, b, and ¢ are sides of a triangle ABC and if @ is the angle opposite ¢, then

2

e =a® + b = 2abcos 0. 8)

This equation is called the law of cosines.
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B(a cos 0, a sin 0)

'

C b AWM, 0)

FIGURE 1.46 The square of the distance
between A and B gives the law of cosines.

-

ous

/
cos @

FIGURE 1.47 From the
geometry of this figure, drawn
for & > 0, we get the inequality
sinf@ + (1 — cos 0)? = 0%

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of A
are (b, 0); the coordinates of B are (acos 6, asin 6). The square of the distance between A
and B is therefore

2 = (acos @ — b)? + (asin 0)?
a? (cos? @ + sin? @) + b2 — 2abcos 6
|

= a? + b? — 2abcos 6.

The law of cosines generalizes the Pythagorean theorem. If 6 = 7/2, then cos § = 0
and & = a*> + b

Two Special Inequalities

For any angle @ measured in radians, the sine and cosine functions satisfy

-0 = sin9 = |0 and -0 =1 —cos0 = |0].

To establish these inequalities, we picture € as a nonzero angle in standard position
(Figure 1.47). The circle in the figure is a unit circle, so |8| equals the length of the circular
arc AP. The length of line segment AP is therefore less than |0

Triangle APQ is a right triangle with sides of length

QP = |sind|, AQ =1 — cosé.

From the Pythagorean theorem and the fact that AP < ||, we get
sin? @ + (1 — cos 0)* = (AP)* = 62 O]

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than
their sum and hence is less than or equal to %

sinf@ =0 and (1 — cos B) = 6%
By taking square roots, this is equivalent to saying that

|sing| = |6 and |1 —cos 8| = |6],

-l6| = sing = |6 and -6 =1 —cos® = |6].

These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed
in this section.

Vertical streteh or compression; NVertical shitt
reflection about v = d 1l ncg;xm\ /

y=af(b(x +¢) +d

Horizontal streteh or compression: / \Hnn/nmul shitt

retlection about v — ¢ 1f negative



63. A triangle has side ¢ = 2 and angles A = w/4 and B = 7w /3.
Find the length « of the side opposite A.

m 64. The approximation sin x = x It is often useful to know that,

when v is measured in radians, sin x = x for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds.
The approximation error is less than 1 in 5000 if |x| < 0.1.
a. With your grapher in radian mode, graph y = sin x and
y = xtogether in a viewing window about the origin. What
do you see happening as x nears the origin?
b. With your grapher in degree mode, graph y = sinx and
y = x together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

General Sine Curves
For

. 2w
f(x) = Asin F(.\' -QO))+ D,

identify A, B, C, and D for the sine functions in Exercises 65-68 and
sketch their graphs,

65. y = 2sin(x + w) — 1 66. y = %sin(rr.t - ) + :],-

27 L’

P4

5
67. y = —%:sin (;1) + ;l.,- 68. y = Lsin oL>0
COMPUTER EXPLORATIONS

In Exercises 69-72, you will explore graphically the general sine
function

fix) = Asin(%ﬂ(x - C)) +D

as you change the values of the constants A, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.

1 .4 Graphing with Software
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69. The period B Set the constants A = 3,C =D =0,

a

. Plot f(x) for the values B = 1, 3, 27, 57 over the interval
—4m = x = 4. Describe what happens to the graph of the
general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it

with B8 = =3 and B = 27,

70. The horizontalshift C Settheconstants A = 3, B =6,D = 0,

b.

c

Plot f(x) for the values C = 0, 1, and 2 over the interval
—4m = x = 4. Describe what happens to the graph of the
general sine function as C increases through positive values.
What happens to the graph for negative values of C?

What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot,

71. The vertical shift D Set the constants A = 3,8 = 6, C = (.

b

. Plot f(x) for the values D = 0, 1, and 3 over the interval
—4m = x = 47, Describe what happens to the graph of the
general sine function as D increases through positive values.

. What happens to the graph for negative values of D?

72. The amplitude A  Set the constants B = 6,C = D = (.

a.

Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your
answer by plotting f(x) for the values A = 1, 5, and 9.

What happens to the graph for negative values of A?

Today a number of hardware devices, including computers, calculators, and smartphones,
have graphing applications based on software that enables us to graph very complicated
functions with high precision. Many of these functions could not otherwise be easily
graphed. However, some care must be taken when using such graphing software, and in
this section we address some of the issues that may be involved. In Chapter 4 we will see
how calculus helps us determine that we are accurately viewing all the important features
of a function’s graph.

Graphing Windows

When using software for graphing, a portion of the graph is displayed in a display or viewing
window. Depending on the software, the default window may give an incomplete or mislead-
ing picture of the graph. We use the term square window when the units or scales used on both
axes are the same. This term does not mean that the display window itself is square (usually it
is rectangular), but instead it means that the x-unit is the same length as the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of
scaling in order to capture essential features of the graph. This difference in scaling can
cause visual distortions that may lead to erroneous interpretations of the function’s behavior.
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Some graphing software allows us to set the viewing window by specifying one or both of
the intervals, « = v = b and ¢ = y = d, and it may allow for equalizing the scales used
for the axes as well. The software selects equally spaced x-values in [, b] and then plots
the points (x, f(x)). A point is plotted if and only if v lies in the domain of the function and
S(x) lies within the interval [ ¢, d]. A short line segment is then drawn between each plotted
point and its next neighboring point. We now give illustrative examples of some common
problems that may occur with this procedure.

EXAMPLE 1 Graph the function f(x) = x* = 7a? 4+ 28 in each of the following
display or viewing windows:

@ [=10,10] by (=10,10] (b) [—4,4] by [—-50,10] () [—4,10] by [—60,60]

Solution

(a) Weselecta = —10,b6 = 10, ¢ = —10, and d = 10 to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure 1.48a.
It appears that the window is cutting off the bottom part of the graph and that the
interval of x-values is too large. Let’s try the next window,

10 10 60
iy L 1 N |
- Io L A A ) l() l \ _4 L / t A \A-/A A J I()
=10 =50 =00
(a) (b) (c)

FIGURE 1.48 The graph of f(x) = x* = 74 + 28 in different viewing windows. Selecting a window that gives a clear
picture of a graph is often a trial-and-crror process (Example 1). The default window used by the software may automatically
display the graph in (¢).

(b) We see some new features of the graph (Figure 1.48b), but the top is missing and we
need to view more to the right of x = 4 as well. The next window should help.

(¢) Figure 1.48¢ shows the graph in this new viewing window. Obscrve that we get a
more complete picture of the graph in this window, and it is a reasonable graph of a
third-degree polynomial. O

EXAMPLE 2 When a graph is displayed, the x-unit may differ from the y-unit, as in
the graphs shown in Figures 1.48b and 1.48c¢. The result is distortion in the picture, which
may be misleading, The display window can be made square by compressing or stretching
the units on one axis to match the scale on the other, giving the true graph. Many software
systems have built-in options to make the window “square.” If yours does not, you may
have to bring o your viewing some forcknowledge of the true picture.

Figure 1.49a shows the graphs of the perpendicular lines y = xand y = —x + 3V2,
together with the semicircle y = V9 — x% in a nonsquare [—4,4] by [—6, 8] display
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be clliptical in shape.

Figure 1.49b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for
Figure 1.49a has been compressed in Figure 1.49b to make the window square. Figure 1.49¢
gives an enlarged view of Figure 1.49b with a square [—3,3] by [0, 4] window. O
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FIGURE 1.49 Graphs of the perpendicular lines y = xand y = —x + 3V/2 and of the semicircle
y= V9 - IS appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2).
Some software may not provide options for the views in (b) or (c).

If the denominator of a rational function is zero at some x-value within the viewing
window, graphing software may produce a steep near-vertical line segment from the top to
the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-
ing software plots the points of the graph and connects them, many of the maximum and
minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3 Graph the function f(x) = sin 100x.

Solution Figure 1.50a shows the graph of f in the viewing window [—12,12] by
[—1, 1]. We see that the graph looks very strange because the sine curve should oscillate
periodically between —1 and 1. This behavior is not exhibited in Figure 1.50a. We might
experiment with a smaller viewing window, say [—6, 6] by [—1, 1], but the graph is not
better (Figure 1.50b). The difficulty is that the period of the trigonometric function
¥ = sin 100x is very small 27/100 = 0.063). If we choose the much smaller viewing
window [—0.1,0.1] by [—1,1] we get the graph shown in Figure 1.50c. This graph
reveals the expected oscillations of a sine curve. |

(a)

FIGURE 1.50 Graphs of the function y = sin 100x in three viewing windows. Because the period is 277 /100 = 0.063,
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

EXAMPLE 4  Graph the function y = cos x + -j%o-sin 200x.

Solution In the viewing window [—6,6] by [—1, 1] the graph appears much like the
cosine function with some very small sharp wiggles on it (Figure 1.51a). We get a better
look when we significantly reduce the window to [—0.2,0.2] by [0.97, 1.01 ], obtaining
the graph in Figure 1.51b. We now see the small but rapid oscillations of the second term,
(1/200)sin 200x, added to the comparatively larger values of the cosine curve. |
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1 1.01

_“l\l L 1 1/1(

-0.2 L 1 1)0.2
-1 0.97

(1) (b)

FIGURE 1.51 In (b) we see a close-up view of the function

1 . . .
¥ = cosx + 30080 200x graphed in (a). The term cos x clearly dominates

[ . . —
the second term, 30080 200, which produces the rapid oscillations along the

cosine curve. Both views are needed for a clear idea of the graph (Example 4).

Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for f(x) when x < 0. Usu-
ally that happens because of the algorithm the software is using to calculate the function
values, Sometimes we can obtain the complete graph by defining the formula for the func-
tion in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function y = x'/*,

Solution Some graphing software displays the graph shown in Figure 1.52a. When we
compare it with the graphof y = x'/? = Vxin Figure 1,17, we see that the left branch for
x < 0 is missing. The reason the graphs differ is that the software algorithm calculates
X3 ay eI Sinee the logarithmic function is not defined for negative values of x, the
software can produce only the right branch, where x > 0. (Logarithmic and exponential
functions are introduced in the next two sections.)

~
~

_3 L L 1 t 1 1 ) 3 -3 L 1 1 1 1 J 3
-2 -2
(n) (b)
FIGURE 1.52 The graph of y = x"/* is missing the left branch in (a). In (b) we
L. |x|", obtaining both branches. (See Example 5.)

graph the function f(x) = I_

To obtain the full picture showing both branches, we can graph the function

Jx) = Ll

13,
|

Xl

This function equals x'/? except at x = 0 (where f is undefined, although 0" = 0). A
graph of f is displayed in Figure 1.52b. O
Capturing the Trend of Collected Data

We have pointed out that applied scientists and analysts often collect data to study a par-
ticular issue or phenomenon of interest. If there is no known principle or physical law



Limits and Continuity

OVERVIEW Mathematicians of the seventeenth century were keenly interested in the
study of motion for objects on or near the earth and the motion of planets and stars. This
study involved both the speed of the object and its direction of motion at any instant, and
they knew the direction at a given instant was along a line tangent to the path of motion.
The concept of a limit is fundamental to finding the velocity of a moving object and the
tangent to a curve. In this chapter we develop the limit, first intuitively and then formally.
We use limits to describe the way a function varies. Some functions vary continuously;
small changes in x produce only small changes in f(x). Other functions can have values
that jump, vary erratically, or tend to increase or decrease without bound. The notion of
limit gives a precise way to distinguish between these behaviors.

2 . 1 Rates of Change and Tangents to Curves

HISTORICAL BIOGRAPHY*
Galileo Galilei

(1564-1642)

Calculus is a tool that helps us understand how a change in one quantity is related to a
change in another. How does the speed of a falling object change as a function of time?
How does the level of water in a barrel change as a function of the amount of liquid poured
into it? We see change occurring in nearly everything we observe in the world and universe,
and powerful modern instruments help us see more and more. In this section we introduce
the ideas of average and instantaneous rates of change, and show that they are closely
related to the slope of a curve at a point P on the curve. We give precise developments of
these important concepts in the next chapter, but for now we use an informal approach so
you will see how they lead naturally to the main idea of this chapter, the limit. The idea of
a limit plays a foundational role throughout calculus.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not

moving) near the surface of the earth and allowed to fall freely will fall a distance proportional

to the square of the time it has been falling. This type of motion is called free fall. It assumes

negligible air resistance to slow the object down, and that gravity is the only force acting on

the falling object. If y denotes the distance fallen in feet after r seconds, then Galileo's law is
y = 161,

where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the
constant is 4.9.)

A moving object’s average speed during an interval of time is found by dividing the
distance covered by the time elapsed. The unit of measure is length per unit time: kilome-
ters per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.

*To learn more about the historical figures mentioned in the text and the development of many major
clements and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second | and second 2?

Solution The average speed of the rock during a given time interval is the change in
distance, Ay, divided by the length of the time interval, At. (Increments like Ay and At
are reviewed in Appendix 3, and pronounced “delta y** and “delta +.”) Mecasuring distance
in feet and time in seconds, we have the following calculations:

Ay 16(2)° — 16(0)? |
(n) For the first 2 sec: A—! = % = 32 s_':,'tc
Ay 16(2)* = 16(1)? fit
(b) From sec 1 to sec 2: IV 48 5ec L

We want a way to determine the speed of a falling object at a single instant ¢, instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at .
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2  Find the speed of the falling rock in Example 1 atr = | and 1 = 2sec.

Solution  We can calculate the average speed of the rock over a time interval [ 1, 4, + h],
having length Ar = h, as

-Al . lb(’" + h)z = '(”():
At h '

Q)

We cannot use this formula to calculate the “instantancous™ speed at the exact moment 1,
by simply substituting i = 0, because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at fy = | and 4 = 2.
When we do so, by taking smaller and smaller values of /i, we see a pattern (Table 2.1).

TABLE 2.1 Average speeds over short time intervals [ &, & + h]

Averaes speed: Ay 160t + h)? — 168?

verage specd; AI . h

Length of Average speed over Average speed over
time interval interval of length A interval of length i
h startingat ¢, = 1 startingat fp = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 64.16
0.001 32.016 64.016
0.0001 32.0016 64.0016

The average speed on intervals starting at 4, = 1 seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft/sec at 4, = 1sec. Let's confirm this algebraically.



2.2 Limit of a Function and Limit Laws

HISTORICAL ESSAY
Limits

FIGURE 2.7 The graph of f is
identical with the line y = x + 1
except at x = 1, where f is not
defined (Example 1).

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of /imit and
show how we can calculate the values of limits. A precise definition is presented in the
next section.

Limits of Function Values

Frequently when studying a function y = f(x), we find ourselves interested in the func-
tion’s behavior near a particular point ¢, but not at ¢. This might be the case, for instance,
if ¢ is an irrational number, like 7 or V2, whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situ-
ation occurs when trying to evaluate a function at ¢ leads to division by zero, which is
undefined. We encountered this last circumstance when seeking the instantaneous rate of
change in y by considering the quotient function Ay/h for h closer and closer to zero.
Here’s a specific example in which we explore numerically how a function behaves near a
particular point at which we cannot directly evaluate the function.

EXAMPLE 1 How does the function

2 -1
x—1

fx) =
behave near x = 1?

Solution The given formula defines f for all real numbers x except x = 1 (we cannot
divide by zero). For any x # 1, we can simplify the formula by factoring the numerator
and canceling common factors:

fx) = S _‘_l)_(xl_*- D _ x+1 for x # 1.

The graph of f is the line y = x + 1 with the point (1, 2) removed. This removed point is
shown as a “hole” in Figure 2.7. Even though f(1) is not defined, it is clear that we can make
the value of f(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2). |



TABLE 2.2 As xgets closer to
1, f(x) gets closer to 2.

2
_xt=1
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
1.000001 2.000001
¥
y=X
Clm————
|
|
i
|
|
1 X
-
(a) Identity function
¥
& _y=k
y i
|
|
|
|
I
L X
0 ¢

(b) Constant function

FIGURE 2.9 The functions in
Example 3 have limits at all points c.

67

2.2 Limit of a Function and Limit Laws

Generalizing the idea illustrated in Example 1, suppose f(x) is defined on an open
interval about ¢, except possibly at ¢ itself. I’ f(x) is arbitrarily close to the number L (as
close to L as we like) for all x sufficiently close to ¢, we say that f approaches the limit L
as x approaches ¢, and write

lim f(x) = L,

A=
which is read “the limit of f(x) as x approaches ¢ is L." For instance, in Example 1 we
would say that f(x) approaches the limit 2 as x approaches |, and write

limI fx) = 2, or

Essentially, the definition says that the values of f(x) are close to the number L whenever x
is close to ¢ (on either side of ¢).

Our definition here is “informal” because phrases like arbitrarily close and sufficiently close
are imprecise: their meaning depends on the context. (To a machinist manufacturing a piston,
close may mean within a few thousandths of an inch. To an astronomer studying distant galaxies,
close may mean within a few thousand light-years.) Nevertheless, the definition is clear enough to
enable us to recognize and evaluate limits of many specific functions, We will need the precise
definition given in Section 2.3, however, when we set out to prove theorems about limits or study
complicated functions. Here are several more examples exploring the idea of limits,

EXAMPLE 2 The limit value of a function does not depend on how the function
is defined at the point being approached. Consider the three functions in Figure 2.8. The
function f has limit 2 as x — 1 cven though f is not defined at x = 1. The function g has
limit 2 as x =1 even though 2 % g(1). The function / is the only one of the three
functions in Figure 2.8 whose limit as x — | equals its value at x = 1. For /i, we have
lim,—., ii(x) = h(1). This equality of limit and function value is of special importance, and
we return to it in Section 2.5. I

4

A 4 N

YA o 1

©) vy =x + 1

~
~
T
~
4

@ fy = =1
=1

(b) gx) =
FIGURE 2.8 The limits of f(x), g(x), and /(x) all equal 2 as x approaches 1. However, only h(x)
has the same function value as its limit at x = 1 (Example 2).

EXAMPLE 3
(@) If £ is the identity function f(x) = x, then for any value of ¢ (Figure 2.9a),

lim f(x) =

A

limx = c.
S gund o

(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of ¢ (Figure 2.9b),

lim f(x) =

R

lim k =k
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For instances of each of these rules we have
limx=3 and lim 4) = lim (4) = 4.
x—3 x—-7 =2

We prove these rules in Example 3 in Section 2.3. |

A function may not have a limit at a particular point. Some ways that limits can fail to
exist are illustrated in Figure 2.10 and described in the next example.

v = 0, x<0
’ 1, x=0

(a) Unit step function U(x) (b) g(x) (c)f(x)

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

EXAMPLE 4  Discuss the behavior of the following functions, explaining why they
have no limit as x — 0.

0, x<0
@ Ut = {1, x=0

IT, x#0
(b) g(x) =

0, x=0

0, x=0
© f() = !

sin _{:, x>0
Solution

(a) It jumps: The unit step function U(x) has no limit as x — 0 because its values jump
at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive
values of x arbitrarily close to zero, U(x) = 1. There is no single value L approached
by U(x) as x — 0 (Figure 2.10a).

(b) It grows too “large” to have a limit: g(x) has no limit as x — 0 because the values of
g grow arbitrarily large in absolute value as x — 0 and do not stay close to any fixed
real number (Figure 2.10b). We say the function is not bounded.

(¢) It oscillates too much to have a limit: f(x) has no limit as x — Q because the func-
tion’s values oscillate between +1 and —1 in every open interval containing 0. The
values do not stay close to any one number as x — 0 (Figure 2.10c). |
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The Limit Laws
To calculate limits of functions that are arithmetic combinations of functions having

known limits, we can use several fundamental rules.

THEOREM 1—Limit Laws If L, M, ¢, and k are real numbers and
lim f(x) = L and lim g(x) = M, then
A

e
1. Sum Rule: !I_l’.l‘l( S+ g =L+ M

2. Difference Rule: SI_I"I‘]( f&xX) —g)=L-M

3. Constant Multiple Rule: }l_l}‘t(k f(x) =k-L

4. Product Rule: !l_l'.ltl( J)gx) = LM

5. Quotient Rule: }21} {% = A—l; M #0

6. Power Rule: !l_ln[ f(x)]" = L", na positive integer

7. Root Rule: }E},‘ Vi) = VL = L' n a positive integer

(If n is even, we assume that limf(x) = L > 0.)
A

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product
is the product of the limits; the limit of a quotient is the quotient of the limits (provided
that the limit of the denominator is not 0); the limit of a positive integer power (or root) of
afunction is the integer power (or root) of the limit (provided that the root of the limit is a
real number).,

It is reasonable that the properties in Theorem | are true (although these intuitive
arguments do not constitute proofs). I x is sufficiently close to ¢, then f(x) is close to L
and g(x) is close to M, from our informal definition of a limit. It is then reasonable that
f(x) + g(x) is close o L + M, f(x) = g(x) is close to L — M, kf(x) is close to kL;
F(x)g(x) is close to LM; and f(x)/g(x) is close to L/M if M is not zero. We prove the Sum
Rule in Section 2.3, based on a precise definition of limit. Rules 2-5 arc proved in Appen-
dix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced
texts. The Sum, Difference, and Product Rules can be extended to any number of func-
tions, not just two.

EXAMPLE 5  Usc the observations lim _. & = k and lim,_,, x = ¢ (Example 3) and
the fundamental rules of limits to find the following limits.

@ lim(x + 422 = 3)

Ay
4 2
R o el |
b lim———
a—c X°+ 5

© lim Vax? =3

N—*—a
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Identifying Common Factors

It can be shown that if Q(x) is a poly-
nomial and Q(c¢) = 0, then (x — ¢) is
a factor of Q(x). Thus, if the numerator
and denominator of a rational function
of x are both zero at x = ¢, they have
(x — ¢) as a common factor.

Solution
(a) lim(.\'3 + 4x2 — 3) = limx® + lim4x? — lim 3 Sum and Ditterence Rules
el A= ¢ x—*c
= +4cr -3 Power and Multiple Rules

lim(x* + x2 — 1
.\'4 + \'2 =1 _ .t—'r( )

(b) lim - = - Quotient Rule
= ©+5 lim(x® + 5)
X—c
lim x* + lim 2> — lim 1
— -— —
== - ‘., < - —— Sum and Dilference Rules
lim x* + lim 5
xX= X=c
—C—4+C2— 1 Pow Product Rul
= Yower or Produc ¢
2 +5
(¢) lim Viaxt - 3 =V lim (4.\':" - 3) Root Rule with n — 2
r—-=2 x—=2
= Vlim 4x? — lim 3 Difference Rule
x—=2 x—-=2

= V4(-2)* - 3 Product and Multiple Rules

=VI6 -3

= V13 O
Theorem 1 simplifies the task of calculating limits of polynomials and rational functions.
To evaluate the limit of a polynomial function as x approaches ¢, merely substitute ¢ for x
in the formula for the function. To evaluate the limit of a rational function as x approaches

a point ¢ at which the denominator is not zero, substitute ¢ for x in the formula for the
function. (See Examples 5a and 5b.) We state these results formally as theorems.

THEOREM 2—Limits of Polynomials
If P(x) = a,x" + a,_x"' + -+ + agy, then

E_'np(_\-) = P(c) = G,,C" + "‘n—l‘:'"_l + -+ a

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and Q(c) # 0, then
. P(x)  P(c)
lim

e Q00 0(e)

EXAMPLE 6  The following calculation illustrates Theorems 2 and 3:

lim M+ 42 -3 _ =1+ 4(-1)> - 3
=1 x*+5 -1 +5

-9_
=z=0 o

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and
denominator may reduce the fraction to one whose denominator is no longer zero at c. If
this happens, we can find the limit by substitution in the simplified fraction.



FIGURE 2.11 The graph of

fix) = (x* + x = 2)/(x* — x)in
part (a) is the same as the graph of
g(x) = (x + 2)/xin part (b) except
at x = 1, where f is undefined. The
functions have the same limit as x— |
(Example 7).
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EXAMPLE 7 Evaluate

L =2
lim———=.
= X~ - X

Solution We cannot substitute x = 1 because it makes the denominator zero. We test
the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x — 1) in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the
same values as the original for v # I:

Prx=-2 @-Dx+2) y+2
d-x  ax=-1 X

ifx # 1,

Using the simpler fraction, we find the limit of these values as x — | by Theorem 3:

See Figure 2.11. ||

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem | because the limit of the denominator
is zero, we can try using a calculator or computer to guess the limit numerically as v gets
closer and closer to ¢. We used this approach in Example 1, but calculators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there. Usually the problem is associated with round-
ing errors, as we now illustrate.

EXAMPLE 8 Estimate the value of lim —

a—{) X

VvVl + 100 = 10

Solution  Table 2.3 lists values of the function obtained on a calculator for several points
approaching x = 0. As v approaches 0 through the points =1, £0.5, £0.10, and £0.01,
the function seems to approach the number 0.05.

As we take even smaller values of x, +0.0005, +0.0001, +0.00001, and % 0.000001,
the function appears to approach the number 0,

Is the answer 0.05 or 0, or some other value? We resolve this question in the next

example. &
TABLE 2.3 Computed values of f( = ~*——20—1C near x = 0
x I(x)
+1 0.049876 )
+0.5 0049969 {0082
1_0.1 0.049999 tlppl'()d(. cs L, !
+0.01 0.050000 |
+0.0005 0.050000 )
+0.0001 0.000000 { e
+£0,00001  0.000000 [ “PPrOAChes T

+0.000001 0.000000 )
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~O————————

FIGURE 2.12 The graphof f is sand-
wiched between the graphs of g and A.

Using a compulter or calculator may give ambiguous results, as in the last example.
The calculator could not keep track of enough digits to avoid rounding errors in computing
the values of f(x) when x is very small. We cannot substitute x = 0 in the problem, and the
numerator and denominator have no obvious common factors (as they did in Example 7).
Sometimes, however, we can create a common factor algebraically.

EXAMPLE 9  Evaluate

. VXt 4+ 100 — 10

lim = .

a—0 X-
Solution  This is the limit we considered in Example 8. We can create a common factor
by multiplying both numerator and denominator by the conjugate radical expression
Vx? + 100 + 10 (obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

VaZ + 100 = 10 _ VaZ + 100 = 10, Va? + 100 + 10
e ¥ Va2 + 100 + 10

x2 4+ 100 — 100

T 2(VAT F 100 + 10)
9

X° N
Co on factor
2V + 100 + 10) e

()

| 5
. Cancel 1= Tor
Vs + 100 + 10

Therefore,

lim Vi + 100 — 10 = lim |
=0 X2 —=0\/x2 4+ 100 + 10

Denomimator not O at

|
= = 1) substitute.
V02 + 100 + 10 ‘
A
20

= 55 = 0.05.
This calculation provides the correct answer, in contrast to the ambiguous computer
results in Example 8. O

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with
the aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of calculus (illustrated in Section 4.5). The next theorems give helpful
tools by using function comparisons,

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich
Theorem because it refers to a function f whose values are sandwiched between the val-
ues of two other functions g and /i that have the same limit L at a point ¢. Being trapped
between the values of two functions that approach L, the values of f must also approach L
(Figure 2.12). You will find a proof in Appendix 4.



FIGURE 2.13 Any function u(x)
whose graph lies in the region between
y=1+(3/2andy =1 — (x*/4)
has limit 1 as x — 0 (Example 10).

v
y=10|

y =sin®

(b)

FIGURE 2.14 The Sandwich Theorem
confirms the limits in Example 11,
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THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all v in some open interval containing c, except possibly at x = ¢ itself. Suppose
also that

lim g(x) = lim h(x) = L.

x—c 1—c

Then lim . f(x) = L.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 10 Given that

™

.2
1—"351.(4-)5 1 + forall x # 0,

find lim,_  u(x), no matter how complicated u is.

Solution  Since
ling)(l - (x%/4)) =1 and lin(l)(l + (x%/2)) =1,
= R S

the Sandwich Theorem implies that lim,_  w(x) = 1 (Figure 2.13). |

EXAMPLE 11 The Sandwich Theorem helps us establish several important limit rules:
(a) limsinf =0 (b) lim cos O = 1
0—0 H—Q
(¢) For any function f, lim|f(x)| = 0 implies lim f(x) = 0.
= X=—C

Solution
(a) In Section 1.3 we established that —|6| = sin@ = |6| for all § (see Figure 2.14a).
Since limy_y(—|0|) = limy_,|6| = 0, we have
limsin 6 = 0.
0—0
(b) From Section 1.3, 0 = 1 — cos @ = |6 for all 0 (see Figure 2.14b), and we have
lim,_,(1 — cos8) = 0or

limcos® = 1.
#—0

(©) Since —|f(x)| = f(x) = [f()| and —|f(x)| and |f(x)| have limit 0 as x—¢, it
follows that lim,_, f(x) = 0. O

Another important property of limits is given by the next theorem. A proof is given in
the next section.

THEOREM 5 If f(x) = g(x) for all x in some open interval containing ¢, except
possibly at x = ¢ itself, and the limits of f and g both exist as x approaches ¢,
then

Ijm fx) = lim £2(x).

Caution  The assertion resulting from replacing the less than or equal to (=) inequality by
the strict less than (<) inequality in Theorem 5 is false. Figure 2.14a shows that for 8 # 0,
—|6] < sin@ < |8].So limy_ysin @ = 0 = limy_,|6|, not limy_q sin 8 < lim,_,|6|.




16.

17.

18.

Use the graph of the greatest integer function y =
Section 1.1, to help you find the limits in Exercises 19 and 20.

19.

20.

V6 - VSIE+ 11l + 6

hlll}(} h
|« + 2|
a. hm o+ 3) 3 b.
o V2e(x— 1)
a. lim ———— b.
-1 |x =1

a Iim[o—J
=3 0

a. '!'i‘l:l'(l )

sin 0

Using Itm —_— 1

0

b.

b.

Find thc hmlls in Exercises 21-42,

27.

29. lim

31.

33. 1

35.
37.

3

o

“ms_in V20
=0 \/20
~sin 3y
lmfl) 4y
tan 2x

lim
x—0

xXcse 2x
lim
._.(, cos 5x

i X + xcosx
x—0 Sin xcos x

p—0 Sin 20
im
,—}u I —cost
lim =—7 gng

0—0 sin 20

lim @ cos 0
0—0

lim
x—0 §in 8x

sin(1 — cos 1)
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22,

4.

26.

32, lim

34. lim

36.

. lim®

' |x + 2]
LISy
o V2Xx(x—1)
lim ——
= |x =1

i 10]
ul'}.t‘- 0

lim(r = 1))

. sinkt
lim 7 (k constant)
1—0

lim —+
h—0-Sin 3h

lim 77

lim 6.x3(cot x)(csc 2x)
v — x + sinx

\—0 2x

X — XCOS X

a—0  sin? 3x

sin(sin /)

h—0 sinh

lim =——
1—0 sin 4x

limsin 0 cot 20
0—0

sin 3y cot Sy

40. lim

y—0 ycotdy

| x|, Figure 1.10in
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41. lim _tanf 42. lim 8 cotdo

a—0 02 cot 30 o—0 sin? @ cot® 20

Theory and Examples

43. Once you know lim,—,- f(x) and lim,—,- f(x) at an interior point
of the domain of f, do you then know lim,_,, f(x)? Give reasons
for your answer.

44. If you know that lim,_,_ f(x) exists, can you find its value by cal-
culating lim,_... f(x)? Give rcasons for your answer.

45. Suppose that f is an odd function of x. Does knowing that
lim,—y- f(x) = 3 tell you anything about lim,_y f(x)? Give rea-
sons for your answer.

46. Suppose that f is an even function of x. Does knowing that
lim,_., f(x) = 7 tell you anything about either lim,_._, f(x) or
lim,_, _5+ f(x)? Give reasons for your answer.

Formal Definitions of One-Sided Limits

47. Given € > 0, find an interval = (5,5 + 8), 8 > 0, such that if
x lies in 7, then Vx — 5 < €. What limit is being verified and
what is its value?

48. Given e > 0, find an interval I = (4 — §,4), 8 > 0, such that if
x lies in 7, then V4 — x < e. What limit is being verified and
what is its value?

Use the definitions of right-hand and left-hand limits to prove the

limit statements in Exercises 49 and 50.

49, lim = = —1 50. llm =1
=0 I\‘ X ..l

51. Greatest integer function Find (a) lim,_, |x] and (b)
lim, 400 [ x): then use limit definitions to verify your findings.
(c) Based on your conclusions in parts (a) and (b), can you say
anything about lim,_ [x |? Give reasons for your answer.

sin(l/x), x<0

Vi, x>0

Find (a) lim,_; f(x) and (b) lim,_4 f(x); then use limit defini-
tions to verify your findings. (¢) Based on your conclusions in
parts (a) and (b), can you say anything about lim,_, f(x)? Give
reasons for your answer.

wm
e

One-sided limits Let f(x) = {

Distance fallen (m)

FIGURE 2.34 Connecting plotted points
by an unbroken curve from experimental

data Qy, @2, O, . . .

When we plot function values generated in a laboratory or collected in the field, we often

y
. i el
375 ,/
250 Q>
125 9
_~
L1
0 5 10

Elapsed time (sec)

!

Continuity at a Point

for a falling object.

connect the plotted points with an unbroken curve to show what the function’s values are
likely to have been at the points we did not measure (Figure 2.34). In doing so, we are
assuming that we are working with a continuous function, so its outputs vary regularly and
consistently with the inputs, and do not jump abruptly from one value to another without
taking on the values in between. Intuitively, any function y = f(x) whose graph can be
sketched over its domain in one unbroken motion is an example of a continuous function.
Such functions play an important role in the study of calculus and its applications.

To understand continuity, it helps to consider a function like that in Figure 2.35, whose
limits we investigated in Example 2 in the last section.



94 Chapter 2: Limits and Continuity

0 1

2=

FIGURE 2.35 The function is not
continuous at x = v = 2, and x = 4

(Example 1),

Continuity
from the right

Two-sided
continuity

Continuity

< from the left

|
|
I
|
1

FIGURE 2.36 Continuity at points a, b,

and ¢,

|
|
|
I
|
[}
¢

b

EXAMPLE 1 At which numbers does the function f in Figure 2.35 appear to be not
continuous? Explain why. What occurs at other numbers in the domain?

Solution  First we observe that the domain of the function is the closed interval [0, 4],
so we will be considering the numbers x within that interval. From the figure, we notice
right away that there are breaks in the graph at the numbers v = 1, x = 2, and x = 4. The
breaks appear as jumps, which we identify later as *jump discontinuities.” These are num-
bers for which the function is not continuous, and we discuss each in turn.

Numbers at which the graph of f has breaks:

At x = 1, the function fails to have a limit. It does have both a left-hand limit,
lim,_,;- f(x) = 0, as well as a right-hand limit, lim,_, - f(x) = 1, but the limit values are
different, resulting in a jump in the graph. The function is not continuous atx = 1.

At x = 2, the function does have a limit, lim,_., f(x) = 1, but the value of the func-
tion is f(2) = 2. The limit and function values are not the same, so there is a break in the
graph and f is not continuous at x = 2.

Atx = 4, the function does have a left-hand limit at this right endpoint, lim,_,- f(x) = 1,
but again the value of the function f(4) = i; differs from the value of the limit. We see
again a break in the graph of the function at this endpoint and the function is not continu-
ous from the left.

Numbers at which the graph of f has no breaks:

At x = 0, the function has a right-hand limit at this left endpoint, lim,_y. f(x) = 1,
and the value of the function is the same, f(0) = 1. So no break occurs in the graph of the
function at this endpoint, and the function is continuous from the right at x = 0.

At x = 3, the function has a limit, lim,—; f(x) = 2. Moreover, the limit is the same
value as the function there, f(3) = 2. No break occurs in the graph and the function is
continuous at x = 3,

At all other numbers x = ¢ in the domain, which we have not considered, the func-
tion has a limit equal to the value of the function at the point, so lim,_.,. f(x) = f(c). For
example, lim,_s f(x) = f (%) = -} No breaks appear in the graph of the function at any
of these remaining numbers and the function is continuous at each of them. |

The following definitions capture the continuity ideas we observed in Example 1.

DEFINITIONS Let ¢ be a real number on the x-axis.

The function f is continuous at ¢ if
lim f(x) = f(c).

The function f is right-cunllnubus at ¢ (or continuous from the right) if
‘li."rl. fx) = f(o).

The function f is leﬂ-continuoﬁs at ¢ (or continuous from the left) if

lim f(x) = f(c).

From Theorem 6, it follows immediately that a function f is continuous at an interior
point ¢ of its domain if and only if it is both right-continuous and left-continuous at ¢ (Fig-
ure 2.36). We say that a function is continuous over a closed interval [a, b] if it is right-
continuous at a, left-continuous at b, and continuous at all interior points of the interval.
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FIGURE 2.37 A function that
is continuous over its domain
(Example 2).

FIGURE 2.38 A function
that has a jump discontinuity
at the origin (Example 3).

¥
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FIGURE 2.39 The greatest integer
function is continuous at every noninte-
ger point. It is right-continuous, but not
left-continuous, at every integer point
(Example 4).
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This definition applies to the infinite closed intervals [ a, 00) and (—0o, 4 ] as well, but only
one endpoint is involved. If a function is not continuous at an interior point ¢ of its domain,
we say that f is discontinuous at ¢, and that ¢ is a point of discontinuity of f. Note that a
function f can be continuous, right-continuous, or left-continuous only at a point ¢ for
which f(c) is defined.

EXAMPLE 2  The function f(x) = V4 — x* is continuous over its domain [—2,2]

(Figure 2.37). It is right-continuous at x = —2, and left-continuous at x = 2, |

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.38, is right-continuous
at x = 0, but is ncither left-continuous nor continuous there. It has a jump discontinuity at
x=0. |

We summarize continuity at an interior point in the form of a test.

Continuity Test

A function f(x) is continuous at a point x = ¢ if and only if it meets the follow-
ing three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim,_., f(x) exists (f has a limit as x — ¢).
3. lim., f(x) = f(c) (the limit equals the function value).

For one-sided continuity and continuity at an endpoint of an interval, the limits in
parts 2 and 3 of the test should be replaced by the appropriate one-sided limits.

EXAMPLE 4  The function y = [x] introduced in Section 1.1 is graphed in Figure 2.39.
It is discontinuous at every integer because the left-hand and right-hand limits are not
equal as x — n:

lim[x]=n—-1 and lim [x] =n.

A=n a=n
Since [n] = n, the greatest integer function is right-continuous at every integer n (but not
left-continuous).

The greatest integer function is continuous at every real number other than the inte-

gers. For example,

lim [x]=1=]15].
1—1.5
In general, if n — 1 < ¢ < n, n an integer, then

lim|x]=n-=1=|c]. m

A=y

Figure 2.40 displays several common types of discontinuities. The function in Figure
2.40a is continuous at x = 0. The function in Figure 2.40b would be continuous if it had
£(0) = 1. The function in Figure 2.40¢ would be continuous if f(0) were | instead of 2.
The discontinuity in Figure 2.40¢ is removable. The function has a limit as x — 0, and we
can remove the discontinuity by setting f(0) equal to this limit.

The discontinuities in Figure 2.40d through f are more serious: lim,—, f(x) does not
exist, and there is no way to improve the situation by changing f at 0. The step function in
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function f(x) = 1/x* in Figure 2.40¢ has an infinite discontinuity. The function
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as
x—0.
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()

FIGURE 2.40 The function in (a) is continuous at x = 0; the functions in (b) through (f') are not.

Continuous Functions

Generally, we want to describe the continuity behavior of a function throughout its entire
domain, not only at a single point. We know how to do that if the domain is a closed interval.
In the same way, we define a continuous function as one that is continuous at every point in
its domain. This is a property of the function. A function always has a specified domain, so if
we change the domain, we change the function, and this may change its continuity property
as well. If a function is discontinuous at one or more points of its domain, we say it is a
discontinuous function.

EXAMPLE 5
(a) The function y = 1/x (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at x = 0, however, because
yh it is not defined there; that is, it is discontinuous on any interval containing x = 0.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. O

Algebraic combinations of continuous functions are continuous wherever they are defined.

0

THEOREM 8—Properties of Continuous Functions If the functions f and g are
continuous at x = ¢, then the following algebraic combinations are continuous
atx = c.
1. Sums: ftg

FIGURE 2.41 The function y = 1/x 2. Differences: f—-g

" comm.uous. oYcr "s,lm_uml domu"," ,h 3. Constant multiples: k+f, for any number k

has a point of discontinuity at the origin,

so it is discontinuous on any interval 4. Products: fes

containing x = 0 (Example 5). 5. Quotients: f/g. provided g(c) # 0
6. Powers: f".  napositive integer
7. Roots: \"/f, provided it is defined on an open interval

containing ¢, where n is a positive integer
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(b)

FIGURE 2.48 (a) The graph
of f(x) and (b) the graph of
its continuous extension F(x)

(Example 12).
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Continuous Extension to a Point

Sometimes the formula that describes a function f does not make sense at a point x = .
It might nevertheless be possible to extend the domain of f, to include x = ¢, creating a
new function that is continuous at x = ¢. For example, the function y = f(x) = (sin x)/x
is continuous at every point except x = (), since the origin is not in its domain. Since
y = (sinx)/x has a finite limit as x— 0 (Theorem 7), we can extend the function’s
domain to include the point x = 0 in such a way that the extended function is continuous
at x = 0. We define the new function

Fxy=¢ ¥

The function F(x) is continuous at x = () because
lim =5~ = F(0),
x—0 -

so it meets the requirements for continuity (Figure 2.47).
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FIGURE 2.47 The graph (a) of f(x) = (sinx)/x for —m/2 = x = 7 /2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discon-
tinuity from the graph by defining the new function F(x) with F(0) = | and F(x) = f(x)
everywhere else. Note that F(0) = lim,_, f(x).

More generally, a function (such as a rational function) may have a limit at a point
where it is not defined. If f(c) is not defined, but lim,—,, f(x) = L exists, we can define a
new function F(x) by the rule

f(x), if x is in the domain of f
F(x) = -
L, ifx =c.
The function F is continuous at x = ¢. It is called the continuous extension of f to
x = ¢. For rational functions f, continuous extensions are often found by canceling com-
mon factors in the numerator and denominator.

EXAMPLE 12  Show that

X # 2

1) = X2+ x=6

-4 )
has a continuous extension to x = 2, and find that extension,
Solution  Although f(2) is not defined, if x # 2 we have

f )_.\'3+.\'—6_(-\'—2)(-\'+3)_.\'+3
W= T TG -2G T2 xt2

The new function

x+3
x+ 2

F(x) =



Derivatives

OVERVIEW 1In the beginning of Chapter 2, we discussed how to determine the slope of a
curve at a point and how to measure the rate at which a function changes. Now that we have
studied limits, we can define these ideas precisely and see that both are interpretations of
the derivative of a function at a point. We then extend this concept from a single point to the
derivative function, and we develop rules for finding this derivative function easily, without
having to calculate any limits directly. These rules are used to find derivatives of most of the
common functions reviewed in Chapter 1, as well as various combinations of them,

The derivative is one of the key ideas in calculus, and is used to study a wide range of
problems in mathematics, science, economics, and medicine. These problems include
finding points where a continuous function is zero, calculating the velocity and accelera-
tion of a moving object, determining how the rate of flow of a liquid into a container
changes the level of the liquid within it, describing the path followed by a light ray going
from a point in air to a point in water, finding the number of items a manufacturing com-
pany should produce in order to maximize its profits, studying the spread of an infectious
disease within a given population, or calculating the amount of blood the heart pumps in a
minute based on how well the lungs are functioning.

3. 1 Tangents and the Derivative at a Point

y

Qxy + h, flxy +h)

¥y = f(x)

I

(g + ) = flxg)
I
|

0

Xg

- X
xpth

FIGURE 3.1 The slope of the tangent

line at Pis lim
h—0

[l + h) = flxy)
h ’

In this section we define the slope and tangent to a curve at a point, and the derivative of a
function at a point. The derivative gives a way to find both the slope of a graph and the
instantaneous rate of change of a function.

Finding a Tangent to the Graph of a Function

To find a tangent to an arbitrary curve y = f(x) at a point P(xy, f(xp)), we use the procedure
introduced in Section 2.1. We calculate the slope of the secant through P and a nearby point
Q(xy + hy f(xg + 7). We then investigate the limit of the slope as i — 0 (Figure 3.1). If
the limit exists, we call it the slope of the curve at P and define the tangent at P to be the
line through P having this slope.

DEFINITIONS The slope of the curve y = f(x) at the point P(xy, f(xp)) is the

number

fxg + My = f(x)
h

m = lim (provided the limit exists).
h—0

The tangent line to the curve at P is the line through P with this slope.

123
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/

slope is — |
atay = —1

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away
(Example 1).

slope is —

-

FIGURE 3.3 The two tangent lines to
y = 1/x having slope —1/4 (Example 1).

The notation f'(x,) is read *f prime of x,.”

In Section 2.1, Example 3, we applied these definitions to find the slope of the parab-

ola f(x) = x* at the point P(2, 4) and the tangent line to the parabola at P. Let's look at
another example.

EXAMPLE 1

(a)

Find the slope of the curve y = 1 /x atany point x = a # 0. What is the slope at the
point x = —17?

(b) Where does the slope equal —1/4?
(¢) What happens to the tangent to the curve at the point (@, 1/a) as a changes?
Solution
(a) Here f(x) = 1/x. The slope at (a, 1 /a) is
1 1
limf(a +h) - fla) lim & +ho @ ola - (@ + h)
h—0 h h—0 h —oh a(a + h)
= lim —— = Iim_—l=—L
h—oha(a + h) s—oala + h) a?’

(b)

(0

Notice how we had to keep writing “lim,_,,” before each fraction until the stage
at which we could evaluate the limit by substituting # = 0. The number a may be
positive or negative, but not 0. When a = —1, the slope is —1/(=1)* = —1
(Figure 3.2).

The slope of y = 1/x at the point where x = a is —1/a* It will be —1/4 provided
that
_1__1
a’ 4
This equation is equivalent to a* = 4, so a = 2 or a = —2. The curve has slope

—1/4 at the two points (2, 1/2) and (=2, —1/2) (Figure 3.3).

The slope —1/a? is always negative if @ # 0. As a — 0", the slope approaches —oo
and the tangent becomes increasingly steep (Figure 3.2). We see this situation again as
a— 0", As a moves away from the origin in either direction, the slope approaches 0
and the tangent levels off becoming more and more horizontal. =]

Rates of Change: Derivative at a Point

The expression

Jlxg + 1) — f(-"o)' h# 0

h

is called the difference quotient of f at x,, with increment /. If the difference quotient
has a limit as 1 approaches zero, that limit is given a special name and notation.

DEFINITION The derivative of a function f at a point x;, denoted f'(xp), is

, . (o + 1) — f(xp)
s = i F e

provided this limit exists.
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If we interpret the difference quotient as the slope of a secant line, then the derivative
gives the slope of the curve y = f(x) at the point P(xy, f(xg)). Exercise 33 shows that the
derivative of the linear function f(x) = mx + b at any point x, is simply the slope of the
line, so

I'(xg) = m,

which is consistent with our definition of slope.

If we interpret the difference quotient as an average rate of change (Section 2.1), the
derivative gives the function's instantancous rate of change with respect to x at the point
x = a. We study this interpretation in Section 3.4,

EXAMPLE 2  In Examples 1 and 2 in Section 2.1, we studied the speed of a rock fall-
ing freely from rest near the surface of the carth. We knew that the rock fell y = 161* feet
during the first ¢ sec, and we used a sequence of average rates over increasingly short inter-
vals to estimate the rock's speed at the instant r = 1. What was the rock's exact speed at
this time?

Solution We let f(r) = 16/ The average speed of the rock over the interval between
t=1landr =1 + h seconds, for i > 0, was found to be

SO+ ) = fA) 160 + h)? = 16(1)* 160 + 2h)
h B h a h

= 16(h + 2).
The rock’s speed at the instant ¢+ = 1 is then
S'() = lim 16(h + 2) = 16(0 + 2) = 32 ft/sec.
h—0

Our original estimate of 32 ft/sec in Section 2.1 was right. ||

Summary

We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a
function, and the derivative of a function at a point, All of these ideas refer to the same
limit.

The following are all interpretations for the limit of the difference quotient,

.Sy + ) = f(x)
lim .
h—0 h

1. The slope of the graph of y = f(x) at x = xy

2. The slope of the tangent to the curve y = f(x) at x = a
3. The rate of change of f(x) with respecttox at x = x,

4. The derivative f’(x,) at a point

In the next sections, we allow the point xg to vary across the domain of the function f.
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Exercises

Slopes and Tangent Lines
In Exercises 1-4, use the grid and a straight edge to make a rough
estimate of the slope of the curve (in y-units per x-unit) at the points
P, and P,.
1. 2.
y y
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In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

S.y=4-2x, (-1,3) 6. y=@-—-D*+1, (1,1

7. vy =2V, (1,2) 8. y=—, (=L

=1 (_,_1
10._\—13. (2' 3)

In Exercises 11-18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

1. fy=2+1, (2,5 12. f(x) =x — 223, (1,-1)

.
14"—

13. g(x) = (3,3) 4. gx) = =,

I
-
o
)
A

X
x=2
15. () = 1, (2,8)
17. f(x) = Vx, (4,2)

16. h(t) = B + 31, (1,4)

18. f(x) = Vx+ 1, (83

In Exercises 19-22, find the slope of the curve at the point indicated.
19. y=5¢r— 3, x=1 2. y=x'-2v+7, x=-2

x—1
T

21._\'=+ x=3 x=0

Interpreting Derivative Values

23. Growth of yeast cells In a controlled laboratory experiment,
yeast cells are grown in an automated cell culture system that
counts the number P of cells present at hourly intervals. The num-
ber after 7 hours is shown in the accompanying figure.

p
250 T
200 . —
150 |+ /
100 -
50
‘ '

0 1 23 4567

a. Explain what is meant by the derivative P'(5). What are its
units?

b. Which is larger, P'(2) or P'(3)? Give a reason for your
answer.

c. The quadratic curve capturing the trend of the data points
(see Section 1.4) is given by P(1) = 6,107 — 9.28¢ + 16.43.
Find the instantaneous rate of growth when r = 5 hours.

24. Effectiveness of a drug On a scale from 0 to 1, the effective-
ness E of a pain-killing drug r hours after entering the blood-
stream is displayed in the accompanying figure.

\
\

Y
I

3 4 5

a. At what times does the effectiveness appear to be increasing?
What is true about the derivative at those times?

b. At what time would you estimate that the drug reaches its
maximum effectiveness? What is true about the derivative at
that time? What is true about the derivative as time increases
in the 1 hour before your estimated time?

At what points do the graphs of the functions in Exercises 25 and 26

have horizontal tangents?

25, f(x) =2+ 4x — 1 26. g(x) =2 — 3x

27. Find equations of all lines having slope —1 that are tangent to the
curve y = 1/(x — 1),

28. Find an equation of the straight line having slope 1/4 that is tan-
gent to the curve y = V.

Rates of Change

29. Object dropped from a tower An object is dropped from the
top of a 100-m-high tower. Its height above ground after ¢ sec is
100 — 4.91* m. How fast is it falling 2 sec after it is dropped?
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3.2 The Derivative as a Function

‘ HISTORICAL ESSAY
The Derivative
Yy =1x)
Secant slope is
f12) — flx)
0(z f(2)) &=
P(x, f(x)) S = f(x)
:-—h =1-x—
I |
_— b -
X t=x+h

Derivative of fat x is
S+ h) = f(0)
h

ro=m,

= lim f2) = S

Fand} iTX

FIGURE 3.4 Two forms for the differ-
ence quotient.

Derivative of the Reciprocal Function

d (1 1
ﬁ(?> =—§, x#0

In the last section we defined the derivative of y = f(x) at the point x = x; to be the limit

ooy = i JG0 )~ fw)
f (-‘0) - I!!—n‘(‘) II .

We now investigate the derivative as a function derived from f by considering the limit at
each point x in the domain of f.

DEFINITION The derivative of the function f(x) with respect to the variable x is
the function f' whose value at x is

. fx+ h) = f(x)
m--————

—( h

Fiix) = 'E

provided the limit exists.

We use the notation f(x) in the definition to emphasize the independent variable x
with respect to which the derivative function f’(x) is being defined. The domain of f” is
the set of points in the domain of f for which the limit exists, which means that the domain
may be the same as or smaller than the domain of f. If f" exists at a particular x, we say
that f is differentiable (has a derivative) at x. If f' exists at every point in the domain of
f, we call f differentiable.

If we write z = x + &, then i = z — x and h approaches 0 if and only if 7 approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.4). This
formula is sometimes more convenient to use when finding a derivative function, and
focuses on the point z that approaches x.

Alternative Formula for the Derivative

<

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function y = f(x), we use the notation

d . .
Ef(“)

as another way to denote the derivative f'(x). Example 1 of Section 3.1 illustrated the dif-
ferentiation process for the function y = 1/x when x = a. For x representing any point in
the domain, we get the formula

L) o=

de \X |

Here are two more examples in which we allow x to be any point in the domain of f.



Derivative of the Square Root
Function

d _ 1 )
V= o 70
3
y= %.\' + 1
\
@2 y=Vi
-H
1 1 1 1 1
0 4
FIGURE 3.5 The curve y = Vax and

its tangent at (4, 2). The tangent’s slope
is found by evaluating the derivative at
x = 4 (Example 2).

3.2 The Derivative as a Function 129

EXAMPLE 1

Differentiate f(x) = ﬁ

Solution We use the definition of derivative, which requires us to calculate f(x + h)
and then subtract f(x) to obtain the numerator in the difference quotient. We have

(x+Mm

- — ". . - — -
fx) = T=1 and  f(x + h) = —(.r T - ]+ 80
X+ h) = fx
f'(.t‘) = lgbw Detimition
x+h _x
x+h=-1 ax-—1
= lim
h—0 h
- LW+ - —xx+h=1D o, o w
= aon G+h-De-1 Tl i~
-h

- I EF = hE= Bt

- —1 —1 uacelil
= ’l’l_l}b(w Th-De-D G- Cancel b # 0 o

EXAMPLE 2
(a) Find the derivative of f(x) = Vx for x > 0.

(b) Find the tangent line to the curve y = Vxatx = 4,

Solution
(a) We use the alternative formula to calculate f’:
rw = im{G L0
L. VIi—Vx
=lm===
= lim VE - Vi
-~n(w S VA)(VE + VA)

1
= e T R

(b) The slope of the curve at x = 4 is

1
4 = -,
i 2\/2 4

The tangent is the line through the point (4, 2) with slope 1/4 (Figure 3.5):

- 1. _
)—2+4(.l 4)

=1,
)—4.1+l. O

Notations

There are many ways to denote the derivative of a function y = f(x), where the indepen-
dent variable is x and the dependent variable is y. Some common alternative notations for
the derivative are

dy _df _ L fe) = DU = DS,

f'x) =y = dx  dx
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Slope 0

4 \Slopc -1

D'/

4
3
2
1
U r S 10 15
"l—\;\\(‘"

—@-_ Vertical coordingte —1 |

(b)

FIGURE 3.6 We made the graph of

¥y = f'(x) in (b) by plotting slopes from
the graph of ¥ = f(x) in (a). The vertical
coordinate of B8’ is the slope at B and so
on. The slope at £ is approximately

8/4 = 2. In (b) we see that the rate of
change of f is negative for x between A’
and D'; the rate of change is positive for
xtothe right of D',

Slope =

lim S+ hi - [
Slope = "0
lim Ma + 1) = fla)
h—" h

y=fw

)
1
|
|

1 1
a a+h b+ h b
h>0 h<o0

FIGURE 3.7 Derivatives at endpoints
of a closed interval arc one-sided limits.

C =
5k LN DL ,*, 8,
Slope (
=5|4 y-units :
0 [ 10 5
(a)
Slope

The symbols d/dx and D indicate the operation of differentiation. We read dy/dx as
“the derivative of y with respect to x,” and df /dx and (d/dx) f(x) as “the derivative of f
with respect to x." The “prime™ notations y* and f’ come from notations that Newton
used for derivatives. The d/dx notations are similar to those used by Leibniz. The sym-
bol dy/dx should not be regarded as a ratio (until we introduce the idea of “differen-
tials” in Section 3.11).

To indicate the value of a derivative at a specified number x = a, we use the notation

, dy df d
f ((r) - T“. X=a B (Tt X=a - af(-‘) X=a
For instance, in Example 2
F@&=5VY =3l TnvETa

Graphing the Derivative

We can often make a reasonable plot of the derivative of y = f(x) by estimating the slopes
on the graph of f. That is, we plot the points (x, f'(x)) in the xy-plane and connect them
with a smooth curve, which represents y = f'(x).

EXAMPLE 3

Graph the derivative of the function y = f(x) in Figure 3.6a.

Solution We sketch the tangents to the graph of f at frequent intervals and use their
slopes to estimate the values of f’(x) at these points. We plot the corresponding (x, f'(x))
pairs and connect them with a smooth curve as sketched in Figure 3.6b. O

What can we learn from the graph of y = f’(x)? At a glance we can see

|

where the rate of change of f is positive, negative, or zero;

L

the rough size of the growth rate at any x and its size in relation to the size of f(x);

3. where the rate of change itself is increasing or decreasing.

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is differentiable on an open interval (finite or infinite) if it has a
derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it
is differentiable on the interior (a, b) and if the limits

. fla+h) — fla)
ey Ll e AL/

li Right-hand derivative at a
h—0* h

b+ h) — fb
r mo w Left-hand derivative at b
h—(0"

exist at the endpoints (Figure 3.7).

Right-hand and left-hand derivatives may be defined at any point of a function’s domain.
Because of Theorem 6, Section 2.4, a function has a derivative at a point if and only if it has
left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function y = |x| is differentiable on (=00, 0) and (0, 00)
but has no derivative at x = 0.

Solution From Section 3.1, the derivative of y = mx + b is the slope m. Thus, to the
right of the origin,
Zom b i, A \

dagny_d . _d . _ 1
d.\'(l'\’) - d\'('\) - (l\‘(l x) =1 da



v not defined atx = 0:

right-hand derivative

# left-hand derivative
FIGURE 3.8 The function y = |x|
is not differentiable at the origin where
the graph has a “corner” (Example 4),
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To the left,

(Figure 3.8). There is no derivative at the origin because the one-sided derivatives differ
there:

| o o+ =Jo| il
Right-hand derivative of |x| at zero = lim ————— = lim
h=0' h =
= lim &+ h [ = hwhenh =0
n—o+h
= liml =1
h—0'
. o 0 +h -0 |4l
Left-hand derivative of |x| at zero = lim —————— = lim
h—0" h h-—o()' h
= lim _—h' Il hwhen /i < 0
n—o h

I
E
1
I
[
a

EXAMPLE 5 In Example 2 we found that for x > 0,

We apply the definition to examine if the derivative exists at x = 0:

VO + h = VO 1

lim =l = 00,

e b o vh
Since the (right-hand) limit is not finite, there is no derivative at x = (. Since the slopes of
the secant lines joining the origin to the points (h. \/I-t) on a graphof y = Vi approach
00, the graph has a vertical tangent at the origin. (See Figure 1.17 on page 9.) a

When Does a Function Not Have a Derivative at a Point?

A function has a derivative at a point x; if the slopes of the secant lines through P(x,, f(x))
and a nearby point Q on the graph approach a finite limit as Q approaches P. Whenever the
secants fail to take up a limiting position or become vertical as Q approaches P, the deriva-
tive does not exist. Thus differentiability is a “smoothness” condition on the graph of f. A
function can fail to have a derivative at a point for many reasons, including the existence
of points where the graph has

s,

1. acorner, where the one-sided 2. acusp, where the slope of PQ approaches
derivatives differ. 00 from one side and —09 from the other.
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c (x, ) (x+h,c)
T

h

+f——————

=

|
|
|
|
|
|
|
X

0

-

FIGURE 3.9 The rule (d/dx)(¢) = 0
is another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.

This section introduces several rules that allow us to differentiate constant functions,
power functions, polynomials, exponential functions, rational functions, and certain com-
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differences

A simple rule of differentiation is that the derivative of every constant function is zero,

Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

df _d,  _
= = ‘7;((.‘) = ().

Proof We apply the definition of the derivative to f(x) = ¢, the function whose outputs
have the constant value ¢ (Figure 3.9). At every value of x, we find that

x+h - f(x y =
im f L [ = lim =< = lim0 = 0. [ ]
—0 h n—o h )

) = ,l'

From Section 3.1, we know that

daf1y__1 i.—l)_ -2
wlx)=—3 o g =2

From Example 2 of the last section we also know that

4 (Vr)

. i A2 __l..—lll
dx (672) = 5,

1
=—=, or
2Vx dx
These two examples illustrate a general rule for differentiating a power x". We first prove
the rule when n is a positive integer.



‘ HISTORICAL BIOGRAPHY
Richard Courant

(1888-1972)

Applying the Power Rule
Subtract 1 from the exponent and multiply

the result by the original exponent.
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Derivative of a Positive Integer Power
If n is a positive integer, then

‘Jl

a n—1
dx

= nx

Proof of the Positive Integer Power Rule The formula

S— g = (: — ".)(:n—l + :n—l". 4 o P :“Jl—z + "Jl—l)

can be verified by multiplying out the right-hand side. Then from the alternative formula
for the definition of the derivative,

f@) — fv) & —x"
m

78 s
£ = m == = im S
=limE@ '+ W+ - F a2 ) nterms
I
="l |

The Power Rule is actually valid for all real numbers n. We have seen examples for a
negative integer and fractional power, but n could be an irrational number as well. To
apply the Power Rule, we subtract | from the original exponent n and multiply the result
by n. Here we state the general version of the rule, but postpone its proof until Section 3.8.

Power Rule (General Version)
If n is any real number, then

d N
== l.
dx

for all x where the powers 3" and x"~! are defined.

EXAMPLE 1 Differentiate the following powers of x.

@< P ©N @ \1—4 () x** () VxT
Solution -

(a) ;;—-i(.\") = 3331 = 342

by L () =

X

(©) (%(_\.\/5) - \/?__‘.\/i—l

W= = %‘-—l/.!

Wi

(d) d (l) = i(.\“4) = =4yl = 478 = —%

(T\' ‘r" - dx

i —4/3) = _‘l —4/-1 = _‘1 ~7/3
@ o) =3 3%

dx

The next rule says that when a differentiable function is multiplied by a constant, its
derivative is multiplied by the same constant.

O L(ViFT) = %(.\-'“"ﬂ') = (1 + ’,—’)x'*‘"/l’" =lo+mvi L
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¥
y =32
Slope = 3(2x)
/ = Gy
3k (L3 =6(1)=06
3
y= X
2
=2
1l =21)=2
\ L X
0 2

FIGURE 3.10 The graphs of y = x?
and y = 3x% Tripling the y-coordinate
triples the slope (Example 2).

Denoting Functions by « and v

The functions we are working with when
we need a differentiation formula are
likely to be denoted by letters like f and g.
We do not want to use these same letters
when stating general differentiation rules,
so instead we use letters like « and v that
are not likely to be already in use.

Derivative Constant Multiple Rule
If u is a differentiable function of x, and ¢ is a constant, then

d _ du
dx &0 = € gy

In particular, if # is any real number, then

i WL n=1
> (cx™) = enx ™.

Proof
d . culx + ) — cu(x) Derivative definition
—-cu = lim
dx h—0 h with [V — cuty)
u(x + h) — u(x)
=chim— Constant Muluple Linut Property
=0 h
du
= CL' s differentiable. |
dx
EXAMPLE 2

(a) The derivative formula
d 2o o290 = 6
p (3x%) = 3+2x = 6u

says that if we rescale the graph of y = x? by multiplying each y-coordinate by 3,
then we multiply the slope at each point by 3 (Figure 3.10).

(b) Negative of a function
The derivative of the negative of a differentiable function u is the negative of the func-

tion’s derivative. The Constant Multiple Rule with ¢ = —1 gives
P O I 1
d“( u) = d.\'( lew) =—1 T () = s |

The next rule says that the derivative of the sum of two differentiable functions is the
sum of their derivatives.

Derivative Sum Rule

If « and v are differentiable functions of x, then their sum 1 + v is differentiable
at every point where u and v are both differentiable. At such points,

_ du & dv

d
ﬁ(“ + v) = ax dc

For example, if y = x* + 12x, then y is the sum of n(x) = 2 and v(x) = 12v. We
then have
dy o

= = L (W d N g
dv ~ dx (x*) + ”'\_(12\) 47 + 12,



Yooy=at-242

(0,2)

(-1 i (L

L L X
=1 0 1

FIGURE 3.11 The curve in Example 4
and its horizontal tangents.
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Proof We apply the definition of the derivative to f(x) = u(x) + v(x):
[ + ) + vx + )] = [u@) + v)]
m

Il

‘;—.l\, [u(x) + v(x)]

h=0 h
ulx + h) — ux) v+ h) — v
= +
h—0 h h
— lim ulx + ) — u(x) + lim v(x + h) — v(x) _ d_u " d_u -
h—0 h h—0 h dv  dx

Combining the Sum Rule with the Constant Multiple Rule gives the Difference Rule,
which says that the derivative of a difference of differentiable functions is the difference of
their derivatives:
d d du dv _du  dv
—w-v)===[u+ (] =+ C)5F> ===
d.\'( ) d.\'[ (=Dv] dx ( )d.\' dy  dx
The Sum Rule also extends to finite sums of more than two functions. If wy, s, ..., u,
are differentiable at x, then so is ) + 1+« -+ + w,, and
duy  duy du,

d _au  dw 0 dly
ol Tt tu) = o+ PR

For instance, to see that the rule holds for three functions we compute

duy _duy o duy - duy

{ { !
‘-‘E(lq + uy + 1) = ‘—;;((ul + us) + ) = l—;_;(lq + 1) + 'y dx + e P

A proof by mathematical induction for any finite number of terms is given in Appendix 2.

EXAMPLE 3 Find the derivative of the polynomial y = x* + %,\'3 - 5x+ 1.

ody d . df4, d . d _ ,
Solution P (l.\"\ + dx 3.\ % (5x) + d\'(l) Sum and Difference Rules
=3.\"'+‘.-:--2\'—5+0=3.\1+g.\'—S [ ]

We can differentiate any polynomial term by term, the way we differentiated the poly-
nomial in Example 3. All polynomials are differentiable at all values of x.

EXAMPLE 4  Does the curve y = x* — 2v2 + 2 have any horizontal tangents? If so,
where?
Solution The horizontal tangents, if any, occur where the slope dy /dx is zero. We have
dy _d 4 2 — a4 .
il O e + 2) = 4da” — 4o,

. dy .
Now solve the equation p i 0 for x:

ix
43 —4x =0
hKxI -1 =0
x=01-1

The curve y = x* — 2x% + 2 has horizontal tangents at x = 0, I, and —1. The corre-
sponding points on the curve are (0, 2), (1, 1), and (=1, 1). See Figure 3.11. We will see in
Chapter 4 that finding the values of x where the derivative of a function is equal to zero is
an important and useful procedure. [m]
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Derivatives of Exponential Functions

We briefly reviewed exponential functions in Section 1.5. When we apply the definition of
the derivative to f(x) = a*, we get

h X
d . . atth =g
—(a@") = lim Denvatve defmition
d". ( ) I]—DO I! (N 1 Coue .
a‘+a'" — a
= lim a" =gt
h—0 h
. -1
= lima** Fuctoring out o'
h—0 h
h — 1
=a'* lim R a' s constant as h— (0
h h
h
Loat =1
= | lim a. (0
h—0 h

a tined number L

Thus we see that the derivative of @' is a constant multiple L of @'. The constant L is a
limit unlike any we have encountered before. Note, however, that it equals the derivative
of f(x) = a*atx = 0:

a - d° . ah =1

f(0)=l!m h =/I,I—IHJ h =L

The limit L is therefore the slope of the graph of f(x) = a* where it crosses the y-axis. In
Chapter 7, where we carefully develop the logarithmic and exponential functions, we
prove that the limit L exists and has the value In a. For now we investigate values of L by
graphing the function y = (a" — 1)/h and studying its behavior as h approaches 0.
Figure 3.12 shows the graphs of y = (a" — 1)/h for four different values of a. The
limit L is approximately 0.69 if @ = 2, about 0.92 if @ = 2.5, and about 1.1 if @ = 3. It
appears that the value of L is 1 at some number a chosen between 2.5 and 3. That number

0 & is given by a = ¢ = 2.718281828. With this choice of base we obtain the natural expo-

nential function f(x) = €' as in Section 1.5, and see that it satisfies the property

FIGURE 3.12 The position of the curve

Lot — 1
y = (" — 1)/h,a > 0, varies continu- 1 = ’llmo = 1 2)
ously with a. The limit Lof yas h — 0 '
changes with different values of a. The because it is the exponential function whose graph has slope 1 when it crosses the y-axis.
number for which L = 1 as i — 0 is the That the limitis 1 implies an important relationship between the natural exponential func-
number ¢ between ¢ = 2 and a = 3. tion ¢* and its derivative:
1 —
‘% (e‘) = hll_[}(]) (C" e ! )' er Eq. (l1with « ¢
=1l-¢"'=¢'. Eq. (21

Therefore the natural exponential function is its own derivative.

Derivative of the Natural Exponential Function

a0 e
d_‘_(e)—e

EXAMPLE 5  Find an equation for a line that is tangent to the graph of y = ¢ and
goes through the origin.

Solution Since the line passes through the origin, its equation is of the form y = mux,
where m is the slope. If it is tangent to the graph at the point (a, ¢*), the slope is
m = (e" — 0)/(a — 0). The slope of the natural exponential at x = a is ¢“. Because these



¥
[ y=e'
4
2k a,e)
——-—t/ l
L X
=1 a

FIGURE 3.13 The line through the ori-
gin is tangent to the graph of y = ¢' when
a = 1 (Example §).

Equation (3) is equivalent to saying that

fe) = [f'g + fg'.
This form of the Product Rule is useful
and applies to dot products and cross

products of vector-valued functions,
studied in Chapter 13.

141
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slopes are the same, we then have that ¢ = ¢¢/a. It follows that @ = 1 and m = ¢, so the
equation of the tangent line is y = ex. See Figure 3,13, O

We might ask if there are functions other than the natural exponential function that
are their own derivatives. The answer is that the only functions that satisfy the property
that f'(x) = f(x) are functions that are constant multiples of the natural exponential func-
tion, f(x) = ¢+e', ¢ any constant. We prove this fact in Section 7.2. Note from the Con-
stant Multiple Rule that indeed

%\'(c-c‘) = (_.‘;_i((") =c-e'.

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the deriva-
tive of the product of two functions is not the product of their derivatives, For instance,

d

while T

d oooy=d 2 _ 5. d...d .  _1.1=
dj;(.\ X) = d.\' (x°) = 2, d_‘_(.\.) wW=11=1

The derivative of a product of two functions is the sum of two products, as we now explain.

Derivative Product Rule
If w and v are differentiable at x, then so is their product wv, and

A dv, de
d.\‘(“u) =kt Vi

The derivative of the product «v is « times the derivative of v plus v times the deriva-
tive of w. In prime notation, (wv)’ = wv' + wvi’. In function notation,

‘;_1‘.“ WL ] = fNg'(x) + gx)f'(x). @)
EXAMPLE 6 Find the derivative of (a) y = ._l..(x: yape ) ®) y = e,
Solution

(a) We apply the Product Rule with w = 1/x and v = x? + e

afbe v o]

du du

d
-_1:(2‘. + (,l) + ('\.2 + ‘,|)(_ é) J—\mm "4/—| { "I"m‘l
" |

a1

]

o &
2+5-1-5

]

1+ (- DE
X"

(b) ‘;l—-‘_(ez‘) = ‘;—i(c‘ cet) = c""(l—i(c‘) + e ';‘I'—I\_(t") = 2¢' ' = 2e¥ o]
EXAMPLE 7 Find the derivative of y = (x* + 1)(x* + 3).

Solution
(a) From the Product Rule with # = x* + 1 and v = x* + 3, we find
du et du

d
4[.“"') ”;_I_l 'f\

j‘%[(.\'z + |)(.\'-‘ + '{)] (.\.2 + |)(3".2) + (".,\ + 3)(2‘,)

3+ 3+ 2+ 6y
S5xt 4+ 30 + 6.
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Picturing the Product Rule
Suppose u#(x) and v(x) are positive and

increase when x increases, and & > 0,

v(x + h)
Av u(x + h) Av
. =
v(x)
u(x)v(x) o (x) An
0

!/ Au
ulx)  ulx +h)

Then the change in the product uv is
the difference in areas of the larger and
smaller “squares,” which is the sum of
the upper and right-hand reddish-shaded
rectangles. That is,

A(uv) = u(x + v(x + h) — w(x)v(x)

u(x + Av + v(x)Au.

Division by & gives
A(uv)

= u(x + h)A,—,U + u(.\')A,—:‘A

The limit as # — 0" gives the Product
Rule.

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

y = (_\'2 + 1)(_\-‘ + 3) =+ 432+ 3

dy
— = 53 + 3x2 + 6.
dx
This is in agreement with our first calculation. |

Proof of the Derivative Product Rule

d — u(x + Mu(x + ") — wu(xv)
ax W) = b 7

To change this fraction into an equivalent one that contains difference quotients for the
derivatives of 1 and v, we subtract and add w(x + /)v(x) in the numerator:

" wlx + Muvlx + h) — ulx + DHux) + wulx + Hu(x) — wx)vx)
hl—r'r(l] h

vix + ) — v() L+ h) = ux)

B I T

v(x + h) — v(x)
h

d
e (1v)

Il

lim | u(x + h)
h—0

u(x + h) — u(x)
h '

Il

limu(x + 7))+ lim + v(x)* lim
h—0 h—0 h—0
As h approaches zero, u(x + /) approaches u(x) because u, being differentiable at x, is con-
tinuous at x. The two fractions approach the values of dv/dx at x and du/dx at x. Therefore,

d .\ dv_  du
i (wv) = e + v |

The dernivative of the quotient of two functions is given by the Quotient Rule.

Derivative Quotient Rule

If « and v are differentiable at x and if v(x) # 0, then the quotient u/v is dif-
ferentiable at x, and

du dv
o

dfu) _ dx ~ “dx
de\v/) 2 :

In function notation,

_ 8Wf' ) — flx)g'(x)

d [f(.\')]

dx [ 2
2 _
EXAMPLE 8 Find the derivative of (a) y = rr, " :, ) y=¢"
Solution

(a) We apply the Quotient Rule withu = # — landv = £ + 1:
dy (P +1)2r— (= 1)3¢ d
dr

wldv dn

(u) vidu /dn
(,3 + ])Z E(;A) n?
208 + 2t — 3t + 32
( + 1)
_—r+32+ 2
e+ 1)?
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L) _e0 =1t _ -1

e

d,o_d
(b) d—(c ) = (

% dx

Proof of the Derivative Quotient Rule

wlx + h) 3 1(\_)
d (g) vt h) v

—_— lim
dv \V h—0 h

v(Ouly + ") — ulx)vlx + h)
hl—'}(‘) hv(x + hux)

To change the last fraction into an equivalent one that contains the difference quotients for
the derivatives of & and v, we subtract and add v(x)u(x) in the numerator. We then get

d (") . v + ) = vux) + vux) = uvx + h)
-~ = lim

dx \V h—0) hv(x + Mux)
wx + h) — ux) vx + h) — v)
v )y —————— — ) ———————
. h h
= lim
h—0 v(x + hu(x)

Taking the limits in the numerator and denominator now gives the Quotient Rule. Exercise
74 outlines another proof. B

The choice of which rules to use in solving a differentiation problem can make a dif-
ference in how much work you have to do. Here is an example.

EXAMPLE 9 Find the derivative of
- (x = DE* = 2v)

4

X

Solution Using the Quotient Rule here will result in a complicated expression with

many terms. Instead, use some algebra to simplify the expression. First expand the numer-
ator and divide by x*:

(= D@? = 20 I Sl L A

X R

=3+ Y,

Then use the Sum and Power Rules:
N
zl—':_ = =72 = 3(=2n"? + 2(=-3In
1

2

6 6
+—i_\—"- |

-
-

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f is
also differentiable, then we can differentiate f’ to get a new function of x denoted by f".
So f" = (f")'. The function f" is called the second derivative of f because it is the deriv-
ative of the first derivative. It is written in several ways:

) d>y 4 (dy dy’ . s ,
fi(x) = e de\dx) " Y < D(Hx) = D f(x).

dy? dx dx

The symbol D? means the operation of differentiation is performed twice,
Ify = x then y' = 6x% and we have

Thus D*(x%) = 30x*,
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How to Read the Symbols for
Derivatives

r

¥ “y prime”

¥" "y double prime”
dz'v (1}
] “d squared y dx squared
x*
y"  “ytriple prime”
Yyt super n'
d"y .
e “d to the n of y by dx to the n

D"  “Dtiothen”

If y" is differentiable, its derivative, y" = dy"/dx = d*y/dx?, is the third derivative
of y with respect to x. The names continue as you imagine, with
n r
‘.(”) - iv("—l) — (_Q_ = D"
¥ X dx" :
denoting the nth derivative of y with respect to x for any positive integer .
We can interpret the second derivative as the rate of change of the slope of the tangent
to the graph of y = f(x) at each point. You will see in the next chapter that the second
derivative reveals whether the graph bends upward or downward from the tangent line as

we move off the point of tangency. In the next section, we interpret both the second and
third derivatives in terms of motion along a straight line.

EXAMPLE 10  The first four derivatives of y = x* — 3x + 2 are

First derivative: y = 3x2 — 6x

Second derivative: y" = 6x — 6

Third derivative: y' =6

Fourth derivative:  y* = 0.
All polynomial functions have derivatives of all orders. In this example, the fifth and later
derivatives are all zero. Ll



3 . 5 Derivatives of Trigonometric Functions

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms,
tides, weather). The derivatives of sines and cosines play a key role in describing periodic
changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of f(x) = sin x, for v measured in radians, we combine the limits
in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function:

sin(x + h) = sinxcos h + cos x sin h.
If f(x) = sinx, then
fx + h) = f(x) . osin(x + h) — sinx
m = lim

f’(.\’) = ‘ll ') I fra n Denvative defimtion
— o
(sinxcos h + cosxsinh) — sinx
= lim
h—0 h
. sinx(cosh — 1) + cosxsinh
= lim
h=0 h
. . cosh — 1 . sin h
= lim| sinx+———— ) + lim| cos x*+——
h=0 h h=0 h
) . cosh =1 . sinh .
= sm.\"’!m?]———-h—- + cus.\"'llnu—h— =sinx+0 + cosx+ | = cos x.
— r
Example Sa and
Lt linut | Theorem 7. Section 2.4
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The derivative of the sine function is the cosine function:

i) = co
d.r(‘““'\) = COS X,

EXAMPLE 1 We find derivatives of the sine function involving differences, products,
and quotients.
T T, dy A d
() y=x sinx: prie pA d_‘_(»m x) Dilference Rule
= 2% — COs X
dy d . d ;
) = tain pr —_— = g\ (g ¢ —_— (") 8§ 1 Mrowduet Rule
(b) y = e'sinx: ik d\_(xm.\) + e (e') sin x Prochuct Rul
= ¢'cosx + e'siny
= ¢' (cos v + sinx)
d . "
. L xr——(sinx) — sinxe |l
© y= sinx, ‘i‘_ - _dx T Quotient Rul
i X dx X ’

_ Xcosx — sinx
x?
Derivative of the Cosine Function
With the help of the angle sum formula for the cosine function,
cos(x + h) = cos xcos h = sinxsinh,
we can compute the limit of the difference quotient:

cos(x + h) = cos
| M = “\II\.IL&\\ \lA'[IIIIlIlV“

d .
b (cos x)

0 h
. (cosxcosh = sinxsinh) = cosx Cosie angle sum
= ’lll_!P“ 7 identity
-1 cosx(cosh — 1) = sinxsinh
il h
_ a cosh — 1 Lo sinh
= limcos x+———— — limsinx+——
h—0 h h—0 h
o pecosh =1 sinh
= ¢os x* lim =———— = sinx* lim ——
n—o h w0 h
. Example Sa and
N =cosx+0 — sinx-| Iheorem 7, Section 2.4
1 N eosa - _&ill X
L/ \._1_/ i
- /i 0 ™
\_74/: Sk M
I
i I ) 0
N The derivative of the cosine function is the negative of the sine function:
‘ )
~. I |
[{ .
A /\ x —[(cus ) = —sinx.
/ﬁr 0 " m dx
e B

FIGURE 3.22 The curve ¥ = —sinx
as the graph of the slopes of the tangents 1o Figure 3.22 shows a way to visualize this result in the same way we did for graphing
the curve y = cos ., derivatives in Section 3.2, Figure 3.6,
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—= -
=
=
A s
Lo Rcs‘l‘
position
Ls Position at
=0

A

FIGURE 3.23 A weight hanging from
a vertical spring and then displaced oscil-
lates above and below its rest position
(Example 3).

EXAMPLE 2 We find derivatives of the cosine function in combinations with other
functions.

(@) y=5¢ + cosx:

dy
d__.\' = (2_1‘.(56‘) + c%(cos x) Sum Rule
= S5¢' — sinx
(b) y = sinxcos x:
L | d .
e = sm.\'ﬁ (cos x) + cos \Z (sin x) Product Rule
= sinx(—sin x) + cos x(cos x)
= cos?x — sin?x
__cosXx
© 1 — sinx’

o cos v 81— sin x
dy (1 — sinx) d‘_(c.u.s.\) COS X d.\'(l sin x)

Quotient Rule

ds (1 — sinx)?
(1 — sin x)(—sinx) — cos x(0 — cosx)
) (1 = sinx)*
1 — sinx N ‘
- “‘T\)z dinta 4 ocosTy
== "

Simple Harmonic Motion

The motion of an object or weight bobbing freely up and down with no resistance on the
end of a spring is an example of simple harmonic motion. The motion is periodic and
repeats indefinitely, so we represent it using trigonometric functions. The next example
describes a case in which there are no opposing forces such as friction to slow the motion.

EXAMPLE 3 A weight hanging from a spring (Figure 3.23) is stretched down 5 units
beyond its rest position and released at time + = 0 to bob up and down. Its position at any
later time ¢ is

s = S5cost
What are its velocity and acceleration at time (?

Solution We have

Position: s = 5cost
Velocity: v= ds = 1(5 cosf) = —5sint

' dt dt )

o o du _d e e
Acceleration: a = o= dl( Ssint) = —5cos t.

Notice how much we can learn from these equations:

1.  As time passes, the weight moves down and up between s = —5 and s = 5 on the
s-axis. The amplitude of the motion is 5. The period of the motion is 27, the period of
the cosine function.

2. The velocity v = —5 sin ¢ attains its greatest magnitude, 5, when cost = 0, as the
graphs show in Figure 3.24. Hence, the speed of the weight, |v| = 5|sin #|, is greatest




v==5sint

5 \ s=5cost
o @/ Jimz \om sm !
2 2 2

...S-

FIGURE 3.24 The graphs of the position
and velocity of the weight in Example 3,
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when cos ¢ = 0, that is, when s = 0 (the rest position). The speed of the weight is
zero when sin 1 = 0. This occurs when s = 5cosr = %5, at the endpoints of the
interval of motion.

3. The weight is acted on by the spring and by gravity, When the weight is below the rest
position, the combined forces pull it up, and when it is above the rest position, they pull it
down. The weight's acceleration is always proportional to the negative of its displacement.
This property of springs is called Hooke's Law, and is studied further in Section 6.5.

4. The acceleration, @ = —5cos 1, is zero only at the rest position, where cos 1 = 0 and
the force of gravity and the force from the spring balance each other. When the wei ght
is anywhere clse, the two forces are unequal and acceleration is nonzero. The accel-
cration is greatest in magnitude at the points farthest from the rest position, where
cost = t1, [ |

EXAMPLE 4

The jerk associated with the simple harmonic motion in Example 3 is

c_da _d oo
-’_drudl( Scost) = Ssint.

It has its greatest magnitude when sins = %1, not at the extremes of the displacement
but at the rest position, where the acceleration changes direction and sign. |

Derivatives of the Other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

lun\'—sm—x coty = £8X SeC X = == and csex = l
: cos X i sinx’ e cos x» o sinx

are differentiable at every value of x at which they are defined. Their derivatives, calcu-
lated from the Quotient Rule, are given by the following formulas. Notice the negative
signs in the derivative formulas for the cofunctions,

The derivatives of the other trigonometric functions:

]

i(lzm xX) = sec?y L (cotx) = —csel x

dx dx

d X o N m vt S
d—‘_(scc X) = sec.xlanx m(c.\c X) = —cscaxcoty

To show a typical calculation, we find the derivative of the tangent function. The other
derivations are left to Exercise 60.

EXAMPLE 5 Find d(tan x)/dx.

Solution  We use the Derivative Quotient Rule to calculate the derivative:

-‘L(l'm 8 = d [ sinx
de' dx \COS X

cos \'i(%in x) — sin \'i(cm X)
Tdx T T de YT
Quotient Rule

2
COsS~ X

COS X COS X — sin x(—sin.x)

cosiy
0%
cos”x + sin®x
5
cosx
1

= —5— = sec X, O
cos?x

<
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EXAMPLE 6

Find y"if y = secx.

Solution Finding the second derivative involves a combination of trigonometric

derivatives.

secx

= secxtanx

d o
v (sec xtan x)

oe v (1an x) + tan v (cor ¥
sec X s (tanx) + tan x ic (sec x)

= sec x(sec? x) + tan x(sec x tan x)

= secd x + secxtan®x

Dervative mule for secant function

Dervative Product Rule

Dervative rules

The differentiability of the trigonometric functions throughout their domains gives
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2).
So we can calculate limits of algebraic combinations and composites of trigonometric
functions by direct substitution.

EXAMPLE 7

lim

—0 COS

Exercises m

Derivatives
In Exercises 1-18, find dy/dx.

3 :
I y=—10x + 3cosx 2. y=7+ 5sinx
3.y =xtcosx 4. y= Varsecx + 3
7
5 y=cscx — 4V + s 6. y = x*cotx — é
7. f(x) = sinxtanx 8. g(v) = L:‘-
sin® x

9. y = xe'secx

cot x COs X
Iy =Ty corx 12. Y T+ sinx

4 1 Cos X X
B.oy=Gc Y s . y==""+ G5y

15. y = (secx + tan.x)(sec.x — tan.x)
16. y = x?cosx — 2xsinx — 2cosx
17. f(x) = Ssinxcosx 18. g(x) = (2 — ¥ tan’x

In Exercises 19-22, find ds/d1.

19. s =tant — ¢ 20. s = 1* — sect + Se'
1 + csct sin ¢

2 s = 7/ 22, s = ——
1 —csct I — cost

V2 +secxy _ V2 + sec

We can use direct substitution in computing limits provided there is no
division by zero, which is algebraically undefined.

V2 + 1

_Vi__\j

10. y = (sinx + cos x)sec x

In Exercises 23-26, find dr/d0.

23. r =4 - 0*in0

25. r = secOcsch

In Exercises 27-32, find dp/dq.
1

2. p= cot g
sing + cos ¢
M.p="csqg
gsing
3. p==
r 7'= 1

33. Find y" if
a. ) = cscX.
M. Find yV = &' y/dx' if

a. y = —2sinx,

Tangent Lines

(m —tanx)  cos(m — tan0)  cos(m — 0)  —1

24. r=0sin0 + cos0

26. r = (1 + sec0)sin0
28. p = (1 + cscg)cos ¢
Sla g = 1 _‘:‘“m‘f‘q

2. p= ——3"‘,:“(“: -

b. y = secx

b. y = Ycosx.

In Exercises 35-38, graph the curves over the given intervals, together
with their tangents at the given values of x. Label cach curve and tan-

gent with its equation,
35. y =siny,
x=-m03m7/2

-3r/2=x =27



3. y=tany, —-w/2<x<m/2
x=-7/3,0,7/3
37. y=secx, —w/2<x<m/2
x=-7w/3,w/4
38, y=1+cosx, —3n/2 =x=27w
x=-7/3,3w/2
Do the graphs of the functions in Exercises 39—42 have any horizontal
tangents in the interval 0 = x = 277 If so, where? If not, why not?
Visualize your findings by graphing the functions with a grapher.
39. y =x + sinx
40. y = 2v + sinx
41, y = x — cotx
42, y =x + 2cosx
43. Find all points on the curve y = tanx, —7/2 < x < /2, where

the tangent line is parallel to the line y = 2x. Sketch the curve
and tangent(s) together, labeling each with its equation,

44. Find all points on the curve y = cotx, 0 < x < 7, where the
tangent line is parallel to the line y = —x. Sketch the curve and
tangent(s) together, labeling each with its equation.

In Exercises 45 and 46, find an equation for (a) the tangent to the
curve at P and (b) the horizontal tangent to the curve at Q.

45. 46.

0

y=4+cotx — 2csc x

L 1 Ly y
1 2 3

FNEYS

y=1+ \/ECSC.\‘ + cotx

Trigonometric Limits
Find the limits in Exercises 47-54,

.o {1 1
47. ‘ll_rg sin (; - 5)
48. lim V1 + cos(m csc x)

A—-w/6
sinf) — 5 :
49, lim —— 50, lym Wn¢ -1
o—mfo 0 — & b—m/4 O — g'

51

Iimscc[e‘ + nlan( ‘" ) - l]
\—0 4 sec x

B 7 + tan x
82, limsin| ——m
=0 tan x — 2 sec x

53. limtan| 1 - “—n’) 54. Iimcos( :"”)
1—0 4 =0 sin @
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Theory and Examples

The equations in Exercises 55 and 56 give the position s = f(1) of a
body moving on a coordinate line (s in meters,  in seconds). Find the
body's velocity, speed, acceleration, and jerk at time 1 = 7 /4 sec.
5§5. s =2 — 2sint 56. s = sint + cost

57. Is there a value of ¢ that will make

sm',3.\-' 0

f(\) = X
c, x=10
continuous at x = 0? Give reasons for your answer.
58. Is there a value of b that will make

sty = {.\' +b x<0
8% cosx, x=0

continuous at x = 0? Differentiable at x = 0? Give reasons for
your answers.

59. By computing the first few derivatives and looking for a pattern,
find d* /dx* (cos x).

60. Derive the formula for the derivative with respect to x of

4. sec X, b. cscx. c. cot.x.
61. A weight is attached to a spring and reaches its equilibrium posi-
tion (x = 0), It is then set in motion resulting in a displacement of
x = 10cos1,

where v is measured in centimeters and ¢ is measured in seconds.
See the accompanying figure,

E=w. |
=
=
. =10
Equilibrium
--<=--|-() position
atx =0
10
X

a. Find the spring’s displacement when t = 0, = #/3, and

1= 3m/4.
b. Find the spring's velocity when 1 = 0,7 = /3, and
1= 3w /4.

62. Assume that a particle’s position on the xv-axis is given by

x=3cost + 4sint,

where x is measured in feet and r is measured in seconds.

a. Find the particle’s position when 1 = 0,1 = 7/2, and
=,

b. Find the particle’s velocity when t = 0,1 = 7/2, and
1=,
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Graph y = cos x for —7 = x = 27. On the same screen, graph

~sin(x + /) — sinx
a h

for h=1,0.5,03, and 0.1. Then, in a new window, try
I = —1,-0.5, and —0.3. What happens as h—0'? As h—07?
What phenomenon is being illustrated here?

=

Graph y = —sinx for —m = x = 2. On the same screen, graph

cos(x + ) — cosx
\l =

h
for h=1,05,0.3, and 0.1. Then, in a new window, try
I = —1,-0.5, and —=0.3. What happens as 1 — 0'? As h —07?

What phenomenon is being illustrated here?
Centered difference quotients  The centered difference guotient

flx+h) = fix—=h
2h

is used to approximate f'(x) in numerical work because (1) its
limit as i — 0 equals f'(x) when f'(x) exists, and (2) it usually
gives a better approximation of f'(x) for a given value of & than
the difference quotient

fx + h) = f(x)
h '

Sce the accompanying figure.

¥

Slope = f'(x)

x+h) - flx
SIum:f(\ v,: f(x)

Sty = f=h

2h

Y
Z

¥y =4

h h

+————

h

-

a. To see how rapidly the centered difference quotient for
f(x) = sinx converges to f'(x) = cos x, graph y = cos x
together with

sin(x + h) = sin(x — h)
2h

over the interval [—ar, 27 ] for it = 1, 0.5, and 0.3. Com-
pare the results with those obtained in Exercise 63 for the
same values of /1.

b. To see how rapidly the centered difference quotient for
f(x) = cos.x converges to f'(x) = —sin.x, graph y = —sinx
together with

cos(x + h) = cos(x = )
2h

over the interval [—ar, 27 ] forh = 1,0.5, and 0.3, Compare
the results with those obtained in Exercise 64 for the same
values of h.

(T]67

(T]70

A caution about centered difference quotients  (Continuation

of Exercise 65.) The quotient
fx+m—=fx—=1"m

2h

may have a limit as &/ — 0 when f has no derivative at x. As a
case in point, take f(x) = |x| and calculate
[0+ 4] - |0 - 4]
m ————————
2h

h==0

As you will see, the limit exists even though f(x) = |x| has no
derivative at x = (. Moral: Before using a centered difference
quotient, be sure the derivative exists,

Slopes on the graph of the tangent function  Graph y = tn x
and its derivative together on (= /2, 7 /2). Does the graph of the
tangent function appear to have a smallest slope? A largest slope?
Is the slope ever negative? Give reasons for your answers.

Slopes on the graph of the cotangent function  Graph y = cot .x
and its derivative together for 0 < x < 7. Does the graph of the
cotangent function appear to have a smallest slope? A largest
slope? Is the slope ever positive? Give reasons for your answers.
Exploring (sin kx)/x Graph y = (sin x)/x, ¥ = (sin 2x)/x, and
y = (sin4x)/x together over the interval =2 = x = 2, Where
does cach graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of

y = (sin 5x)/x and y = (sin(=3x))/x to do as x—0? Why?
What about the graph of y = (sin kv)/x for other values of k?
Give reasons for your answers,

Radians versus degrees: degree mode derivatives  What hap-
pens to the derivatives of sin x and cos x if x is measured in
degrees instead of radians? To find out, take the following steps.
a. With your graphing calculator or computer grapher in degree

mode, graph

= sinh
fthy = 3

and estimate lim,_q f(/1). Compare your estimate with
7/ 180. Is there any reason to believe the limit should be
/1807

With your grapher still in degree mode, estimate

., cosh — 1
lim —————.
=0 h

c. Now go back to the derivation of the formula for the deriva-
tive of sin.x in the text and carry out the steps of the deriva-
tion using degree-mode limits. What formula do you obtain
for the derivative?

Work through the derivation of the formula for the derivative
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. Try
it. What are the second and third degree-mode derivatives of
sin x and cos x?

C.
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C:ytuns B:uturns A:xtums

FIGURE 3.25 When gear A makes
x turns, gear B makes u turns and gear
C makes y turns. By comparing cir-
cumferences or counting teeth, we see
that y = «/2 (C turns one-half tum
for each B turn) and « = 3x (B turns

three times for A’s one), so y = 3x/2.

Thus, dy/dx = 3/2 = (1/2)3) =
(dy /du)(du/dx).

How do we differentiate F(x) = sin(x? — 4)? This function is the composite f ° g of two
functions y = f(u) = sinu and u = g(x) = x> — 4 that we know how to differentiate.
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of f and g. We develop the rule in this section.

Derivative of a Composite Function

The function y = -;—.\' = ;—(3.\') is the composite of the functions y = %u and 1 = 3x.
We have
dy 3 dy | du
-2 = 2 and 5—3.
. 3 1 ..
Since ) = 2 3, we see in this case that
dx ~ du dx’

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If y = f(u) changes half as fast as « and « = g(x) changes three
times as fast as x, then we expect y to change 3/2 times as fast as x. This effect is much
like that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1

The function

y = (32 + 1)?
is the composite of y = f(u) = 1% and u = g(x) = 3x* + 1. Calculating derivatives, we
see that

dy du
—.au _ 5 .6y
du'dx — " o

=232+ 1):6x
= 36x% + 12x.

Substitute for i

Calculating the derivative from the expanded formula (3x2 + 1)2 = 9x* + 62 + 1 gives
the same result:

y _d o4 2
i Z‘-_(g.\ + 622 + 1)
= 36x% + 12x O

The derivative of the composite function f(g(x)) at x is the derivative of f at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.26).

Composite f - g

Rate of change at
xis f(g(x) - g'(x).

8 —
= - =

Rate of ch:mgz; e :’ Rate of change \
at x is g'(x). - at g(x) is f'(g(x)). ——
x u = g(x) ¥ = fan) = f(gx)

FIGURE 3.26 Rates of change multiply: The derivative of f o g at xis the
derivative of f at g(x) times the derivative of g at x,
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differentiable at x, and
(o)) = f'(g(x)g'(x).
In Leibniz's notation, if y = f(u) and u = g(x), then

dy _ dy L du

Ay du dx’

where dy/du is evaluated at 1 = g(x).

THEOREM 2—The Chain Rule If f(x) is differentiable at the point # = g(x)
and g(x) is differentiable at x, then the composite function (f ¢ g)(x) = f(g(x)) is

A Proof of One Case of the Chain Rule:
Let Aw be the change in « when x changes by Ax, so that
Au = gx + Ax) — g(v).
Then the corresponding change in y is
Ay = f(u + Au) — f(u).

If Au # 0, we can write the fraction Ay/Ax as the product

Ay _ Ay Au
Ax  Au Ax
and take the limit as Ax — (:
dy _ o Ay
dv = aoAx
Aa—0An Ax

= |lim ﬁ lim Au
A—0An Av—0Ax

Ay Au (Note that A —= 0 as A
= .\I.ET()AM ) _\I.IE.‘" Ax SIICE @ 1S continuous, )
du dx’

=0

n

The problem with this argument is that if the function g(x) oscillates rapidly near x, then
Au can be zero even when Ax # 0, so the cancelation of Aw in Equation (1) would be
invalid. A complete proof requires a different approach that avoids this problem, and we

give one such proof in Section 3.11.

EXAMPLE 2  An object moves along the x-axis so that its position at any time 1 = 0

is given by x(1) = cos(r> + 1). Find the velocity of the object as a function of 1,

Solution  We know that the velocity is dx/dr. In this instance, x is a composite function:

x = cos(u) and « = 1* + 1. We have

dx
du

—h‘il‘l(ll) voocostul

I :
!(_ll- = 21, u=1r+1



Ways to Write the Chain Rule
(foR)' () = f(glx)-g'(x)

dy dy gy
dx  du dx

ﬂ — ’ R [
i f@g)g'x)

d ,, od
mf(u) =f (u)jt£

3.6 The Chain Rule

By the Chain Rule,

d _ dv du
dt  du dt
= —gin(u) 2t ‘[—'\L‘\';\luulml at u

du
—sin(? + 1)+ 2t

=2tsin(2 + 1)

“Outside-Inside” Rule

165

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about

the Chain Rule using functional notation. If y = f(g(x)), then

dy
P f'(g(x) - g'(x).

In words, differentiate the “outside™ function f and evaluate it at the “inside” function g(x)

left alone; then multiply by the derivative of the *“inside function.”

EXAMPLE 3 Differentiate sin (x> + ¢*) with respect to x.
Solution We apply the Chain Rule directly and find

‘;—[‘_sin(.\l + ') = cos(x? + €*) * (2x + &').

—— ——— ——
imside inside derivative of
left alone the inside

EXAMPLE 4 Differentiate y = %,

Solution Here the inside function is « = g(x) = cos x and the outside function is the

exponential function f(x) = ¢'. Applying the Chain Rule, we get
[1"‘ — d COs X — C0s X d o)  — Os X M o) =— COS X 3
= d.\‘(e ) =¢ d_\_(cos X) = Y (—sinx) = —e**'sinx.

Generalizing Example 4, we see that the Chain Rule gives the formula

d . _ udu
P —e‘dt.

For example,
4 () = k- d (kx) = ke for any constant k
dx dx !

and

i_(e‘l) = e‘:-%(.\") = 2xe'.

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.
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EXAMPLE 5 Find the derivative of g(1) = tan(5 — sin 2¢).

HISTORICAL BIOGRAPHY

Johann Bernoulli Solution Notice here that the tangent is a function of 5 — sin 2¢, whereas the sine is a
(1667-1748) function of 2¢, which is itself a function of . Therefore, by the Chain Rule,

' d .
g'() = 5 (tan(5 — sin 2r))
dt
s . d . Dervative of tan u with
= sec(S — sin 21)-(1—'(5 — sin 21) i =8 sl 0y

Derivative of 5 s

= sec?(5 — sin 21+ (0 - cos 2t %(2’)) withu — 2

= sec(5 — sin 2r)* (—cos 2r)* 2
= =2(cos 21 sec?(5 — sin 20). O

The Chain Rule with Powers of a Function

If f is a differentiable function of « and if « is a differentiable function of x, then substitut-
ing y = f(«) into the Chain Rule formula

dy _ dy du
dv ~ du dx

leads to the formula

du
dx’

(;—if(ll) = f'(w)

If  is any real number and f is a power function, f(u) = ", the Power Rule tells us
that f'(u) = m"~ U If u is a differentiable function of x, then we can use the Chain Rule to
extend this to the Power Chain Rule:

—1du /
" '7. e

d o _
dx (‘() = ix du

EXAMPLE 6  The Power Chain Rule simplifies computing the derivative of a power
of an expression,
i 3 AV 34 ﬁi T4 |'n\\‘u{ (I'Inun Rule W,I,th
(a) ‘IX(S.\ )7 = 7(5x° = 1Y) dx(S.r xY) e o= ik n i
= 7(5x" — x)O(5: 30 — 4Y)
= 7(5x% — x*)0(15x2 — 4x?)

d( 1 )_dn oy
. ﬁ(lx - 2) = G-

=13 = ‘,)_2‘_]'(3‘. -2 |'ll\\'\‘;('ll;|l:l Rule with
A o = G <

=-103x - 2)%3)

_ 3

T Bx -2y

In part (b) we could also find the derivative with the Derivative Quotient Rule.

d .5 cad o Power Cham Rule with e siny, 0 5,
¢) 5-(sinx) = Ssin"x:o-sinx
© dx ( ) dx

because sin® v means (sin ), n 15,

= Ssin*xcosx
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Derivative of the
Absolute Value Function

‘h(| == x#0

I s

_{ I, x>0
-1, ox<0
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3.6 The Chain Rule 167

(d ‘;_.l\-(c\/']l_+l) = g\/m'%( V3x + 1)

~

eVt ':l,'(l\‘ + 1)y1/2.3 Power Chain Rule with v = v+ lyn = 12

pu—
S Y, ey -

2V3ax + 1

EXAMPLE 7  In Section 3.2, we saw that the absolute value function y = |x| is not
differentiable at x = (). However, the function is differentiable at all other real numbers,
as we now show. Since x| = V2, we can derive the following formula:

d.\(l‘|)_ \/—

dx

1 d - Power Cham Rule with

2\/“‘_3'&("”) u=sn=1/28 40

EXAMPLE 8  Show that the slope of every line tangent to the curve y = 1 /(1 — 2x)}
is positive,

Solution We find the derivative:

dy

d m(' - 207

d
—3(1 - 1“)_" . li._l. (l - x) PPower Chain Rule with v = (1 PRV i

=31 - 2974 (-2)

6

(1= 20"

At any point (x, y) on the curve, the coordinate x is not 1/2 and the slope of the tangent
line is

dy _ 6
de T (1 - 20"

which is the quotient of two positive numbers. |

EXAMPLE 9  The formulas for the derivatives of both sin x and cos x were obtained
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us
new insight into the difference between the two. Since 180° = 7 radians, x° = mx/180
radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

d _d T X
Tsm(\ ) = {T““(lso) 180““([80) (.0\(\ ).

Sce Figure 3.27. Similarly, the derivative of cos (x°) is —(7r/180)sin (x°).
The factor /180 would compound with repeated differentiation, showing an advan-
tage for the use of radian measure in computations. |

= sin(x") = sin —
¥ = sin(x”) sm“m

y= sinx

FIGURE 3.27 The function sin(x°) oscillates only /180 times as often as sinx
oscillates. Its maximum slope is /180 at x = 0 (Example 9).



194

dy

e

wheny = 61t
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dv
dt

=9 [t%min

FIGURE 3.44 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1),

Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an
instant of time, then

k)

V=xsmr.

W

Using the Chain Rule, we differentiate both sides with respect to ¢ to find an equation
relating the rates of change of V and r,

dV _ dVdr _ "_'_zd__r
dt dr dt dt

So if we know the radius r of the balloon and the rate dV/dr at which the volume is
increasing at a given instant of time, then we can solve this last equation for dr/dr to find
how fast the radius is increasing at that instant. Note that it is easier to directly measure the
rate of increase of the volume (the rate at which air is being pumped into the balloon) than
it is to measure the increase in the radius, The related rates equation allows us to calculate
dr/dt from dV/dt.

Very often the key to relating the variables in a related rates problem is drawing a picture
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1 Water runs into a conical tank at the rate of 9 {t*/min. The tank stands
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level
rising when the water is 6 ft deep?

Solution  Figure 3.44 shows a partially filled conical tank. The variables in the problem are

V = volume (ft*) of the water in the tank at time ¢ (min)
x = radius (ft) of the surface of the water at time ¢
y = depth (11) of the water in the tank at time ¢,

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We arc asked for dy/dt when

and %/ = 9 ft*/min.

y =061l

The water forms a cone with volume
1,

V = zmxiy.

3Ty

This equation involves x as well as V and y. Because no information is given about x and
dx/dr at the time in question, we need to climinate x. The similar triangles in Figure 3.44
give us a way (o express v in terms of y:

Therefore, we find

to give the derivative



Balloon @

‘% =0.14 rad/min
whent = /4 _‘ﬂ =9
o | dt
whentd = /4
Range
finder 1SO0m

FIGURE 3.45 The rate of change of the
balloon's height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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Finally, use y = 6 and dV/dt = 9 to solve for dy/dt.

dy
=T 62 =
9= 7 (6)° ar
. 0.32
lb - 7 - .t
At the moment in question, the water level is rising at about 0.32 ft/min. =]

Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume
that all variables are differentiable functions of 1.

2. Write down the numerical information (in terms of the symbols you have chosen).
3. Write down what you are asked to find (usually a rate, expressed as a derivative).
4. Write an equation that relates the variables. You may have to combine two

or more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to 1. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluare. Use known values to find the unknown rate.

EXAMPLE 2 A hot air balloon rising straight up from a level field is tracked by a
range finder 150 m from the liftoff point. At the moment the range finder's elevation angle
is /4, the angle is increasing at the rate of 0.14 rad / min. How fast is the balloon rising at
that moment?
Solution We answer the question in the six strategy steps.
1. Draw a picture and name the variables and constants (Figure 3.45). The variables in
the picture are
0 = the angle in radians the range finder makes with the ground.
y = the height in meters of the balloon above the ground.

We let ¢ represent time in minutes and assume that 6 and y are differentiable functions of r.
The one constant in the picture is the distance from the range finder to the liftoff point
(150 m). There is no need to give it a special symbol.

2, Write down the additional numerical information.

do A _ T
o 0.14 rad /min when 0= 3

3. Write down what we are to find. We want dy/dt when 0 = /4.
4. Write an equation that relates the variables y and 0.

X = D
150 = tan 0 or y = 150tan 0
5. Differentiate with respect to t using the Chain Rule. The result tells how dy /dt (which
we want) is related to d@/dr (which we know).
dy

- 240
a - 150 (sec 0)d,

6. Evaluate with 0 = 7 /4 and d0/dt = 0.14 to find dy/d1.
dy =
ﬁ = 150( V2)0.14) = 42 o

At the moment in question, the balloon is rising at the rate of 42 m/min. o
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Situation when
=08,y =06

FIGURE 3.46 The speed of the caris
related to the speed of the police cruiser
and the rate of change of the distance s
between them (Example 3).

¥

U

FIGURE 3.47 The particle P
travels clockwise along the circle
(Example 4).

EXAMPLE 3 A police cruiser, approaching a right-angled intersection from the north,
is chasing a speeding car that has tumed the comer and is now moving straight east. When
the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.46).
We let 1 represent time and set

x = position of car at time ¢
¥ = position of cruiser at time ¢

s = distance between car and cruiser at time 1.

We assume that x, v, and s are differentiable functions of 1.
We want to find dx/dr when

x = 0.8 mi, y = 0.6 mi, == = —60 mph, = = 20 mph.

Note that dy/dr is negative because y is decreasing.
We differentiate the distance equation between the car and the cruiser,
s=x+)
(we could also use s = Vx* + »?), and obtain

ds dx dy
—_= Vy — Dy —
Bp=Tgat¥g

ds _ 1 de  d
d s\Ya T ¥

=l ode, Y
Vet a\la " Yar)

0.6, dv/dr = —60, ds/dr = 20, and solve for dx/dl.

Finally, we use x = 0.8,y

1 ( dx
20 = ———=| 085, + (0.6)(—60))
V(0.8) + (0.6)°\ 4
de _ 20V(0.8)° + (0.6)° + (0.6X60) _ 7
dr 038 N
At the moment in question, the car’s speed is 70 mph. a

EXAMPLE 4 A particle P moves clockwise at a constant rate along a circle of radius
10 m centered at the origin. The particle’s initial position is (0, 10) on the y-axis, and its
final destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tan-
gent line at P intersects the x-axis at a point Q (which moves over time). If it takes the
particle 30 sec to travel from start to finish, how fast is the point Q moving along the x-axis
when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the
origin (see Figure 3.47). We let 1 represent time and let 6 denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in
30 sec, it is traveling along the circle at a constant rate of 7 /2 radians in 1/2 min, or
o rad/min. In other words, df/dr = —ar, with 1 being measured in minutes. The negative
sign appears because @ is decreasing over time.



12,000

FIGURE 3.48 Jet airliner A
traveling at constant altitude
toward radar station R
(Example 5).
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Setting x(1) to be the distance at time ¢ from the point Q to the origin, we want to find
dx/dt when

do

r = 9
r=20m and &

= —q rad/min.
To relate the variables x and 0, we see from Figure 3.47 that xcos 0 = 10, or
x = 10 sec 0. Differentiation of this last equation gives
dx _ do _ )
0 lO\cc0mn0dl— 107 sec 0 tan 0.
Note that dx/dt is negative because x is decreasing (Q is moving toward the ornigin).
When x = 20,cos0 = 1/2 and sec @ = 2. Also, tan 0 = Vsec?0 — | = V3. It
follows that

L = —10m2)( V3) = 20V
At the moment in question, the point Q is moving toward the origin at the speed of
20V37 = 109 m/min. O

EXAMPLE 5 A jetairliner is flying at a constant altitude of 12,000 ft above sea level
as it approaches a Pacific island. The aircraft comes within the direct line of sight of a
radar station located on the island, and the radar indicates the initial angle between sea
level and its line of sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft
approaching the island when first detected by the radar instrument if it is turning upward
(counterclockwise) at the rate of 2/3 deg/sec in order to keep the aircraft within its direct
line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using
the positive x-axis as the horizontal distance at sea level from R to A, and the positive

y-axis as the vertical altitude above sea level. We let ¢ represent time and observe that

y = 12,000 is a constant. The general situation and line-of-sight angle @ are depicted in
Figure 3.48. We want to find dx/dr when @ = /6 rad and d0/dr = 2/3 deg/sec.
From Figure 3.48, we see that

12.000
~ = tan@ or x = 12,000 cot 6.

Using miles instead of feet for our distance units, the last equation translates to

12,000

X = 5520 cot 0.
Differentiation with respect to 1 gives

dr _ 1200 ., do
- T e % ar

When 0 = 7/6,sin> @ = 1/4, so csc® 0 = 4. Converting df/dr = 2/3 deg/sec to radi-
ans per hour, we find

dg 2 (36m)ﬁld/hf | hr 3600 sec. | deg x 180 rad
dr 3 180 Lhr = 3600 scc. 1 deg = 7 180 rad

Substitution into the equation for dx/dr then gives

drx _ (_1200 B
de - (- 1200)(2) 125 )00 = 350

The negative sign appears because the distance x is decreasing, so the aircraft is approach-
ing the island at a speed of approximately 380 mi/hr when first detected by the radar. W
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(a)

0 Il"

X
|

(b)

FIGURE 3.49 A worker at M
walks to the right, pulling the
weight W upward as the rope
moves through the pulley P
(Example 6).

EXAMPLE 6  Figure 3.49a shows a rope running through a pulley at P and bearing a
weight W at one end. The other end is held 5 ft above the ground in the hand M of
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker
is walking rapidly away from the vertical line PW at the rate of 4 ft/sec. How fast is the
weight being raised when the worker’s hand is 21 ft away from PW?

Solution We let OM be the horizontal line of length x ft from a point O directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let /i be the height
of the weight W above O, and let z denote the length of rope from the pulley P 1o the
worker's hand. We want to know dh/dr when x = 21 given that dx/dr = 4. Note that the
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is aright angle.
At any instant of time r we have the following relationships (see Figure 3.49b):
20— h+z2=45 Total length of rope v 45 1t
202 + 2 = 22, \ngle &t O 1 a nght angle
If we solve for z = 25 + h in the first equation, and substitute into the second equation,
we have
20° + x* = (25 + h)* (nH
Differentiating both sides with respect to 7 gives
dx dh
e =202 an
20 225 + h) ar
and solving this last equation for dh/dt we find

dh _ x__dx )
dt 25 + hdr =

Since we know dx/dt, it remains only to find 25 + & at the instant when x = 21. From
Equation (1),

20 + 212 = (25 + h)?

so that
(25 + h)? = 841, or 25 + h = 29.
Equation (2) now gives

dh _21 ., _ %4 _ ,
= 29 4—29 2.9 ft/sec

as the rate at which the weight is being raised when x = 21 ft. O



Applications of
Derivatives

OVERVIEW Onec of the most important applications of the derivative is its use as a tool for
finding the optimal (best) solutions to problems. Optimization problems abound in math-
ematics, physical science and engineering, business and economics, and biology and
medicine. For example, what are the height and diameter of the cylinder of largest volume
that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-
lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-
duction costs and sales revenue, how many items should a manufacturer produce to maxi-
mize profit? How much does the trachea (windpipe) contract to expel air at the maximum
speed during a cough? What is the branching angle at which blood vessels minimize the
energy loss due to friction as blood flows through the branches?

In this chapter we use derivatives to find extreme values of functions, to determine
and analyze the shapes of graphs, and to solve equations numerically. We also introduce
the idea of recovering a function from its derivative. The key to many of these applications
is the Mean Value Theorem, which paves the way to integral calculus.

4. 1 Extreme Values of Functions

¥ =sinx
¥ =cosx

|
1908
1913

FIGURE 4.1 Absolute extrema

for the sine and cosine functions on
[=m/2, w/2]. These values can depend
on the domain of a function.

This section shows how to locate and identify extreme (maximum or minimum) values of
a function from its derivative. Once we can do this, we can solve a variety of optimization
problems (see Section 4.6). The domains of the functions we consider are intervals or
unions of separate intervals.

DEFINITIONS Let f be a function with domain D. Then f has an absolute
maximum value on D at a point ¢ if

fx) = f(o) forallxin D
and an absolute minimum value on D at ¢ if

f(x) = f(o) for all x in D.

Maximum and minimum values are called extreme values of the function f. Absolute
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval [~ /2, 7 /2] the function f(x) = cos x takes on
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On
the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of —1 (Figure 4.1).

Functions with the same defining rule or formula can have different extrema (maximum
or minimum values), depending on the domain. We see this in the following example.

223
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EXAMPLE 1 The absolute extrema of the following functions on their domains can
be seen in Figure 4.2. Each function has the same defining equation, y = x*, but the
domains vary. Notice that a function might not have a maximum or minimum if the
domain is unbounded or fails to contain an endpoint.

Function rule Domain D Absolute extrema on D
(a) y = x (—00, 00) No absolute maximum
Absolute minimumofQat x = 0
(b) y=2x* [(0,2] Absolute maximum of 4 at x = 2
Absolute minimumof Qat x = 0
© y=2x* 0,2] Absolute maximum of 4 at x = 2
No absolute minimum
d) y=x* 0,2) No absolute extrema
[ ]
ymad oy yma2? y=2t y
D = (==, =) D = (0,2) D = (0,2)
> " ! | Rk '
(a) abs min only (b) abs max and min (c) abs max only (d) no max or min

FIGURE 4.2 Graphs for Example 1.

{ISTORICAL BIOGRAPHY

F

Danlel Bernoulli
(1700-1789)

Some of the functions in Example 1 did not have a maximum or a minimum value.
The following theorem asserts that a function which is continuous over (or on) a finite
closed interval [a, b] has an absolute maximum and an absolute minimum value on the
interval. We look for these extreme values when we graph a function.

THEOREM 1—The Extreme Value Theorem If f is continuous on a closed
interval [a, b], then f attains both an absolute maximum value M and an abso-
lute minimum value m in [a, b]. That is, there are numbers x, and x, in [a, b]
with f(x;) = m, f(x;) = M,and m = f(x) = M for every other xin [a, b].

The proof of the Extreme Value Theorem requires a detailed knowledge of the real
number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval [a. b].
As we observed for the function y = cosx, it is possible that an absolute minimum (or
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the
function be continuous, are key ingredients. Without them, the conclusion of the theorem



No largest value
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Smallest value

FIGURE 4.4 Even a single point of dis-
continuity can keep a function from having
either 4 maximum or minimum value on a
closed interval. The function

{.\'. 0=x<1

Y o, x=1

is continuous at every point of [0, 1]
except x = 1, yetits graph over [0, 1]
does not have a highest point.
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4.1 Extreme Values of Functions
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Maximum and minimum

at endpoints
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Maximum and minimum
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] iy S ..

Minimum at interior point,
maximum at endpoint

FIGURE 4.3 Somec possibilities for a continuous function's maximum and
minimum on a closed interval (a, b].

need not hold. Example | shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. The exponential function y = e* over (=00, 00)
shows that ncither extreme value need exist on an infinite interval. Figure 4.4 shows that
the continuity requirement cannot be omitted.

Local (Relative) Extreme Values

Figure 4.5 shows a graph with five points where a function has extreme values on its
domain [a, b]. The function’s absolute minimum occurs at « even though at e the func-
tion's value is smaller than at any other point nearby. The curve rises to the left and falls to
the right around ¢, making f(c) a maximum locally. The function attains its absolute
maximum at d. We now define what we mean by local extrema.

DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(c) for all x € D lying in some open interval containing c.

A function f has a local minimum value at a point ¢ within its domain D if
f(x) = f(c) for all x € D lying in some open interval containing c.

If the domain of f is the closed interval [a, b ]. then f has a local maximum at the endpoint
x = a, if f(x) = f(a) for all x in some half-open interval [a.a + 8),8 > 0. Likewise, f
has a local maximum at an interior point x = c if f(x) = f(c) for all x in some open inter-
val (c — 8,¢ + 8), 8 > 0, and a local maximum at the endpoint x = b if f(x) = f(b) for
all x in some half-open interval (b — 8,b],8 > 0. The inequalities are reversed for local
minimum values. In Figure 4.5, the function f has local maxima at ¢ and 4 and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can
have infinitely many local extrema, even over a finite interval. One example is the function
J(x) = sin (1/x) on the interval (0, 1 ] (We graphed this function in Figure 2.40.)
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Local maximum value

¥ =f(x)
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Secant slopes = 0
(never negative)
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Secant slopes = 0
(never positive)
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FIGURE 4.6 A curve with a local
maximum value. The slope at ¢, simultane-
ously the limit of nonpositive numbers and
nonnegative numbers, is zero,
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Absolute maximum

No greater value of fanywhere.
Local maximum Also a local maximum.
No greater value of

Jimessty Local minimum
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No smaller value of H ; Local minimum :
J anywhere. Alsoa l 1 No smaller valuc of 1
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1 '} 1 I L X
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FIGURE 4.5 How 1o identify types of maxima and minima for a function with domain
a=x=bh.

An absolute maximum is also a local maximum. Being the largest value overall, it is
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will
automatically include the absolute maximum if there is one. Similarly, a list of all local
minima will include the absolute minimum if there is one.

Finding Extrema

The next theorem explains why we usually need to investigate only a few values to find a
function’s extrema.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If
f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f' is defined at ¢, then

f'(c) = 0.

Proof To prove that f'(¢) is zero at a local extremum, we show first that f*(¢) cannot
be positive and second that f’(c) cannot be negative. The only number that is neither posi-
tive nor negative is zero, so that is what f'(c) must be.

To begin, suppose that f has a local maximum value at x = ¢ (Figure 4.6) so that
f(x) = f(c) = 0 for all values of x ncar cnough to ¢. Since ¢ is an interior point of f's
domain, f'(c) is defined by the two-sided limit

limf(-f) = f(c)

1 xX-=rc ’
This means that the right-hand and left-hand limits both exist at x = ¢ and equal f'(c).
When we examine these limits separately, we find that

J(x) = f(o)

f'(c) = "]Ln:‘—x'_—c—' = 0. Because (v <) = 0 and f(u = fio) (1)
Similarly,
!'(C) = lli.r?_!("—:+{(c)' = 0. Because (4 o) Oand f(x) = f() (2)

Together, Equations (1) and (2) imply f'(c) = 0.

This proves the theorem for local maximum values. To prove it for local minimum
values, we simply use f(x) = f(c), which reverses the inequalities in Equations (1)
and (2). |
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FIGURE 4.7 Critical points without

extreme values. (a) ¥ = 3x7isOat x = 0,

but y = x* has no extremum there.
(b) » = (1/3)x"* is undefined at x = 0,
but y = x'* has no extremum there.
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Theorem 2 says that a function’s first derivative is always zero at an interior point
where the function has a local extreme value and the derivative is defined. If we recall that
all the domains we consider are intervals or unions of separate intervals, the only places
where a function f can possibly have an extreme value (local or global) are

1. interior points where f* = 0, Att = cand x = ¢ inFig. 45
2. interior points where f’ is undefined, Aty = dmmFig 45
3. endpoints of the domain of f. Aty - aandy = binFig 45

The following definition helps us to summarize these results.

DEFINITION An interior point of the domain of a function f where f’ is zero
or undefined is a critical point of f.

Thus the only domain points where a function can assume extreme values are critical
points and endpoints. However, be careful not to misinterpret what is being said here. A
function may have a critical point at x = ¢ without having a local extreme value there. For
instance, both of the functions y = x*and y = x'/* have critical points at the origin, but
neither function has a local extreme value at the origin. Instead, each function has a point
of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.
Most problems that ask for extreme values call for finding the absolute extrema of a
continuous function on a closed and finite interval. Theorem 1 assures us that such values
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often
we can simply list these points and calculate the corresponding function values to find
what the largest and smallest values are, and where they are located. Of course, if the
interval is not closed or not finite (suchas a < x < bora < x < 00), we have seen that
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it
must occur at a critical point or at an included right- or left-hand endpoint of the interval.

How to Find the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Evaluate f at all critical points and endpoints.
2. Take the largest and smallest of these values.

EXAMPLE 2 Find the absolute maximum and minimum values of f(x) = x* on

(-2.1).

Solution The function is differentiable over its entire domain, so the only critical point
is where f'(x) = 2x = 0, namely x = 0. We nced to check the function’s values at x = 0
and at the endpoints x = =2 and x = 1:

Critical point value: f(0)=0

Endpoint values: f=2)=4
f(h =1
The function has an absolute maximum value of 4 at x = —2 and an absolute minimum
valueof Qat x = 0. a

EXAMPLE 3 Find the absolute maximum and minimum values of f(x) =
10x(2 = Inx) on the interval [ 1, €*].
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FIGURE 4.10 Rolle’s Theorem says
that a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).

: HISTORICAL BIOGRAPHY
| Michel Rolle
(1652-1719)

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in
this chapter by applying the Mean Value Theorem. First we introduce a special case,
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle's Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

THEOREM 3—Rolle's Theorem Suppose that y = f(x) is continuous over
the closed interval [a, b] and differentiable at every point of its interior (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) at which f'(c) = 0.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a, b] by Theorem 1. These can occur only

1. atinterior points where f’ is zero,
2. atinterior points where f’ does not exist,

3. at endpoints of the function’s domain, in this case a and b.

By hypothesis, f has a derivative at every interior point. That rules out possibility (2),
leaving us with interior points where f° = 0 and with the two endpoints @ and b.

If either the maximum or the minimum occurs at a point ¢ between a and b, then
f'(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then
because f(a) = f(b) it must be the case that f is aconstant function with f(x) = f(a) = f(b)
for every x € [a, b]. Therefore f'(x) = 0 and the point ¢ can be taken anywhere in the
interior (a, b). n

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show
when there is only one real solution of an equation f(x) = 0, as we illustrate in the next
example.

EXAMPLE 1 Show that the equation
C+3x+1=0

has exactly one real solution.
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FIGURE 4.12 The only real zero of the
polynomial y = x* + 3x + | is the one
shown here where the curve crosses the
x-axis between — 1 and 0 (Example 1).
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FIGURE 4.13 Geometrically, the Mean
Value Theorem says that somewhere
between a and b the curve has at least one
tangent parallel to the secant joining A and B.
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(1736-1813)
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FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.

Solution We define the continuous function
fx) =x* + 3x + 1.

Since f(—1) = =3 and f(0) = 1, the Intermediate Value Theorem tells us that the graph
of f crosses the x-axis somewhere in the open interval (— 1, 0). (See Figure 4.12.) Now, if
there were even two points x = @ and x = b where f(x) was zero, Rolle's Theorem
would guarantee the existence of a point x = ¢ in between them where f* was zero. How-
ever, the derivative

') =3+3

is never zero (because it is always positive). Therefore, f has no more than one zero. W

Our main use of Rolle’s Theorem is in proving the Mean Value Theorem.

The Mean Value Theorem

The Mean Value Theorem, which was first stated by Joseph-Louis Lagrange, is a slanted
version of Rolle’s Theorem (Figure 4.13). The Mean Value Theorem guarantees that there
is a point where the tangent line is parallel to the secant joining A and B.

THEOREM 4—The Mean Value Theorem Suppose ¥ = f(x) is continuous
over a closed interval [a, b] and differentiable on the interval's interior (a, b).
Then there is at least one point ¢ in (a. b) at which

(b) - f(a)
19 o M

Proof We picture the graph of f and draw a line through the points A(a, f(a)) and
B(b, f(b)). (See Figure 4.14.) The secant line is the graph of the function

b_
ﬂ’_fmu—a) @

80 = f(a) + —

(point-slope equation). The vertical difference between the graphs of f and g atx is
h(x) = f(x) — g(x)

b —
ﬂ)—f")(x - a). 3)

= f) = fla) = ==

Figure 4.15 shows the graphs of f, g, and / together.
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OVERVIEW A great achievement of classical geometry was obtaining formulas for the
areas and volumes of triangles, spheres, and cones. In this chapter we develop a method to
calculate the areas and volumes of very general shapes. This method, called integration, is
a way to calculate much more than areas and volumes. The definire integral is the key tool
in calculus for defining and calculating many important quantities, such as areas, volumes,
lengths of curved paths, probabilitics, averages, energy consumption, the weights of vari-
ous objects, and the forces against a dam’s floodgates, just to mention a few. Many of
these applications are studied in subsequent chapters.

As with the derivative, the definite integral also arises as a limit, this time of increas-
ingly fine approximations to the quantity of interest. The idea behind the integral is that
we can effectively compute such quantities by breaking them into small pieces, and then
summing the contributions from each piece. We then consider what happens when more
and more, smaller and smaller pieces are taken in the summation process. As the number
of terms contributing to the sum approaches infinity and we take the limit of these sums in
a way described in Section 5.3, the result is a definite integral. By considering the rate of
change of the area under a graph, we prove that definite integrals are connected to anti-
derivatives, a connection that gives one of the most important relationships in calculus.

5. ]. Area and Estimating with Finite Sums

0.5

0 0.5 |

FIGURE 5.1 The arca of the
region R cannot be found by a simple
formula.

The basis for formulating definite integrals is the construction of appropriate approxima-
tions by finite sums. In this section we consider three examples of this construction pro-
cess: finding the area under a graph, the distance traveled by a moving object, and the
average value of a function. Although we need to define precisely what we mean by the
area of a general region in the plane, or the average value of a function over a closed inter-
val, we do have intuitive ideas of what these notions mean. So in this section we begin our
approach to integration by approximating these quantities with finite sums. We also con-
sider what happens when we take more and more terms in the summation process. In sub-
sequent sections we look at taking the limit of these sums as the number of terms goes to
infinity, which then leads to precise definitions of the quantities being approximated here.

Area

Suppose we want to find the arca of the shaded region R that lies above the x-axis, below
the graph of y = 1 — x*, and between the vertical lines x = 0 and x = 1 (Figure 5.1).
Unfortunately, there is no simple geometric formula for calculating the areas of general
shapes having curved boundaries like the region R. How, then, can we find the area of R?
While we do not yet have a method for determining the exact area of R, we can
approximate it in a simple way. Figure 5.2a shows two rectangles that together contain the

299
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y .
y=1-x e
ey don gy v=1-a
L) )
¢
= R
0 3 ! ! ol 025 05 075 1 x

(a) (b)

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two rectangles
containing R. (b) Four rectangles give a better upper estimate. Both estimates overshoot
the true value for the area by the amount shaded in light red.

region R. Each rectangle has width 1/2 and they have heights 1 and 3 /4, moving from left
to right. The height of each rectangle is the maximum value of the function f in each sub-
interval. Because the function f is decreasing, the height is its value at the left endpoint of
the subinterval of [0, 1] forming the base of the rectangle. The total area of the two rect-
angles approximates the arca A of the region R,

3

a~1-3+3.1-T-ogs

This estimate is larger than the true area A since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of f(x) for a point x in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 1/4,
which taken together contain the region R. These four rectangles give the approximation

1 15 1 .3 1.7 .1_25_
A = |'4 +E'4+4'4+ l6'3—32—0.78]25.
which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the area,
as in Figure 5.3a. Each rectangle has width 1/4 as before, but the rectangles are shorter and
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FIGURE 5.3 (a) Rectangles contained in R give an estimate for the arca that under-
shoots the true value by the amount shaded in light blue. (b) The midpoint rule uses rect-
angles whose height is the value of y = f(x) at the midpoints of their bases. The estimate
appears closer to the true value of the area because the light red overshoot areas roughly
balance the light blue undershoot areas.
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FIGURE 5.4 (a) A lower sum using

16 rectangles of equal width Ax = 1/16.

(b) An upper sum using 16 rectangles.
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lie entirely beneath the graph of f. The function f(x) = 1 — X is decreasing on [0, 1],
so the height of each of these rectangles is given by the value of f at the right endpoint of the
subinterval forming its base. The fourth rectangle has zero height and therefore contributes
no area. Summing these rectangles with heights equal to the minimum value of f(x) for a
point x in each base subinterval gives a lower sum approximation to the area,

1 1_17

-3+ 0+ 7 =35 =053125.

7
A~16" 163 13

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:

0.53125 < A < 0.78125.

By considering both lower and upper sum approximations, we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates, since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 0.78125 — 0.53125 = 0.25.

Yet another estimate can be obtained by using rectangles whose heights are the values
of f at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is
between a lower sum and an upper sum, but it is not quite so clear whether it overestimates
or underestimates the true area. With four rectangles of width 1/4 as before, the midpoint
rule estimates the area of R to be

~ 8 1. 5 1.3 1, 151 1721 _
A~ It it g it 1" 6 3= 06187s.

In each of our computed sums, the interval [ a, b ] over which the function f is defined
was subdivided into n subintervals of equal width (also called length) Ax = (b — a)/n,
and f was evaluated at a point in each subinterval: ¢, in the first subinterval, ¢, in the sec-
ond subinterval, and so on. The finite sums then all take the form

fley) Ax + f(cs) Ax + f(c3) Ax + - - - + f(c,) Ax.

By taking more and more rectangles, with each rectangle thinner than before, it appears that
these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area
because the rectangles taken together contain R. The midpoint rule for 16 rectangles gives
a total area approximation of 0.6669921875, but it is not immediately clear whether this
estimate is larger or smaller than the true area.

EXAMPLE 1 Table 5.1 shows the values of upper and lower sum approximations to
the area of R, using up to 1000 rectangles. In Section 5.2 we will see how to get an exact
value of the areas of regions such as R by taking a limit as the base width of cach rectangle
goes to zero and the number of rectangles goes to infinity. With the techniques developed
there, we will be able to show that the area of R is exactly 2/3. [m]

Distance Traveled

Suppose we know the velocity function v(f) of a car moving down a highway, without
changing direction, and want to know how far it traveled between times ¢+ = a and 1 = b,
The position function s(¢) of the car has derivative v(r). If we can find an antiderivative F(7)
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TABLE 5.1 Finite approximations for the area of R
Number of
subintervals Lower sum Midpoint sum Upper sum
2 0.375 0.6875 0.875
4 0.53125 0.671875 0.78125
16 0.634765625 0.6669921875 0.697265625
50 0.6566 0.6667 0.6766
100 0.66165 0.666675 0.67165
1000 0.6661665 0.66666675 0.6671665

of u(r) then we can find the car’s position function s(r) by setting s(1) = F(r) + C. The
distance traveled can then be found by calculating the change in position,
s(h) — s(a) = F(b) — F(a). If the velocity function is known only by the readings at
various times of a speedometer on the car, then we have no formula from which to
obtain an antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function v(1), we can approxi-
mate the distance traveled with finite sums in a way similar to our estimates for area dis-
cussed before. We subdivide the interval [ a. b] into short time intervals on each of which
the velocity is considered to be fairly constant. Then we approximate the distance traveled
on each time subinterval with the usual distance formula

distance = velocity X time

and add the results across [a. b].
Suppose the subdivided interval looks like

i o

a 1, I Iy

L1 (sec)
b

with the subintervals all of equal length Az. Pick a number 1 in the first interval. If Az is
so small that the velocity barely changes over a short time interval of duration Az, then the
distance traveled in the first time interval is about v(r;) Ar. If 1, is a number in the second
interval, the distance traveled in the second time interval is about v(s,) Ar. The sum of the
distances traveled over all the time intervals is

D = v(n) Ar + v(s) Ar + --- + (1) Ay,

where n is the total number of subintervals.

EXAMPLE 2 The velocity function of a projectile fired straight into the air is
f(1) = 160 — 9.8t m/sec. Use the summation technique just described to estimate how
far the projectile rises during the first 3 sec. How close do the sums come to the exact
value of 435.9 m? (You will learn how to compute the exact value easily in Section 5.4.)

Solution We explore the results for different numbers of intervals and different choices
of evaluation points. Notice that f(1) is decreasing, so choosing left endpoints gives an
upper sum estimate; choosing right endpoints gives a lower sum estimate.

(@) Three subintervals of length 1, withf evaluated at left endpoints giving an upper swum:

noonon

Fad

!
23
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With f evaluated at 1 = 0, 1, and 2, we have

D = f(r)) At + f(t,) At + f(1y) At
= [160 — 9.8(0) (1) + [160 — 9.8(1)](1) + [160 — 9.8(2)](1)
= 450.6.

(b) Three subintervals of length 1, with f evaluated at right endpoints giving a lower sum:

0
o

With f evaluated at ¢ = 1, 2, and 3, we have
D = f()) At + f(1,) At + f(r) At

= [160 — 9.8(1)J(1) + [160 — 9.8(2)J(1) + [160 — 9.8(3)](1)
= 421.2.

(¢) With six subintervals of length 1/2, we get

Ity ty by tg fodsty by gty
b4 o b b b1 o Ld b b o4
0 1 2 3 0 1 2 3

H H
Ar Ar

These estimates give an upper sum using left endpoints: D = 443.25; and a lower
sum using right endpoints: D = 428.55. These six-interval estimates are somewhat
closer than the three-interval estimates. The results improve as the subintervals get
shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The
true value lies between these upper and lower sums. The magnitude of the error in the
closest entries is 0.23, a small percentage of the true value.

Error magnitude = true value — calculated value
= 4359 — 435.67| = 0.23.

0.23

m = (0.05%.

Error percentage =

It would be reasonable to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight. a

TABLE 5.2 Travel-distance estimates
Number of Length of each Upper Lower

i subintervals subinterval sum sum
| 3 1 4506 4212

6 1/2 325 428.55

12 1/4 439.58 432.23

24 1/8 437.74 434.06

48 1/16 436.82 434.98

96 1/32 436.36 435.44

192 1/64 436.13 435.67




304

400

Height (f1)
9
N
)

FIGURE 5.5 The rock in Example 3.
The height s = 256 ftis reached at ¢ = 2
and ¢ = 8 scc. The rock falls 144 ft from
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its maximum height when t = 8,

TABLE 5.3 Velocity function
t u(r) t (1)
0 160 45 16

0.5 144 50 0

1.0 128 55 -16
1.5 112 6.0 =32

2.0 96 6.5 —48

25 80 7.0 —64

3.0 64 7.5 -80

35 48 8.0 -96

4.0 32

Displacement Versus Distance Traveled

If an object with position function s(#) moves along a coordinate line without changing
direction, we can calculate the total distance it travels from ¢ = a to ¢t = b by summing
the distance traveled over small intervals, as in Example 2. If the object reverses direction
one or more times during the trip, then we need to use the object’s speed |v(r) , which is
the absolute value of its velocity function, v(r), to find the total distance traveled. Using
the velocity itself, as in Example 2, gives instead an estimate to the object's displacement,
s(b) — s(a), the difference between its initial and final positions.

To see why using the velocity function in the summation process gives an estimate to
the displacement, partition the time interval [ a, b] into small enough equal subintervals A¢
so that the object’s velocity does not change very much from time -, to . Then v(r,) gives
a good approximation of the velocity throughout the interval. Accordingly, the change in the
object's position coordinate, which is its displacement during the time interval, is about

v(n) At

The change is positive if v(y) is positive and negative if v(f) is negative.
In cither case, the distance traveled by the object during the subinterval is about

[v(r)| At
The total distance traveled over the time interval is approximately the sum
v(n) At + (u(n) Ar+ -+ 4 u(1,)| AL

We revisit these ideas in Section 5.4,

EXAMPLE 3 In Example 4 in Section 3.4, we analyzed the motion of a heavy rock
blown straight up by a dynamite blast. In that example, we found the velocity of the rock
at any time during its motion to be v(1) = 160 — 32r ft/sec. The rock was 256 ft above
the ground 2 sec after the explosion, continued upward to reach a maximum height of
400 ft at 5 sec after the explosion, and then fell back down to reach the height of 256 ft
again at r = 8 sec after the explosion. (Sec Figure 5.5.)

If we follow a procedure like that presented in Example 2, and use the velocity func-
tion v(r) in the summation process over the time interval [0, 8]. we will obtain an esti-
mate to the rock’s 256 ft height above the ground at + = 8. The positive upward motion
(which yields a positive distance change of 144 ft from the height of 256 ft to the maxi-
mum height) is canceled by the negative downward motion (giving a negative change of
144 ft from the maximum height down to 256 ft again), so the displacement or height
above the ground is estimated from the velocity function.

On the other hand, if the absolute value |v(r)| is used in the summation process, we
will obtain an estimate to the roral distance the rock has traveled: the maximum height
reached of 400 ft plus the additional distance of 144 ft it has fallen back down from that
maximum when it again reaches the height of 256 ft at 1 = 8 sec. That is, using the abso-
lute value of the velocity function in the summation process over the time interval [0, 8],
we obtain an estimate to 544 ft, the total distance up and down that the rock has traveled in
8 sec. There is no cancelation of distance changes due to sign changes in the velocity func-
tion, so we estimate distance traveled rather than displacement when we use the absolute
value of the velocity function (that is, the speed of the rock).

As an illustration of our discussion, we subdivide the interval [ 0, 8 ] into sixteen sub-
intervals of length Ar = 1/2 and take the right endpoint of each subinterval in our calcu-
lations. Table 5.3 shows the values of the velocity function at these endpoints.

Using v(r) in the summation process, we estimate the displacement at t = 8:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16
+0 - 16 - 32 - 48 — 64 — 80 — 96)-1 = 192

Error magnitude = 256 — 192 = 64
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Using |v(r)| in the summation process, we estimate the total distance traveled over
the time interval [0, 8 ]:

(144 + 128 + 112 + 96 + 80 + 64 + 48 + 32 + 16
+ 0+ 16 + 32 + 48 + 64 + 80 + 96)- 5 = 528

Error magnitude = 544 — 528 = 16

If we take more and more subintervals of [0, 8] in our calculations, the estimates to

the heights 256 ft and 544 ft improve, approaching them as shown in Table 5.4. O
TABLE 5.4 Travel estimates for a rock blown straight up
during the time interval [0, 8]

Number of  Length of each Total 4
subintervals  subinterval Displacement  distance

16 1/2 192.0 528.0

32 1/4 224.0 536.0

64 1/8 240.0 540.0
128 1/16 248.0 542.0
256 1/32 252.0 543.0
512 1/64 254.0 543.5

Average Value of a Nonnegative Continuous Function

The average value of a collection of n numbers x, xa, . .. , X, is obtained by adding them
together and dividing by n. But what is the average value of a continuous functionfon an
interval [a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
cach day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is casy to answer. A function with constant
value c on an interval [a, b] has average value c. When c is positive, its graph over [a, b ]
gives a rectangle of height c. The average value of the function can then be interpreted geo-
metrically as the arca of this rectangle divided by its width b — a (Figure 5.6a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.6b? We can think of this graph as a snapshot of the height of some water

(a) (b)

FIGURE 5.6 (a) The average value of f(x) = c on [a, b] is the area of
the rectangle divided by b — a. (b) The average value of g(x) on [a, b] is
the area beneath its graph divided by b — a.
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In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed
interval [a, b] using n subintervals of equal width (or length), (b — a)/n. In this section
we consider the limit of more general Riemann sums as the norm of the partitions of
[ a, b ] approaches zero. For general Riemann sums, the subintervals of the partitions need
not have equal widths. The limiting process then leads to the definition of the definite inte-
gral of a function over a closed interval [a,b].

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, as the
norm of the partitions of [ a, b | approaches zero, the values of the corresponding Riemann
sums approach a limiting value J. What we mean by this limit is that a Riemann sum will
be close to the number J provided that the norm of its partition is sufficiently small (so that
all of its subintervals have thin enough widths). We introduce the symbol € as a small
positive number that specifies how close to J the Riemann sum must be, and the symbol &
as a second small positive number that specifies how small the norm of a partition must be
in order for convergence to happen. We now define this limit precisely.

DEFINITION Let f(x) be a function defined on a closed interval [a, b]. We say
that a number J is the definite integral of f over [a, b] and that J is the limit of
the Riemann sums X{_, f(c;) Ax; if the following condition is satisfied:

Given any number € > 0 there is a corresponding number 6 > 0 such that
for every partition P = {xp, X},... ,X,} of [@, b] with|| P|| < § and any choice
of ¢ in [x—y, x; |, we have

> fle) Axg — J| < e
k=1

The definition involves a limiting process in which the norm of the partition goes to zero.
We have many choices for a partition P with norm going to zero, and many choices of

points ¢; for each partition. The definite integral exists when we always get the same limit

J, no matter what choices are made. When the limit exists we write it as the definite integral

J = lim (cp) Ax;.
tim 3t Ax,
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The limit of any Riemann sum is always taken as the norm of the partitions approaches
zero and the number of subintervals goes to infinity.

Leibniz introduced a notation for the definite integral that captures its construction as
a limit of Riemann sums. He envisioned the finite sums EL. f(c) Ax; becoming an infi-
nite sum of function values f(x) multiplied by “infinitesimal” subinterval widths dx. The
sum symbol 3 is replaced in the limit by the integral symbol f whose origin is in the
letter “S.” The function values f(c;) are replaced by a continuous selection of function
values f(x). The subinterval widths Ax; become the differential dx. It is as if we are sum-
ming all products of the form f(x) * dx as x goes from a to b. While this notation captures
the process of constructing an integral, it is Riemann's definition that gives a precise
meaning to the definite integral.

The symbol for the number J in the definition of the definite integral is

b
/ f(x)dx,

which is read as “the integral from a to b of f of x dee x™ or sometimes as “the integral from a
to b of f of x with respect to x.” The component parts in the integral symbol also have names:

The function is the integrand.

Upper limit of integration
b/ permen
Integral sign\ ‘“ vaniable of integration.
i) dx”
a

When you find the value
Lower limit of integration g . ' of the integral, you have
Integral of 1 trom a to b evaluated the integral.

When the condition in the definition is musﬁed we say that the Riemann sums of f on
[a, b] converge to the definite integral J = f f(x) dx and that f is integrable over [a, b].
In the cases where the subintervals all have equal width Ax = (b — a)/n, we can
form each Riemann sum as
) Ay . b wi ntorallk

Sn = Zf(CL)-l\'L Ef(ﬂ)(

where ¢; is chosen in the kth subinterval. When the limit of these Riemann sums as
n — 00 exists and is equal to J, then J is the definite integral of fover [a, b], so

b n _
. / f(\)d.\' = lim ZI(CL)(b N (1) r *Omeans n —= X
a =

If we pick the point ¢; at the right endpoint of the kth subinterval, so ¢, = a + kAx =
a + k(b — a)/n, then the formula for the definite integral becomes

/f(r)dr— lim Ef( u)( - ") 1)

Equation (1) gives one explicit formula that can be used to compute definite integrals.
Other choices of partitions and locations of points ¢; result in the same value for the defi-
nite integral when we take the limit as n — o0 provided that the norm of the partition
approaches zero.




318

Chapter 5: Integrals

The value of the definite integral of a function over any particular interval depends on
the function, not on the letter we choose to represent its independent variable. If we decide
to use r or u instead of x, we simply write the integral as

b b b
/ [ dr or / fQu) du instead of / f(x) dx.

No matter how we write the integral, it is still the same number that is defined as a limit of
Riemann sums. Since it does not matter what letter we use, the vanable of integration is
called a dummy variable representing the real numbers in the closed interval [a, b].

Integrable and Nonintegrable Functions

Not every function defined over the closed interval [a, b] is integrable there, even if the
function is bounded. That is, the Riemann sums for some functions may not converge to
the same limiting value, or to any value at all. A full development of exactly which func-
tions defined over [ a, b ] are integrable requires advanced mathematical analysis, but for-
tunately most functions that commonly occur in applications are integrable. In particular,
every continuous function over [a, b ] is integrable over this interval, and so is every func-
tion having no more than a finite number of jump discontinuities on [a, b]. (See Figures
1.9 and 1.10. The latter functions are called piecewise-continuous functions, and they are
defined in Additional Exercises 11-18 at the end of this chapter.) The following theorem,
which is proved in more advanced courses, establishes these results.

THEOREM 1—Integrability of Continuous Functions If a function f is con-
tinuous over the interval [a. b ], or if f has at most finitely many jump disconti-
nuitics there, then the definite integral f_ , f(x)dx exists and f is integrable over
[a,b].

The idea behind Theorem 1 for continuous functions is given in Exercises 86 and 87.
Briefly, when f is continuous we can choose cach ¢ so that f(¢) gives the maximum
value of f on the subinterval [x;,_,, x;], resulting in an upper sum. Likewise, we can
choose ¢; to give the minimum value of f on [x;_,, x; ] to obtain a lower sum. The upper
and lower sums can be shown to converge to the same limiting value as the norm of the
partition P tends to zero. Moreover, every Riemann sum is trapped between the values of
the upper and lower sums, so every Riemann sum converges to the same limit as well.
Therefore, the number J in the definition of the definite integral exists, and the continuous
function f is integrable over [a, b].

For integrability to fail, a function needs to be sufficiently discontinuous that the
region between its graph and the x-axis cannot be approximated well by increasingly thin
rectangles. Our first example shows a function that is not integrable over a closed interval.

EXAMPLE 1 The function

Sy = {l. if x is rational
8 0,  if xis imational

has no Riemann integral over [0, 1]. Underlying this is the fact that between any two
numbers there is both a rational number and an irrational number. Thus the function jumps
up and down too erratically over [0, 1] to allow the region beneath its graph and above
the x-axis to be approximated by rectangles, no matter how thin they are. We show, in fact,
that upper sum approximations and lower sum approximations converge to different limit-
ing values.



5.3 The Definite Integral 319

If we pick a partition P of [0, 1] and choose ¢; to be the point giving the maximum
value for f on [x;—y, ;] then the corresponding Riemann sum is

U= ‘zf(q) Ay, = lE(l)Lt‘ =1,
=1 =1
since each subinterval [x;_,, 3] contains a rational number where f(c;) = 1. Note that
the lengths of the intervals in the partition sum to 1, Si=1 Ax; = 1. So each such Rie-
mann sum equals 1, and a limit of Riemann sums using these choices equals 1.
On the other hand, if we pick ¢; to be the point giving the minimum value for f on
[xi-1, %2 ], then the Riemann sum is

L= fle) Ay = 2,(0) Ay, = 0,
i=1 1=1

since each subinterval [x;_,,x;] contains an irrational number ¢; where f(c;) = 0. The
limit of Riemann sums using these choices equals zero. Since the limit depends on the
choices of ¢, the function f is not integrable. 0O

Theorem | says nothing about how to calculate definite integrals. A method of calcu-
lation will be developed in Section 5.4, through a connection to knowing an antiderivative
of the integrand function f.

Properties of Definite Integrals

In defining fu"f(.\') dx as a limit of sums 3., f(c)) Ax,, we moved from left to right
across the interval [a, ). What would happen if we instead move right to left, starting
with x; = b and ending at x, = «? Each Ax, in the Riemann sum would change its sign,
with x; — x;_, now negative instead of positive. With the same choices of ¢; in each sub-
interval, the sign of any Riemann sum would change, as would the sign of the limit, the
integral f ,:'f(.t') dx. Since we have not previously given a meaning to integrating back-

ward, we are led to define
a b
/ fx)dx = —/ f(x) dx.
b a

Although we have only defined the integral over an interval [a. b] when a < b, itis
convenient to have a definition for the integral over [a,b] when a = b, that is, for the
integral over an interval of zero width. Since a = b gives Ax = 0, whenever f(a) exists

we define
/ f(xX)dx = 0.

Theorem 2 states basic properties of integrals, given as rules that they satisfy, includ-
ing the two just discussed. These rules, listed in Table 5.6, become very useful in the pro-
cess of computing integrals. We will refer to them repeatedly to simplify our calculations.
Rules 2 through 7 have geometric interpretations, shown in Figure 5.11. The graphs in
these figures are of positive functions, but the rules apply to general integrable functions.

THEOREM 2 When f and g are integrable over the interval [a, b], the defi-
nite integral satisfies the rules in Table 5.6.

While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.6 must be proved. The fol-
lowing is a proof of Rule 6. Similar proofs can be given to verify the other properties in
Table 5.6.
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TABLE 5.6 Rules satisfied by definite integrals

a b
1. Order of Integration: / f(x)dx = — / f(x) dx A definition
b a
a -
2. Zero Width Interval: / f()dx =0 {‘( d;' "”\‘:“{“" when
a :
b b
3. Constant Multiple: / kf(x)dx = k| f(x)dx Any constant &

b
4. Sum and Difference: / f(x) * g(x))dx = / f(x)dx / 2(x) dx

5. Additivity: [f(r)dx-f-/f(t)dx—/f(r)d.t

6. Max-Min Inequality:  If f has maximum value max f and minimum value min
fon [a,b],then

b
minf°(b—a)5/f(.\')dt-s max f-(b — a).

b b
7. Domination: J(x) = g)on [a,b] = [ f(x)dx = / g(x) dx
b
J&@y=0on[ab]= / ) dx = 0 (Special case)
a
y ¥ y = 2f(x) z
. ¥ =fx) + gla)
y =/ \ /\ﬂ.\' = g(x)
¥ =[x
Y=/
ol a g ol « b " 0l u b
() Zero Width Interval: (b) Constant Multiple: (k = 2) (¢) Sum: (areas add)
] b b b b b
f)de = 0 / kf(x)dx = k/ f(x)dx / (f(x) + g(x))dx = / f(x)dx + / g(x)dx

¥

max f |-
N /\_/_\.“ = f(x)

s
/ J(x) dx
b

min f |-
-1
0 a b ¢ * 0l a b !
(d) Additivity for Definite Integrals: (¢) Max-Min Inequality:
b ¢ ¢ b
fydy + / fdx = / f(x)dx minf+(b —a) = / f(x)dx
] b o a

=maxf-(b—a)

FIGURE 5.11 Geometric interpretations of Rules 2-7 in Table 5.6.

¥

y = gx)

0la b

(I') Domination:
f(x) = g(x)on [a,b]

b b
=/ f(x)dx 2/ g(x)dx
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5.6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of
integration is changed by substitution.

THEOREM 7—Substitution in Definite Integrals If g'is continuous on the
interval [a, b] and f is continuous on the range of g(x) = u, then

£(b)

b
/ f(g(x)-g'(x) dx = f(u) du.
d ““'

Proof Let F denote any antiderivative of f. Then,

b x=p A:I—I‘]w\'l )
/ f@) - g'(x) dx = F(g(.t))] Fetane'a)
a I=e fletallg' (v
= F(g(b)) — F(g(a))
u=g(b)
= F(u)]
u=gla)
s Fundamental
= S(u) du. Theorem. Pun 2~ W
gla)

To use the formula, make the same u-substitution u = g(x) and du = g'(x) dx you
would use to evaluate the corresponding indefinite integral. Then integrate the transformed
integral with respect to u from the value g(a) (the value of u at x = a) to the value g(b)
(the value of u at x = b).

]
EXAMPLE 1 Evaluate / 3V + 1dy
=

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

letn v ¢ l.du v dh

|
./3.\~'V.r~'+ Fdi RS WS )t ey -0

1 \\'Incnn l,u lll‘ L |
2
- [Vaa
0

£ 2
- =u“/2] Evaluate the new detimite integral
3 0
T 2 42
='3-[2"/ -0‘/2] =§[2\ 2] ==
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Method 2: Transform the integral as an indefinite integral, integrate, change back to x,
and use the original x-limits.

/3.\'2\/.\"‘ + l(ttZ/\/l:dll letu v o Ldu W

Wit

\
w? + C Integrate with respect to u

5
= ‘3-(‘3 + 12 +C Replace nby x' + 1.

! 1 .
/4 o 2 ) Use the integral just found. with
/_‘31“ ¥+ ldv= 3("3 + 1)3/1]_‘ linuts of integration for x.
= 2[@y + D2 = (1P + 7]
2 o) — 2 4V2
=§[23/1—0V‘] =§[2\/i] =3 O

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 We use the method of transforming the limits of integration.

w/2 0 Let u cot . du oS H dh,
(ﬂ) / cot 0 CSCZH dg = / u- (_du) du o o de
m/4 1 When # /4 u = cou(mr/4) 3.
When® = m/2 u = cot(mr/2) = (.

I
|
—

-
5,
e
- (=]

I
|
—
—
o|S
[}
]
|A
-~
S
[¥])
[ CE— )
I

)=

w/4 /4
(b) tan x dx = / mdx

-w/4

—

Van let u cos . du st
- lﬂ When 1 w/d4u V2/2
Van u When T Vv2/2

Vi
= —=In |u| ] =0 Integrate, zero wadth interval a

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of
even and odd functions (Section 1.1) over a symmetric interval [—a. a ] (Figure 5.23).
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THEOREM 8 Let f be continuous on the symmetric interval [—a, a].

(a) If f is cven, then / f(x)dx =2 / f(x)dx.
-a 0

(b) If f is odd, lhcn/ f(x)dx = 0.

—a 0 a

V

(b)

FIGURE 5.23 (a) For f an cven func-
tion, the integral from —a to a is twice the
integral from 0 to a. (b) For f an odd func-
tion, the integral from —a to a equals 0.

Upper curve
y=r

I-/ B b

—— /I:OWCI' curve

y =gl
FIGURE 5.24 The region between
the curves y = f(x) and y = g(x)
and the lines x = aand x = b.

X

Proof of Part (a)

a 0 a
[ Jwds = / S + /o f@dx o oy

-a a
= —/ f(\’)d.l’ + / f(l’)dt Order of Integraton Rule
0 0

a a Letu vodu dr
= —/ f(=u)(—du) + / f(x)dx Whenx = 0. = 0.
0 0

When a.n a
=/f(—u)du+/f(.r)dr
0 0

=/f(u)du+/f(_t)d‘- f s even.so
0 0 fi 1w flu

=2/ f(x)dx
0

The proof of part (b) is entirely similar and you are asked to give it in Exercise 114. |

The assertions of Theorem 8 remain true when f is an integrable function (rather than
having the stronger property of being continuous).

EXAMPLE 3 Evaluate / (= 427 + 6) dx.

Solution Since f(x) = x* — 4x? + 6 satisfies f(—x) = f(x), it is even on the symmet-
ric interval [—2,2], so

/-(.r‘ - 4x2 + 6)dy = 2/-(.\" — 4x? + 6)dx
-2 0

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = f(x),
below by the curve y = g(x), and on the left and right by the lines x = @ and x = b (Fig-
ure 5.24). The region might accidentally have a shape whose area we could find with
geometry, but if f and g are arbitrary continuous functions, we usually have to find the
area with an integral.
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FIGURE 5.25 We approximate
the region with rectangles perpen-
dicular to the x-axis.

(g S(cy))
T
: Sleg) = gley)
| [ /
|
. 1
1
—_— _IA I (l'A- R(('k”
X

FIGURE 5.26 The arca AA; of the
kth rectangle is the product of its height,
f(c) — glcy), and its width, Ax,.

2k (X (X))

I
I
|
I
I
I
I
I

05 (x, g(x))

0 1

FIGURE 5.27 The region in Example 4
with a typical approximating rectangle.

To see what the integral should be, we first approximate the region with n vertical
rectangles based on a partition P = {xp. x\...., %, } of [a, b] (Figure 5.25). The arca of
the kth rectangle (Figure 5.26) is

AA; = height X width = [ f(¢;) — g(c)] Axg.

We then approximate the area of the region by adding the areas of the n rectangles:
A = EAI“ = E[I((‘A) - S’((“)] A.\". Ricmann sum
=1 L=1
As || P|| = 0, the sums on the right approach the limit f:[f(.r) - 8(x)] dx because f

and g are continuous. We take the area of the region to be the value of this integral. That is,

n

b
A= lim > [fle) — gle)] Ay = / [fx) = g(x)] dx.

[lPl]|—0 k=1

DEFINITION If f and g are continuous with f(x) = g(x) throughout [a,b],
then the area of the region between the curves y = f(x) and y = g(x) from
a to b is the integral of (f — g) fromato b:

b
A= / [f(x) — gx)] dx.

When applying this definition it is helpful to graph the curves. The graph reveals which curve
is the upper curve f and which is the lower curve g. It also helps you find the limits of integra-
tion if they are not given. You may need to find where the curves intersect to determine the
limits of integration, and this may involve solving the equation f(x) = g(x) for values of x.
Then you can integrate the function f — g for the area between the intersections.

EXAMPLE 4 Find the area of the region bounded above by the curve y = 2¢™ + x,
below by the curve ¥ = ¢'/2, on the left by x = 0, and on the right by x = 1.

Solution Figure 5.27 displays the graphs of the curves and the region whose area we
want to find. The area between the curves over the interval 0 = x = 1 is given by

1
A= / [(le"" +x) - %e‘]dx = [—Ze“-‘ + ,l—,xz - %e‘]
0 = = = Jo

2 e
=3—E—§-“-'0.905l. a
EXAMPLE 5 Find the area of the region enclosed by the parabola y = 2 — x* and
the line y = —x.
Solution First we sketch the two curves (Figure 5.28). The limits of integration are found
by solving y = 2 — x*and y = —x simultaneously for x.
2 = x'z = =X iiu"_l,.fu fix) and g
.\'l -x—-2=0 Rewnte
(." + l)(.l' - 2) =0 Factor
x=-1, x=2 Solve

The region runs from x = —1 to x = 2. The limits of integration area = —1,b = 2.



FIGURE 5.28 The region in
Example § with a typical approxi-
mating rectangle.

4
Area :/(\/? -x+ 2) dx

b - y= \/: 4
2F Area = [ Vady \(xf0) N — 0. 2)
0 v
(x, ) I\
AN yEx—-2
(x, g(x))
et Ly
0 yv=0-72 4

(X, g(x))

FIGURE 5.29 When the formula for a

bounding curve changes, the arca integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 6.
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The area between the curves is
"

b
A= / [f(x) = gx)] dx = / (2= 2% = (=x)]dx

Y
-

2 32
= 4 a2 = |2 4 X _X
[l(._ + x = x7)dx [.\ + 5 3]-1

(49 - (e 308) -3 :

If the formula for a bounding curve changes at one or more points, we subdivide the
region into subregions that correspond to the formula changes and apply the formula for
the area between curves to cach subregion.

EXAMPLE 6 Find the arca of the region in the first quadrant that is bounded above
by y = VX and below by the x-axis and the line y = x — 2.

Solution _The sketch (Figure 5.29) shows that the region's upper boundary is the graph of
fx) = Vx. The lower boundary changes from g(x) = 0for0 s x = 20 gx) = x — 2
for 2 = x = 4 (both formulas agree at x = 2). We subdivide the region at x = 2 into sub-
regions A and B, shown in Figure 5.29.

The limits of integration for region A are @ = 0 and b = 2. The left-hand limit for

region B is ¢ = 2. To find the right-hand limit, we solve the equations y = Vx and
y = x — 2 simultancously for x:
\/.; =x-2 Equate fou) and goa
x=@x-2P=x2-4x+4 Square both sides
.\'2 -5x+4=0 Rewnite
x—-INx—-4)=0 Factor
x=1, x =4. Solve

Only the value x = 4 satisfies the equation Vx = x — 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limitis b = 4.

fx) — g) = Va— 0= Va
fW—-g0)=Vei-@-2)=Vi-x+2

For() = x = 2:

For2 =x =4
We add the areas of subregions A and B to find the total area:

2 3
Tomlarca=/\/.;d.\'+-/(\/;—.t+2)d.r
0 2

arcaof B

2 b} 4
= [l.r"!] + [%_H/I -5+ Zr]
0 2

=2 -0+ (%(4)3/3 -8+ 3) = (%(2)”2 -2+ 4)

=2@g-2=10
=3®-2=3. ]
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L[/l Applications of Definite

LAy [l Integrals

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a
definite integral, which is the limit of any Riemann sum for the function. We proved that
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also
found that the area under a curve and the area between two curves could be defined and
computed as definite integrals.

In this chapter we extend the applications of definite integrals to defining and finding
volumes, lengths of plane curves, and areas of surfaces of revolution. We also use integrals
to solve physical problems involving the work done by a force, and to find the location of
an object's center of mass. Each application comes from a process leading to an approxima-
tion by a Riemann sum, and then taking a limit to obtain an appropriate definite integral.
These applications are important to mathematics, science, and engineering. We also use
integrals to compute probabilities and their applications to the life sciences in Chapter 8.

6. 1 Volumes Using Cross-Sections

with area A(x)

|
|
|
|
|
b X
FIGURE 6.1 A cross-section S(x) of
the solid S formed by intersecting S with

a plane P, perpendicular to the x-axis

through the point x in the interval [a, b].

P, Cross-section S(x)

In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid § is the plane region formed by intersecting S with a plane (Figure 6.1). We
present three different methods for obtaining the cross-sections appropriate to finding the
volume of a particular solid: the method of slicing, the disk method, and the washer method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin
by extending the definition of a cylinder from classical geometry to cylindrical solids with
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area A and height h,
then the volume of the cylindrical solid is

Volume = area X height = A+ h.

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid § at each point x in the
interval [a, b] is a region S(x) of area A(x), and A is a continuous function of x, we can

N
-
h = height
Plane region whose Cylindrical solid based on region
area we know Volume = base area X height = Ah

FIGURE 6.2 The volume of a cylindrical solid is always defined
to be its base area times its height,
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¥ define and calculate the volume of the solid S as the definite integral of A(x). We now
show how this integral is obtained by the method of slicing.

Slicing by Parallel Planes

We partition [a, b] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a=x<x < -+ <, = b The planes P, perpendicular to the x-axis at the partition
points, slice S into thin “slabs™ (like thin slices of a loaf of bread). A typical slab is shown in
Figure 6.3. We approximate the slab between the plane at x; _, and the plane at x; by a cylindri-
cal solid with base area A(x;) and height Ax; = x; — x;,-, (Figure 6.4). The volume V; of this
cylindrical solid is A(xy) + Axy, which is approximately the same volume as that of the slab:

Volume of the kth slab = V; = A(x)) Ax.

X

FIGURE 6.3 A typical thin slab in the

solid S. The volume V of the entire solid S is therefore approximated by the sum of these cylindri-
cal volumes,

i n n

¥ = /= 1) Ax
Approximating v ‘__z| Y ;A(M) A'\"

Plane at x cylil‘ldcrbascd. T i X » ! R ) T
on (1)) has height This is a Riemann sum for the function A(x) on [a, b]. We expect the approximations
Ay =~ ey, from these sums to improve as the norm of the partition of [a, b] goes to zero. Taking a
/ partition of [a, ] into n subintervals with [|P] — 0 gives
L

n b
lim 2/\(.\") Ay = / A(x) dx.

==

So we define the limiting definite integral of the Riemann sum to be the volume of the solid S.

o™ —
:;,\':‘ Plane at x;
f“\ DEFINITION The volume of a solid of integrable cross-sectional area A(x) from

The cylinder's base mr X = atox = b is the integral of A from a to b,

is the region S(x;) .

with area A(x,) ’

NOT TO SCALE V= [ Alx)dx.
a

FIGURE 6.4 The solid thin slab in

Figure 6.3 is shown enlarged here. It is

approximated by the cylindrical solid with This definition applies whenever A(x) is integrable, and in particular when it is con-
base S(x) having area A(x,) and height tinuous. To apply the definition to calculate the volume of a solid using cross-sections
A, = X - Yoy perpendicular to the x-axis, take the following steps:

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
xm on a side. Find the volume of the pyramid.

Solution
1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).



Typical cross-section

X (m)

FIGURE 6.5 The cross-sections of the
pyramid in Example 1 are squares,

FIGURE 6.6 The wedge of Example 2,
sliced perpendicular to the x-axis. The
cross-sections are rectangles.

HISTORICAL BIOGRAPHY

Bonaventura Cavalieri
(1598-1647)

367

6.1 Volumes Using Cross-Sections

2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is

Al) =

w

. The limits of integration. The squares lie on the planes from x = 0 to x = 3.

&=

. Integrate to find the volume:

3 3 373
V= / AWy dx = / Xdy = ‘?] =9m’, O
0 0 0

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two
planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the
first plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.6). The base of the wedge in the figure is the semicircle with x = 0 that
is cut from the circle x* + y* = 9 by the 45° plane when it intersects the y-axis.
For any x in the interval [0, 3] the y-values in this semicircular base vary from

==V9 — 1oy = V9 — x°. When we slice through the wedge by a plane perpen-
du.uldr to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semicircular base. The area of this cross-section is

A(x) = (heighyy(width) = (x)(2V9 — &?)
=22%V9 — %,

The rectangles run from x = 0 to x = 3, so we have

b 3
V= / A(x) dx / 2xV9 — 2 dx
a 0

) 3 letu=9 K
=-=(9 - _\4)3/2] du — —2udv, integrate,
3 0 and substitute back,
2 32
=0+ (92
HO)
= 18. O

EXAMPLE 3  Cavalieri's principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This follows
immediately from the definition of volume, because the cross-sectional area function A(x)
and the interval [a, b] are the same for both solids.

_— Same volume

Same cross-section '
area at every level

FIGURE 6.7 Cavalieri's principle: These solids have the
same volume, which can be illustrated with stacks of coins. O
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y=Vx
R(x) = Vx
0 X
()
N

(b)

FIGURE 6.8 The region (a) and solid of

revolution (b) in Example 4.

Chapter 6: Applications of Definite Integrals

Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is

called a solid of revolution. To find the volume of a solid like the one shown in Figure 6.8,

we need only observe that the cross-sectional area A(x) is the area of a disk of radius R(x),

the distance of the planar region's boundary from the axis of revolution. The area is then
A(x) = w(radius)® = 7[R(x) ]

So the definition of volume in this case gives

Volume by Disks for Rotation About the x-axis

b 1
V= / A(X) dv = / [ R(x)]? dx.

This method for calculating the volume of a solid of revolution is often called the disk
method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4 The region between the curve y = Vi, 0 = x = 4, and the x-axis is
revolved about the x-axis to generate a solid. Find its volume.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.8). The volume is

h
f [ R(x) ] dx

a

v

rotation around v-axis

4 -
2 Rads R(v) N lor
/ [ V5] dx
J0O

4 274 4 2
w/ xdv = w%] = 11'(2) = 8. m]
0

0

EXAMPLE 5  The circle
2+ =4
is rotated about the x-axis to generate a sphere. Find its volume.

Solution  We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between —a and a is

Rivi V! volor

) = 2 = 2 — 2
A(l) =my 77'((' X ) rotation around v-ans,

Therefore, the volume is

“ “ hd i bl ‘J 4 4
V= / AW) dx = / m(a® — x7)dx = w[u‘.\' - -.;—] = ~ma’. [ |

« a T d-a

w

The axis of revolution in the next example is not the x-axis, but the rule for calculating
the volume is the same: Integrate m(radius)® between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded
by y = Vx and the lines y = 1,x = 4 about the line y = 1.
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R(y) =

i [ ]

FIGURE 6.11 The region (a) and part
of the solid of revolution (b) in Example 7.

()

(b)

-
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Volume by Disks for Rotation About the y-axis

d d
V=/ A(y) cl_\'=/ w[R(y)]? dy.

EXAMPLE 7  Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, 1 = y = 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

4
V=/ w[R() ] dy
1

"
! 2 a Radius Koy 5 tor
= [ wl§) dy _ _
1 B " rotation around veanis,
4 4
4 | 3
= Tr —2""\- = 4-” —v = 4" ‘—;- —_ 3”. .
Ly -

EXAMPLE 8  Find the volume of the solid generated by revolving the region between
the parabola x = y* + | and the line x = 3 about the line x = 3,

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and have

y-coordinates from y = -V2 10 y = V2. The volume is
V2
V=/ w[R()]*dy v PV 2wheny 3

-Vi
3

Vi - Radius Rivy 3 (v ¢ D)

= ,_,‘”[ 2 - .“-]- ‘l." tor rotation around anis « 3
-V2

V3

/i
Vi

[4 = 4y + 3] dy

Expand mtegrand

VW Vi

v

Ry =3-(*+1)

=

Integrate

n—‘iu‘ —
‘n[{\ 3_\ +5

641r\/5
15

-V2

“1-v @ ' Jees
3. V2 y

- W
T
\
\

- &
T
\

- 5

Vil R BNy 3. -\3) _\/5_.t=}‘4'l \f
(@) (b)
FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. ]
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(x, R(x))

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
f:A(x) dx leads to a slightly different formula.

¥
(—2.5)

R(x

) y=-x+3

) =x2+1 (1,2)
ey
‘/x P i
Interval of ! u@/&u

integration
(a)

Washer cross-section

Outer radius: R(x) = —x + 3
Inner radius: r(x) = x2 + 1

(b)

FIGURE 6.14 (a) The region in
Example 9 spanned by a line segment
perpendicular to the axis of revolution.
(b) When the region is revolved about
the x-axis, the line segment generates a
washer.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

Outer radius:  R(x)

Inner radius:  r(x)
The washer’s area is
AW = w[RW]? — #w[r()]? = 7([R®)]* = [r®]?).

Consequently, the definition of volume in this case gives

Volume by Washers for Rotation About the x-axis

b b
V=/ A(.r)dx=/ m([R(x)]? = [nx)]?) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9  The region bounded by the curve y = x* + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution We use the four steps for calculating the volume of a solid as discussed early in

this section.

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14a).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.
These radii are the distances of the ends of the line segment from the axis of revolu-

tion (Figure 6.14).
Outerradius: R(x) =—x + 3

Inner radius:  r(x) = x> + 1
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y

b

R(Y) = \/y
(2,4)
- 4
— Y
a y) =3
8 2
B |
§ y=2or
% (Y
=3
3 3
4
'5 y= .\':Or
S y
0 > :
(a)
My =3 RO = Vy

(b)

FIGURE 6.15 (a) The region being
rotated about the y-axis, the washer radii,
and limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).

3. Find the limits of integration by finding the x-coordinates of the intersection points of

the curve and line in Figure 6.14a,

2+l==x+3
C+x=2=0
(+2x—-1H=0
x==2 x=1 Lanuts of integration
4. Evaluate the volume integral.
b
V= / ."([R(\)]E == [l’(\) ]:) dx Rotation around rv-anis
! Val from Steps 2
Y > , SIS Trom steps 2
= / m(=x + 32 = (& + 1)) dx b ;
-2
|
= ‘IT/ (8 — 6x — .\‘2 - .k"‘) dx Sunplhity algebrancally
-2
3 5!
= e - x| _ =
ﬂ[&\ KR} 3 5|, 5 Inteprate [m]

To find the volume of a solid formed by revolving a region about the y-axis, we use
the same procedure as in Example 9, but integrate with respect to y instead of x. In this
situation the line segment sweeping out a typical washer is perpendicular to the y-axis (the
axis of revolution), and the outer and inner radii of the washer are functions of y.

EXAMPLE 10  The region bounded by the parabola y = x? and the line y = 2x in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution  First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = \/\_ ry) =y/2
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are
¢ = 0 and d = 4. We integrate to find the volume:

d
V= / ‘”( [R(,“)]z - [’"(,\')]2) d_\' Rotation around v

y 2 Substitute tor radn and
d." limits ol itegration,

Il 1l
3 —
o~ -
- 3
TN /N
- —
| <|
. -
N —
\—/ :
A l
]
| —]
Il ]
3
| p——
[,
|
] ¥
-
(=4 <
Il
wice
3
a



6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral V = fabA(.\') dx,
where A(x) is an integrable cross-sectional area of the solid from x = a to x = b. The
area A(x) was obtained by slicing through the solid with a plane perpendicular to the
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illus-
trate in our first example. To overcome this difficulty, we use the same integral definition
for volume, but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is parallel
to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the cylin-
ders increase with each slice. In this way the solid is sliced up into thin cylindrical shells
of constant thickness that grow outward from their common axis, like circular tree rings.
Unrolling a cylindrical shell shows that its volume is approximately that of a rectangular
slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the same
integral definition for volume as before. The following example provides some insight
before we derive the general method.

EXAMPLE 1 The region enclosed by the x-axis and the parabola y = f(x) = 3x — x?
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find the vol-
ume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in
Figure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical
washer, requiring us to solve y = 3x — x? for x, which leads to complicated formulas.)
Instead of rotating a horizontal strip of thickness Ay, we rotate a vertical strip of thick-
ness Ax. This rotation produces a cylindrical shell of height y, above a point x; within
the base of the vertical strip and of thickness Ax. An example of a cylindrical shell is
shown as the orange-shaded region in Figure 6.17. We can think of the cylindrical shell
shown in the figure as approximating a slice of the solid obtained by cutting straight
down through it, parallel to the axis of revolution, all the way around close to the inside
hole. We then cut another cylindrical slice around the enlarged hole, then another, and so
on, obtaining n cylinders. The radii of the cylinders gradually increase, and the heights
of the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).



FIGURE 6.17 A cylindrical shell of
height y; obtained by rotating a vertical
strip of thickness Ax; about the line

x = =1, The outer radius of the cylinder
oceurs at g, where the height of the
paraboluis v, = 3y — x2 (Example 1),
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5L yo= 3= o ‘
- l
1 \ !
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-2 -1 0 1 2 3 il
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Axis of Axis of
revolution | =2} revolution
x==1 x= =1
(a1) (b)

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution,
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = —1,

Each slice is sitting over a subinterval of the x-axis of length (width) A.x,. Its radius is
approximately (I + x), and its height is approximately 3x, = a2 If we unroll the cylin-
der at . and flatten it out, it becomes (approximately) a rectangular slab with thickness
Ax; (Figure 6.18). The outer circumference of the Ath cylinder is 27 - radius = 2m(1 + xp),
and this is the length of the rolled-out rectangular slab, Its volume is approximated by that
of a rectangular solid, the arca of the rectangle times its thickness,

AV, = circumference X height X thickness

=2mw(l + xp)° (3.\1 - .\'f) <Ax.

Summing together the volumes AV, of the individual cylindrical shells over the interval
(0. 3] gives the Riemann sum

iAV‘ = 'E'Zvr(.\'l + D(3x - x2)Ax.
= =

ay Outer circumference = 2w + radius = 27(1 + x))
Radius = | + x;

\
. (
] \

=)
By =

J . \

q

!

h= G -5 | 7_—-‘ Ay, = thickness

= 217“ + .\'l)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1),



378

‘ The volume of a cylindrical shell of
height /i with inner radius r and outer
radius R is

R — wrth = ZH(Q)(’I)(R -
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Taking the limit as the thickness Axg — 0 and n — 00 gives the volume integral

V = lim i 27(x; + l)(3.\1. - .\f) Axp

—
n=ek=l

3
= / 27(x + 1)(3x — x?) dx
0

3

= / 27(3x2 + 3x — & — Y dy
0
3
=2r | (222 + 3x — x¥)dx
0
|20 432 L]t _ 45w
= 2#[3.\ + 5 3~ ]0 == |

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function y = f(x)
and the x-axis over the finite closed interval [a, b] lies to the right of the vertical line
x = L (Figure 6.19a). We assume a = L, so the vertical line may touch the region, but
not pass through it. We generate a solid S by rotating this region about the vertical
line L.

Let Pbe apartitionof theinterval [a, b] by thepointsa = xy < x; < -+ < x, = b,
and let ¢, be the midpoint of the kth subinterval [x;_y, x;]. We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, b]. A typical approximating
rectangle has height f(c;) and width Ax; = x; — x;—,. If this rectangle is rotated about the
vertical line x = L, then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

AV, = 2m X average shell radius X shell height X thickness

= 27T'(Ck - L)'f((.‘k)' A-‘.k' R-= Landr = x L
Vertical axis
of revolution
Vertical axis
of revolution D Y=/ )
C:_ ::\
o
S P | L sl

~

Rectangle
height = f(e;)

(a) (b)

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
x = L, asolid is produced which can be sliced into cylindrical shells. A typical
shell is shown in (b).
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We approximate the volume of the solid S by summing the volumes of the shells swept out
by the n rectangles based on P

v=Say.
k=1

The limit of this Riemann sum as each Ax, — 0 and n — 00 gives the volume of the solid
as a definite integral:

" b
V= lin;JzAVA = / 2ar(shell radius)(shell height) dx
== a

b
= / 2m(x — L)f(x) dx.

a

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

Shell Formula for Revolution About a Vertical Line

The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function y = f(x) = 0, L = a = x = b, about a ver-

tical line x = Lis
b shell shell
V= 2 \ . dx.,
o radius / \ height

EXAMPLE 2 The region bounded by the curve y = Vi, the x-axis, and the line
x = 4 is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution  Sketch the region and draw a line segment across it parallel to the axis of revo-
lution (Figure 6.20a). Label the segment’s height (shell height) and distance from the axis
of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need not do that.)

Shell radius v = \/x

y ‘\‘ )
@l% e V/x = Shell height
v =V
2t ' Shell 2
X .
height ‘ .
Interval of
k A ‘,’I integration
> X /
Interval of integration /
() (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax,
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The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0 and b = 4 (Figure 6.20). The volume is then

b
= shell shell ]
V= / zn(mdius)(hcight) s

= / 42‘:1'(.1‘)( Vi) dx

0

¢ 4
= 21T/ MMy = 217[%.\.512] = 125817' =
0 0

So far, we have used vertical axes of revolution. For horizontal axes, we replace the
A's with y's,

EXAMPLE 3 The region bounded by the curve y = V7, the x-axis, and the line
x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid by the
shell method.

Solution This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw
a line segment across it parallel to the axis of revolution (Figure 6.21a). Label the seg-
ment’s length (shell height) and distance from the axis of revolution (shell radius). (We
drew the shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are @ = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of the

solid is
b
shell shell
V=/ 2#( . )( \ )dy
u radius / \ height
2
= / 27(y)(4 — y?) dy
0
2
= 27 / @y =y dy
0
12
= 21r[2y2 - '—:I = 8.
4 0
y
Shell height
2k
- »
B . @.2)
v b S~
4-4?
Shell height . D
5 \
2 x= .2 \}V\
- = .
S 2 y
G
g 2T / x
22 Y Shell radius -~ / Shell
| @—o.\‘ T / radius
0 4 -
(a) (b)

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width Ay. |
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6 . 3 Arc Length

0 M- )

FIGURE 6.23 The arc PP, of the
curve y = f(x) is approximated by the
straight-line segment shown here, which

has length L, = V(Ax)* + (Ay)

We know what is meant by the length of a straight-line segment, but without calculus, we
have no precise definition of the length of a general winding curve. If the curve is the
graph of a continuous function defined over an interval, then we can find the length of
the curve using a procedure similar to that we used for defining the arca between the curve
and the x-axis. This procedure results in a division of the curve from point A to point B
into many pieces and joining successive points of division by straight-line segments. We
then sum the lengths of all these line segments and define the length of the curve to be the
limiting value of this sum as the number of segments goces to infinity.

Length of a Curve y = f(x)

Suppose the curve whose length we want to find is the graph of the function y = f(x) from
X = atox = b. Inorder to derive an integral formula for the length of the curve, we assume
that f has a continuous derivative at every point of [a, b ]. Such a function is called smooth,
and its graph is a smooth curve because it does not have any breaks, corners, or cusps.

FIGURE 6.22 The length of the polygonal path £yP P, * * * P, upproximates the
length of the curve y = f(x) from point A to point 8,

We partition the interval [a, b] into n subintervals witha = 3y < &y < <+ <
X, = b. Iy = f(xp), then the corresponding point P(xz, 3) lies on the curve. Next we
connect successive points B, and P with straight-line segments that, taken together,
form a polygonal path whose length approximates the length of the curve (Figure 6.22), If
Axg = x — x_p and Ay, =y — ey then a representative line segment in the path has
length (see Figure 6.23)

L, = V(Ax)? + (A2

s0 the length of the curve is approximated by the sum

n

> L= V(Ax)? + (A (M
k=1

k=1

We expect the approximation to improve as the partition of [ «a, 5] becomes finer. Now, by
the Mean Value Theorem, there is a point ¢, with x_, < ¢; < x;, such that

Ay = ['(a) Axy.
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With this substitution for Ay, the sums in Equation (1) take the form

S L= V@Ax)? + (f()An)? = S VI + [f'()]* Ax,. 2
k=1 k=1 k=1

Because V1 + [f'(x)]? is continuous on [a, b], the limit of the Riemann sum on the
right-hand side of Equation (2) exists as the norm of the partition goes to zero, giving

n
lim > L, =
n—= =

n b
lim > V1+ [f'(c)]® Ay =/ V1 + [f(x)]? dx.

=S k=1

We define the value of this limiting integral to be the length of the curve.

DEFINITION If f' is continuous on [a, b], then the length (arc length) of the
curve y = f(x) from the point A = (a, f(a)) to the point B = (b, f(b)) is the
value of the integral

b b >
L =/ [+ [f(] dr =/ 1+ (ﬂ)-dr 3)
a ’ a dt -
y EXAMPLE 1 Find the length of the curve (Figure 6.24)
_v=%—i.\""/z— 1, 0=x=1.

Solution We use Equation (3) witha = 0,5 = 1, and

: 2
/ y = “Bﬁ-‘-zll -1 vy = 089
- 14

A tg4\/§3

=2Y2 3 4= 172
=35 =2V
FIGURE 6.24 The length of av\2
the curve is slightly larger than the (—‘-) = (2\/9__1-1/2)2 = 8.
length of the line segment joining dx
points A and B (Example 1). The length of the curve over v = O tox = 1 is
1 dy\2 1 Eq. (3) with
L=/ 1+(—’_) dx=/\/1+8xdx S =
0 dx 0 Letu = 1 + 8ux,
2 1 | 13 integrate, und
=% ,3 + 8: 3/2 === 2.17. replace u by
3-g( 8x) ]u 3 17 iy

Notice that the length of the curve is slightly larger than the length of the straight-line segment
joining the points A = (0, —1) and B = (l. 4V2/3 -1 ) on the curve (see Figure 6.24):

2,17 > V12 + (1.89) = 2.14, Decimal approximations =

EXAMPLE 2 Find the length of the graph of

b 1
f(.l‘)=ﬁ+i:, 1l =x=4.

]
1
1
]
]
]
]
|

4

0 1

FIGURE 6.25 The curve in Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

Example 2, where A = (1, 13/12) ) = £ i
’ 4

and B = (4, 67/12). i
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S0

]
+
N
=7
I
‘Ll-

+ [(f'(0))]?

|

+
N —

+

|
~ N
L ke ®

+
=
N—
"~

The length of the graph over [1,4] is

4 b 1
=/ V1 o+ [f'(.\-)]ldx=/ ("'+£)d.\-

| | -
S N A 1 _12
[5--(5D- ()R s

EXAMPLE 3 Find the length of the curve

z(e‘-f-e‘) 0=sx=2

Solution We use Equation (3) witha = 0,5 = 2, and

:'li (et + e™)

=3 —e)

dy\? | . s
(—) =3 (e =2 + )

Iy\? 2
I+ (‘—‘) = ;3'-(1-3-' +2+ M) = [%(c‘ + ¢-'-‘)] :

dx

The length of the curve from x = 0 tox = 2 is

\' N k. () with
L— / l + / —(L" + e l)d\. a=0> 2
0

[c‘—e‘] (e-—c 2) = 3,63 [
0

N —

Dealing with Discontinuities in dy/dx

At a point on a curve where dy /dx fails to exist, dx/dy may exist. In this case, we may be
able (o find the curve’s length by expressing x as a function of y and applying the follow-
ing analogue of Equation (3):

Formula for the Lengthof x = g(y).ce sy = d

If ¢’ is continuous on [ ¢, d], the length of the curve x = g(y) from A = (g(c), ¢)
to B = (g(d), d) is

d 2 d
=/ \ ’l + (:;—:) dy =/ \VARES [g'(y)]idy. )




0

FIGURE 6.26 The graph of

S

= (x/2)** fromx = 0tox = 2
is also the graph of x = 2y*? from

.‘.=0l0.‘v=

1 (Example 4).
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EXAMPLE 4 Find the length of the curve y = (x/2)¥? from x = O tox = 2,

SOMC O}

is not defined at x = 0, so we cannot find the curve's length with Equation (3).
We therefore rewrite the equation to express x in terms of y:

(=)
Y=\2

32 _ X Raise both sides

Solution The derivative

to the power 3,2
X = 2}"1/2. Solve for
From this we see that the curve whose length we want is also the graph of x = 2y%2 from

y = 0toy = 1 (Figure 6.26).
The derivative

dx _ 2(3)w* = 3y
dy

is continuous on | . We may therefore use Equation (4) to find the curve’s length:

Laqp. () watl
/ 1+ "‘ /\/1+9 a U
Letn ey,
2 di /9 = v,
;([ + 9‘.)1/" ntegrate, and

0 substitute back

Il
1o
¥}
=
0O

N

57(10V10 - 1) =

The Differential Formula for Arc Length

If y = f(x) and if f' is continuous on [a, b ], then by the Fundamental Theorem of Cal-
culus we can define a new function

s(x) = / V1 + [f'()]*dr &)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and mea-
sures the length along the curve y = f(x) from the initial point Fya, f(a)) to the point
Q(x, f(x)) for each xe [a,b]. The function s is called the arc length function for
y = f(x). From the Fundamental Theorem, the function s is differentiable on (a, b) and

L= ViTTror = |1+ (2)
dx ! dx)’

Then the differential of arc length is

ds= 1+ (2 a 6
dx o (6)

A useful way to remember Equation (6) is to write
ds = Vdx* + dy*, )]

which can be integrated between appropriate limits to give the total length of a curve. From
this point of view, all the arc length formulas are simply different expressions for the equation
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¥

L= fds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7).
Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of
Figure 6.27a. Thatis, ds = As.

EXAMPLE 5

Find the arc length function for the curve in Example 2, taking
A = (1, 13/12) as the starting point (see Figure 6.25).

) Solution In the solution to Example 2, we found that
. e
@ it = (2 4 LY
L+ [fw] = (4 +.\-2)'
X Therefore the arc length function is given by
A X 2
sy = [ VI+ [fORdt = ('—+ l) di
I L \4 7
R A B i
[12 r],“lz 1
To compute the arc length along the curve from A = (1, 13/12) 1o B = (4, 67/12), for
. X instance, we simply calculate
) o o _ Lo
=g -3t =

FIGURE 6.27 Diagrams for remembering
the equation ds = Vdx + dy-. This is the same result we obtained in Example 2. |

Exercisesm

Finding Lengths of Curves

Find the lengths of the curves in Exercises 1-14. If you have a grapher,
you may want to graph these curves to see what they look like.

$ ¥ NS ;A WD

10.

12.

13.

14.

y= /D + 2 from x=0tx=3
y=a¥' from x=0tox =4

r=0/3) + 1/Edy) from y=ltoy=3
=03 -y from y=1lwoy=9
x=0Y) + 1/8y) from y=ltoy=2
x=0%/6) + 1/(2y) from y=2w0y=3
y=@An? = 3/ +5, 1=x=8
y=0/D+ 2 +r+1/dx+4), 0=x=s2

bl
X
y=Inx— T from x= ltox=2

-2 _Inx = {tox =
y=3 n from x=ltox =3
821
)"—?4"4—_‘_. l=x=3
s
X | 1
| OED — —_— _S 5
¥ 5+l2.\'3' 3=x 1

x = / Vsect — ldl, —w/d=y=m/d
0

_\-=/ Vit - 1ld, -2<=x=-|
-2

m Finding Integrals for Lengths of Curves

In Exercises 15-22, do the following.
a. Setup an integral for the length of the curve,
b. Graph the curve to see what it looks like.

¢, Use your grapher's or computer's integral evaluator to find
the curve's length numerically.

15. y=x% —-1=x=2

16. y =tany, —w/3=x=0
17, x =siny, 0=y=gng
18, x= VI -y, —-12=y=1/2

19. ¥ +2y=2x+ 1 from (—1,-1)t10(7,3)
20. y

]

sinx —axcosy, O0=x=7

2L y

/ tanrdl, 0=x=mw/6
0

y
22, x =/ Vseclt — ldt, —w/3=<y=m/4
0

Theory and Examples
23. a. Find a curve with a positive derivative through the point (1, 1)
whose length integral (Equation 3) is

N A
L =/ 1 + —dv
| 4y

b. How many such curves are there? Give reasons for your answer.



24.

25

26,

27

29.

3L

32.

a. Find a curve with a positive derivative through the point (0, 1)
whose length integral (Equation 4) is

: 1
L= I+ —dy.

b. How many such curves are there? Give reasons for your answer,

Find the length of the curve
A
y = / Vcos 2t dt
0

fromx = Otox = mw/4,

The length of an astroid The graph of the equation +** +

y3¥ = | is one of a family of curves called astroids (not “aster-
0ids™) because of their starlike appearance (see the accompanying
figure). Find the length of this particular astroid by finding
the length of half the first-quadrant portion, y = (1 — A¥)¥2,
V2/4 = x = 1, and multiplying by 8.

Length of a line segment  Use the arc length formula (Equation 3)
to find the length of the line segment y = 3 — 2y, 0 = x = 2,
Check your answer by finding the length of the segment as the
hypotenuse of a right triangle,

Circumference of a circle Set up an integral to find the cir-
cumference of a circle of radius r centered at the origin. You will
learn how to evaluate the integral in Section 8.4,

If 932 = y(y — 3)% show that

,_ 0t D
ds* = Td) )

If 4x* — 3 = 64, show that

dst = :'_‘-2(5.1‘2 - 16) dx’.

Is there a smooth (continuously differentiable) curve y = f(x)

whose length over the interval 0 = x = « is always V2a? Give

reasons for your answer,

Using tangent fins to derive the length formula for curves

Assume that f is smooth on [a, b] and partition the interval [a, b]

in the usual way. In each subinterval [x._;, 3], construct the

tangent fin at the point (x;-, f(x;-)), as shown in the accompa-

nying figure.

a. Show that the length of the kth tangent fin over the interval
[x=1, A4) equals VA + (f'(v-1) Ax)

b. Show that

n
lim E(Icng(h of Ath tangent fin) =

n—> e

b
V1 + (f'(x))* dx,

6.3 Arclength 389

which is the length L of the curve y = f(x) from a to b.

¥ =)

I
\\L Tangent fin
(Xg— s SOxg—y)) | with slope
it Ax i I
]
| |
1 1 N
Xp-1 A

33. Approximate the arc length of one-quarter of the umit circle

(which is 7 /2) by computing the length of the polygonal approx-
imation with n = 4 segments (sec accompanying figure).

y

L1 1
)| 0.25 05075 1

-

34. Distance between two points  Assume that the two points (xy, )
and (x3, y») lie on the graph of the straight line y = mx + b. Use
the arc length formula (Equation 3) to find the distance between
the two points.

. Find the arc length function for the graph of f(x) = 2x%? using
(0, 0) as the starting point. What is the length of the curve from
0,0)to (1,2)?

36. Find the arc length function for the curve in Exercisc 8, using

(0, 1/4) as the starting point. What is the length of the curve from
(0, 1/4) to (1, 59/24)?

-
wn

COMPUTER EXPLORATIONS
In Exercises 37-42, use a CAS to perform the following steps for the
given graph of the function over the closed interval.
a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See
Figure 6.22.)
b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line scgments.
¢. Evaluate the length of the curve using an integral. Compare
your approximations for n = 2, 4, 8 with the actual length
given by the integral. How does the actual length compare
with the approximations as # increases? Explain your answer.
37. f) = VI -, —-1=x=1
8. f()=x"+ 0=a=2
39. f(x) = sin(mx?), 0=x= V2

40. f(x) = x*cosx, O0=x=7

- |
4. fy)=+—, —s=x=1
@ 4 + 1 *

2. fy=x - -1=sxs1

~
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6.4 Areas of Surfaces of Revolution

l—Ax—|
A B
i i
1 yi
| |

L X
vy

/

(a)

a

Ax

NOT TO SCALE
(b)

FIGURE 6.28 (a) A cylindrical surface
generated by rotating the horizontal line
segment AB of length Ax about the x-axis
has area 27ryAx. (b) The cut and rolled-
out cylindrical surface as a rectangle.

When you jump rope, the rope sweeps out a surface in the space around you similar to
what is called a surface of revolution. The surface surrounds a volume of revolution, and
many applications require that we know the area of the surface rather than the volume it
encloses. In this section we define areas of surfaces of revolution. More general surfaces
are treated in Chapter 16.

Defining Surface Area

If you revolve a region in the plane that is bounded by the graph of a function over an
interval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However, if
you revolve only the bounding curve itself, it does not sweep out any interior volume but
rather a surface that surrounds the solid and forms part of its boundary. Just as we were
interested in defining and finding the length of a curve in the last section, we are now
interested in defining and finding the area of a surface generated by revolving a curve
about an axis.

Before considering general curves, we begin by rotating horizontal and slanted line
segments about the x-axis. If we rotate the horizontal line segment AB having length Ax
about the x-axis (Figure 6.28a), we generate a cylinder with surface area 27ryAx. This area
is the same as that of a rectangle with side lengths Ax and 27ry (Figure 6.28b). The length
24y is the circumference of the circle of radius y generated by rotating the point (x, y) on
the line AB about the x-axis.

Suppose the line segment AB has length L and is slanted rather than horizontal. Now
when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From
classical geomeltry, the surface area of this frustum is 27ry*L, where y* = (y, + »,)/2 is
the average height of the slanted segment AB above the x-axis. This surface area is the
same as that of a rectangle with side lengths L and 27ry* (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by
revolving more general curves about the x-axis. Suppose we want to find the area of the
surface swept out by revolving the graph of a nonnegative continuous function
¥y = f(x),a = x = b, about the x-axis. We partition the closed interval [a. b] in the usual
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30
shows a typical arc PQ and the band it sweeps out as part of the graph of f.

2my*

NOT TO SCALE
(b

FIGURE 6.29

(a) The frustum of a cone generated by rotating
the slanted line segment AB of length L about the .:—_axis has area

y + ¥
2ary* L. (b) The area of the rectangle for y* = - s

height of AB above the x-axis.

, the average



FIGURE 6.30 The surface generated
by revolving the graph of a nonnegative
function y = f(x),a¢ = x = b, about the
x-axis, The surface is a union of bands like
the one swept out by the arc PQ,

FIGURE 6.31 The line segment joining
P and Q sweeps out a frustum of a cone.

Segment Ianlh:

p L= VA + @y

+

A AN

RS-y

FIGURE 6.32 Dimensions associated
with the arc and line segment PQ.
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As the are PQ revolves about the x-axis, the line segment joining P and Q sweeps out
a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area of this
frustum approximates the surface area of the band swept out by the arc £Q. The surface
area of the frustum of the cone shown in Figure 6.31 is 27y*L, where y* is the average
height of the line segment joining P and Q, and L is its length (just as before). Since
f =0, from Figure 6.32 we sece that the average height of the line segment is

¥ = (f(x-) + f(x))/2, and the slant length is L = V(Ax)? + (Ay)*. Therefore,
o)+ f(x —
me j..(“l)Tf(“) . (A'\.l)- + (A.‘.‘).
m(f(x-) + ) V(Ax)? + (A2

The area of the original surface, being the sum of the areas of the bands swept out by
arcs like arc PQ, is approximated by the frustum area sum

S (o) + S VA + Ay )
k=1

Frustum surface area

We expect the approximation to improve as the partition of [ a, b] becomes finer. More-
over, if the function f is differentiable, then by the Mean Value Theorem, there is a point
(cx, f(ep) on the curve between P and Q where the tangent is parallel to the segment PQ
(Figure 6.33). At this point,

ey =
f (C‘) - A.\".

Ay, = f'(¢}) Ax;.

With this substitution for Ay, the sums in Equation (1) take the form

‘5_‘,' T(f(q-) + FE)V(Ax)? + (f'(c) Axy)?

= AEer(f(.n-.) + faNVI + (f'(c) Ax. (2)
=

These sums are not the Riemann sums of any function because the points x;_,, x;, and ¢;
are not the same. However, it can be proved that as the norm of the partition of [a, b] goes
to zero, the sums in Equation (2) converge to the integral

b
/ 2a (V1 + (f'(x))? dx.

o
We therefore define this integral to be the area of the surface swept out by the graph of f
froma to b.

DEFINITION 1If the function f(x) = 0 is continuously differentiable on [a, b],
the area of the surface generated by revolving the graph of y = f(x) about the

X-0Xis 18
b A2 b
S =/ 2y /1 + (Z—:) dx =/ 2o f()V1 + (f'(x))? dx. 3)

The square root in Equation (3) is the same one that appears in the formula for the arc
length differential of the generating curve in Equation (6) of Section 6.3,

EXAMPLE 1 Find the area of the surface generated by revolving the curve y = 2V,
1 = x = 2, about the x-axis (Figure 6.34).
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(cp fley) Solution We evaluate the formula
Tangent parallel

to chord b d)‘ 2
Q S =/,, 2wy 1 + (Z) dx Eq. (3)

) with

Il

1

1
| ! .
A
l : | d_\‘ 1
I ] i —_——= —

dx  \/}

First, we perform some algebraic manipulation on the radical in the integrand to transform
it into an expression that is easier to integrate.

a=1, b=2 y=2Vx

.l'k -1 €L .\'A
I"—A.l"—'l
FIGURE 6.33 If f is smooth, the Mean

Value Theorem guarantees the existence of dy 2 1 2
a point ¢; where the tangent is parallel to 1+ (-—) = 1+ (—)

segment PQ. dx \/;

1 \/.\‘ + 1 Vx + 1
= l + == ~ =
¥ \/ o . Vix

With these substitutions, we have

2 2
s=/ 2ﬂ-2\/}—v"\f“¢r=4n/ Vil
1 x 1

2

=4m: %(.w + 1)’/1] = 8T”(s.\/i - 2V2). o

v

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and y in Equation (3).

FIGURE 6.34 In Example 1 we calcu-
late the area of this surface.

Surface Area for Revolution About the y-Axis

If x = g(») = 0 is continuously differentiable on [c, d], the area of the surface
generated by revolving the graph of x = g(y) about the y-axis is

d 2 d
S = / 2mxqy[1 + (%) dy = / gV + @OV dy. @)

EXAMPLE 2  The line segment x = 1 — y,0 < y =< 1, is revolved about the y-axis to
generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base area).

Solution Here we have a calculation we can check with a formula from geometry:

Lateral surface area = bage cuc;mference X slant height = V2.

To see how Equation (4) gives the same result, we take

o c =0, d=1, x=1-y, £=-—l,
FIGURE 6.35 Revolving line segment . dy

AB about the y-axis generates a cone whose 3
lateral surface area we can now calculate in / 1 + <j_‘> =V1 + 1= V72
Al

two different ways (Example 2).



= Integrals and

. Transcendental
Functions

OVERVIEW Our treatment of the logarithmic and exponential functions has been rather
informal until now, appealing to intuition and graphs to describe what they mean and to
explain some of their characteristics. In this chapter, we give a rigorous analytic approach
to the definitions and properties of these functions, and we study a wide range of applied
problems in which they play a role. We also introduce the hyperbolic functions and their
inverses, with their applications to integration and hanging cables. Like the trigonometric
functions, all of these functions belong to the class of transcendental functions.

7. ]. The Logarithm Defined as an Integral

420

In Chapter 1, we introduced the natural logarithm function In x as the inverse of the expo-
nential function e*. The function ' was chosen as that function in the family of general
exponential functions a*, a > 0, whose graph has slope 1 as it crosses the y-axis. The
function a* was presented intuitively, however, based on its graph at rational values of x.

In this section we recreate the theory of logarithmic and exponential functions from
an entirely different point of view. Here we define these functions analytically and recover
their behaviors. To begin, we use the Fundamental Theorem of Calculus to define the natu-
ral logarithm function In x as an integral. We quickly develop its properties, including the
algebraic, geometric, and analytic properties seen before. Next we introduce the function
e* as the inverse function of In.x, and establish ity previously seen properties. Defining
In.x as an integral and e' as its inverse is an indirect approach. While it may at first seem
strange, it gives an elegant and powerful way to obtain and validate the key properties of
logarithmic and exponential functions.

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as In x, is the value of an integral.
The integral is suggested from our earlier results in Chapter 5.

DEFINITION The natural logarithm is the function given by

X
Inx = / %d!. x> 0.
1

From the Fundamental Theorem of Calculus, In x is a continuous function. Geometri-
cally, if x > 1, then In x is the area under the curve y = 1/t fromt=11to t =x
(Figure 7.1). For 0 < x < 1, In x gives the negative of the area under the curve from xto 1,
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and the function is not defined for x = 0. From the Zero Width Interval Rule for definite

integrals, we also have
‘1
Inl =/ 7dr = 0.
1

' 1
If0 < x < I, then In x =/ }m= ~/ }m
1 1

gives the negative of this area,

)
Ifx>1,thenlnx =/ ;dl
1

gives this arca.

y=Inx

y =

l\ X
1
Ifx = 1, thenInx =/ ;:Il = (.
I

y=Inx

FIGURE 7.1 The graph of y = Inx and its relation to the function
y = 1/x,x > 0. The graph of the logarithm rises above the x-axis as x
moves from | to the right, and it falls below the axis as v moves from |
to the left.

Notice that we show the graph of y = 1/x in Figure 7.1 but use y = 1/¢ in the inte-

gral. Using x for everything would have us writing

. A
TABLE 7.1 Typical 2-place o 1,
Inx= [ 3du,
values of In x |
x Inx with.x meaning two different things. So we change the variable of integration to 1.
0 undefined By using rcc!:mg!cs 1o obtain finite approximations oll' the area under the graph of
0.05 3.00 y = |/t and over the interval between ¢ = 1 and 1 = x, as in Section 5.1, we can approx-
e = imate the values of the function In x. Several values are given in Table 7.1, There is an
0.5 -0.69 important number between v = 2 and x = 3 whose natural logarithm equals 1. This
1 0 number, which we now define, exists because In x is a continuous function and therefore
2 0.69 satisfies the Intermediate Value Theorem on [2,3].
3 1.10 - § . §
C . . . o
4 1.39 DEFINITION  The number ¢ is that number in the domain of the natural
10 2.30 logarithm satisfying

In(e) =f %dl =],
1

Interpreted geometrically, the number ¢ corresponds to the point on the x-axis for
which the area under the graph of y = 1/t and above the interval [ 1, ¢] equals the arca
of the unit square. That is, the arca of the region shaded blue in Figure 7.1 is 1 sq unit
when x = ¢. We will see further on that this is the same number ¢ = 2.718281828 we
have encountered before.
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n
- —

M-

(]

0 1
(b)

FIGURE 7.2 (a) The graph of the
natural logarithm. (b) The rectangle of

height y = 1/2 fits beneath the graph of
y = 1/xforthe interval 1 = x = 2.
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The Derivative of y = In x

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

dyoo_d L1
El""_dxlld'_-\”

For every positive value of x, we have
d . _1
dxln" = 2 (1)
Therefore, the function y = Inx is a solution to the initial value problem dy/dx = 1/x,
x > 0, with y(1) = 0. Notice that the derivative is always positive.
If u is a differentiable function of x whose values are positive, so that In « is defined,
then applying the Chain Rule we obtain

d, _ ldu
dxln U= u>0. 2

The derivative of In|x| can be found just as in Example 3(c) of Section 3.8, giving

4, |x| = %

T x # 0. 3)

Moreover, if b is any constant with bx > 0, Equation (2) gives

d 1 d

1. d.._1
(Elnb" ~ bx ll_t(b") - b.\'(b)

1
%

The Graph and Range of In x

The derivative d(Inx)/dx = 1/x is positive for x > 0, so In x is an increasing function of
x. The second derivative, —1/x?, is negative, so the graph of In x is concave down. (See
Figure 7.2a.)

The function In x has the following familiar algebraic properties, which we stated in
Section 1.6. In Section 4.2 we showed these properties are a consequence of Corollary 2 of
the Mean Value Theorem, and those derivations still apply.

b

1. Inbx=Inb + Inx 2. ln;=|nb—|nx

3. ln:i—. = —Inx 4. In X" = rlnx, rrational

We can estimate the value of In 2 by considering the area under the graphof y = 1/x
and above the interval [ 1, 2]. In Figure 7.2(b) a rectangle of height 1/2 over the interval
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| HISTORICAL BIOGRAPHY

! Guillaume Frangois Antoine de I'Hopital
(1661-1704)
Johann Bernoulli
(1667-1748)

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +090, The rule is known
today as PHopital’s Rule, after Guillaume de 1'Hopital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation,

Indeterminate Form 0/0

If we want to know how the function

i) = 2= .:in x
X
behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x — 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function F(x) under discussion by applying I'Hopital’s Rule. as we
will see in Example 1d.
If the continuous functions f(x) and g(x) are both zero at x = a, then

]im'@

X=a (X)
cannot be found by substituting x = a. The substitution produces 0/0, a meaningless
expression, which we cannot evaluate. We use 0/0 as a notation for an expression
known as an indeterminate form. Other meaningless expressions often occur. such
as 00/00, 00+ 0, 00 — 00, 0°, and 1%, which cannot be evaluated in a consistent way:
these are called indeterminate forms as well. Sometimes, but not always, limits that
lead to indeterminate forms may be found by cancelation, rearrangement of terms. or
other algebraic manipulations. This was our experience in Chapter 2. It took consid-

erable analysis in Section 2.4 to find lim,_(sin x)/x. But we have had success with
the limit

fx) — fla)

" g
a) = lim———=
f ( ) x=a * a
from which we calculate derivatives and which produces the indeterminant form 0/0

when we attempt to substitute x = a. L'HOpital’s Rule enables us to draw on our success
with derivatives to evaluate limits that otherwise lead to indeterminate forms.

THEOREM 5—L'Hdpital's Rule  Suppose that f(a) = g(a) = 0, that f and g are
differentiable on an open interval / containing a, and that g'(x) # Oon 7if x # a.
Then

LG I 4 C))

lim — = —

.\-m}; g(x) .!‘—T. ')’

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 5 at the end of this section.
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FCantion EXAMPLE 1 The following limits involve 0/0 indeterminate forms, so we apply
To apply I'Hopital’s Rule o f/g, divide I"'Hdpital's Rule. In some cases, it must be applicd repeatedly.

the derivative of f by the derivative of C 3y — sinvy . 3 —cosy 3 - cosx _
£. Do not fall into the trap of taking the () !ﬂ](‘, X = "'_"[‘) 1 = | . 2
derivative of f/g. The quotient to use is !
1'/8 . not(f/g). B
VT -1 2V 4 ]
M lim—— = lin——=z
A0 A =0 | 2
. VIi+txr-1- x/2
() ‘I!_th\) ) g::lpplyl'llﬁpilnl'.\ Rule.
. (/21 + X121 /2
= ]m(l, 2 / Still 2 apply I'Hapital's Rule again
s X
(/a0 + ¥ 0.,
= ]m}) 3 = - 8— Not 0 limitis found.
E tand
. X = sinx 0 e
(d) !E}(l’———‘-——\, o apply I'Hopital's Rule.
.1 —cosx 0
= lim s O, oyt
o 32 Still 0 apply 'Hopital’s Rule again.
_ sin x : :
. \ILOF Still g: apply I'Hopital's Rule again.
— pocosxy _ 1] 0
= mEE oLl 0L "
s 6 ot g+ limit is found.

Here is a summary of the procedure we followed in Example 1.

Using L'Hopital's Rule
To find

by I’Hépital’s Rule, we continue to differentiate f and g, so long as we still get
the form 0/0 at x = a. But as soon as one or the other of these derivatives is
different from zero at x = a we stop differentiating. L'Hopital’s Rule does not
apply when either the numerator or denominator has a finite nonzero limit.

EXAMPLE 2  Be careful to apply I'Hopital’s Rule correctly:

.|l —cosx 0
Iim ————~
—~0 X+ x 0
; sin .y 0
= lim ——= Nat
o b+ 2y "o

Itis tempting 1o try to apply 1"Hopital's Rule again, which would result in

lim <24 = 1
=0 2 2

but this is not the correct limit. L'Hépital's Rule can be applied only to limits that give
indeterminate forms, and lim,—.(sin.x)/(1 + 2x) does not give an indeterminate form.
Instead, this limitis 0/1 = 0, and the correct answer for the original limit is 0. |



Recall that - and +02 mean the sume
thing!

7.5 Indeterminale Forms and ['Hapital's Rule 405
L'Hépital's Rule applies to one-sided limits as well.

EXAMPLE 3 1In this example the one-sided limits are different.

. sinX ]
a) lim =~
(@) -0 0
oS ¥ ,
= |im5— = Positive for v+ 0)
0 2.\'
. Sinx 0
(h) lim =~
-0 N 0
. Cosx )
= lim —5— = -0 Negative for v < () B
=0 2.(

Indeterminate Forms /o0, 00, 00 —

Sometimes when we try to evaluate a limit as x = a by substituting x = a we get an inde-
terminant form like ©0/00,00+0, or 00 = 0o, instead of 0/0. We first consider the form
00/,

More advanced treatments of calculus prove that I'Hopital's Rule applies to the
indcterminate form 00/09, as well as to 0/0. If f(x) — *ooand g(x) — *oc as x —a.
then

J(v) J')
lim == = lim
x—a g(") a=ra 8 (‘)
provided the limit on the right exists. In the notation x — a, @ may be either finite or infi-
nite. Morcover, x — a may be replaced by the one-sided limits x —a* or x — a™.

EXAMPLE 4  Find the limits of these 00/00 forms:

(@) lim Sec X

. Inx N t,_l
=gz |+ tanx (b) _,'l[‘;o e (¢) lim =.

T—e0 X

Solution

(a) The numerator and denominator are discontinuous at X = /2, so we investigate the
one-sided limits there. To apply 1'HOpital's Rule, we can choose / to be any open
interval with x = 7/2 as an endpoint.

seC X oo O EA L
lim ———— ~ from the lettso we apply PHopial's Rule,
a=twy |+ iy ™
. secxlunx . 2
= lim === lim_sinx=1|
/)y seet = (m/2)

The right-hand limit is 1 also, with (=00)/(=00) as the indeterminate form. Theretore,
the two-sided limit is equal 1o 1.

o Ina Lap A Ve
(h) ,'ﬂ'l oy} Vs e Va VIV R Y 7
. e . e
) —_= = — =00
(‘) "11'2. ,[’ 1l-'!" 2-l jl-”r!ll 2 =

Next we turn our attention to the indeterminate forms 00+ 0 and 00 — o0, Sometimes
these forms can be hapdled by vsing ulgebr to convert them to a 0/0 or &0 /00 form. Here
ugain we do not meun 10 suggest that 00+ 0 or 00 = 09 is a number. They are only nota-
tions for functiona) behaviors when considering limits. Here are examples of how we
might work with these indeterminate forms,
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EXAMPLE 5 Find the limits of these 0o+ 0 forms:
(a) lil&(.r sin %) (h) l_lynl Vixlnx

Solution
. we Y o o 1. _osinh e
(0) ‘Ilmo(.\ sin _‘.) = hl.l_l.l[‘,l'(h sin h) = ,,'lﬂ}- T | oo let o= 1/x,

o0 0 converted to 2u/00

I

. . Inx
(b) lim Vylnx lim
a—0" =0t 1/ Vi

1/x

lim ———— I'Hapital's Rule applied
a—0* — 1/2\—3/1

lim (=2Vx) = 0 -
=0

]

EXAMPLE 6 Find the limit of this co — oo form:

. ( 1 l)
lim(=——3).
A—0\SINX X

Solution If x — 0%, then sin x — 0* and

1 _1l ,00-00
siny ¥
Similarly, if x— 07, then sinx— 0" and
.—'——-]--+ — 00 — (—00) = —00 + 00,
sinxy X

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

L = l = X — sinx Common denominator is x sin.x.

sinx  x xsinx ’

Then we apply I’Hopital’s Rule to the result:

: 1 1 . X — siny 0
iml——— %) = lim———— )
,,l_.o(sm x X/ =0 xsinx 0
; — cos 0

= lim —L—cosx still

+—05InX + xcosx

: sinx 0
= lim —===0. =
x—02cosx — xsinxy 2

Indeterminate Powers

Limits that lead to the indeterminate forms 1%, 0°, and 00 can sometimes be handled by
first taking the logarithm of the function, We use I'Hopital’s Rule to find the limit of the
Jogarithm expression and then exponentiate the result to find the original function limit.
This procedure is justified by the continuity of the exponential function and Theorem 10 in
Section 2.5, and it is formulated us follows. (The formula is also valid for one-sided limits.)

If limy—, In f(x) = L, then

f lim f(x) = lim ") = ot
A=

A—a

Here a may be either finite or infinite,

e - R




y=["(u)x—a)
)

-

e
LTy =g =9

-

/, "
//’_7(;)
RSy |

FIGURE 7,19 The two functions in
I'Hopital’s Rule, graphed with their
linear approximations al x = a.
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EXAMPLE 7 Apply I"'HGpital's Rule to show that lim,—- (1 + )'/* = e.

Solution The limit leads to the indeterminate form 1%, We let f(x) = (1 + x)"/* and
find lim g In f(x). Since

In ) = (1 + 0% = (1 + ),

1'Hopital’s Rule now applies to give
In(l +x)

i xX) =l
.rl-lpl}' In f) .r—ll(;l’ X 0
I
o 1 +x
= lim I"Hépital’s Rule applicd
—0*
1
=—-=]
|
H +x 15 = lim f(x) = lim &"/® = ol = ¢, B
Therefore, lim, (1 x) \\.__O,f ) Jlim

Find lim,— .\'ll'l.

EXAMPLE 8

Solution The limit leads to the indeterminate form oc®, We let f(x) = x'/* and find
lim —co In f(x). Since

Inf(x) = Inx'* = II:IT.\"

I'Hopital’s Rule gives

Inx

lango In f(x) _,ll"..,’o T P
L 1x
= }L“ga—]" I"Hdpital’s Rule applicd
0
= 0.
Therefore lim x'/* = lim f(x) = lim ™MW = 0 = |. -
=0 e A0

Proof of L'Hopital’s Rule

Before we prove I'Hdpital’s Rule, we consider a special case to provide some geometric
insight for its reasonableness. Consider the two functions f(x) and g(x) having continuous
derivatives and sutisfying f(a) = g(a) = 0, g'(a) # 0. The graphs of f(x) and g(x).
together with their linearizations y = f'(a)(x — a) and y = g'(«)(x — a), are shown in
Figure 7.19, We know that near x = a, the linearizations provide good approximations to
the functions, In fuct,

J(x) = f'(a)x = a) + ¢(x —a) and g(x) = g'(@)(x — a) + €(x — a)
where € — 0 and €= 0 as x— q, So, as Figure 7.19 suggests,

Iim@ s f@a)x — a) + &(x — a)
a8 I @ = a) + e — @)
im [la)+ & _ [
w=ag'(a) + & g'(a)

')

® lim ==

a—a g'(x)’

=

L) A0

Continuous derivatives
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' HISTORICAL BIOGRAPHY

Augustin-Louis Cauchy
(1789-1857)

5 When g(x) = x. Theorem 6 is the Mean
' Value Theorem in Chapter 4.

slope = &
g'(c)
st
P (g(b). [(b))
/ Shipere Jb) = fla)
&(b) — ga)

X (g(a). f(a))

0

FIGURE 7.20 There is at least one point
P on the curve C for which the slope of the
tangent 1o the curve at P is the same as the
slope of the secant line joining the points
A(g(a). f(a)) and B(g(b), (b))

Chapter 7: Transcendental Functions

as asserted by I"'Hopital's Rule. We now proceed to a proof of the rule based on the more
general assumptions stated in Theorem 5, which do not require that g'(a) # 0 and that the
two functions have continuous derivatives.

The proof of I'Hépital's Rule is based on Cauchy's Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove
Cauchy's Theorem first and then show how it leads to I'Hépital's Rule.

i THEOREM 6—Cauchy's Mean Value Theorem Suppose functions f and g
are continuous on [a, b] and differentiable throughout (a, b) and also suppose
g'(x) # 0 throughout (a, b). Then there exists a number ¢ in (a, b) at which

'@ _ ) = f@ |
g~ g - g@)

Proof  We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show
that g(a) # g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

vy 80~ g(@) _
g =5—"—=0

for some c between a and b, which cannot happen because g'(x) # 0 in (a, b).
We next apply the Mean Value Theorem to the function

~ f(b) - f(a)
Hﬂ—ﬂn—ﬂm-agtﬁawm-swl

This function is continuous and differentiable where f and g are, and F(b) = F(a) = 0.
Therefore, there is a number ¢ between a and b for which F'(¢) = 0. When expressed in

terms of f and g, this equation becomes

b [
F'(c) = f'(c) = H[&'(C)] =0

so that
) _ fb) — f(a) -
g'c) glb) - gla)

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding
curve C in the plane joining the two points A = (g(a), f(a)) and B = (g(b), f(b)). In
Chapter 11 you will learn how the curve C can be formulated to show that there is at least
one point P on the curve for which the tangent to the curve at P is parallel to the secant
line joining the points A and B. The slope of that tangent line turns out to be the quotient
f'/g’ evaluated at the number ¢ in the interval (a, b), which is the left-hand side of the
equation in Theorem 6. Because the slope of the secant line joining A and B is

[bh) — f(a)
g(b) — gla)’

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line
equals the slope of the secant line. This geometric interpretation is shown in Figure 7.20.
Notice from the figure that it is possible for more than one point on the curve C to have a
tangent line that is parallel to the secant line joining A and B.

Proof of I'Hdpital’'s Rule  We first establish the limit equation for the case x — a,
The method needs almost no change to apply to x — a~, and the combination of these two
cases establishes the result.
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Inverse trigonometric functions arise when we want to calculate angles from side
measurements in triangles. They also provide useful antiderivatives and appear frequently
in the solutions of differential equations. This section shows how these functions are
defined, graphed, and evaluated, how their derivatives are computed, and why they appear

s as important antiderivatives.

1 Defining the Inverses

_ y=sin”
; ~Domain: —=1=x=1
/7 Range: —m/2 =< y= 7/2

T Ay

2 The six basic trigonometric functions are not one-to-one (their values repeat periodically).

However, we can restrict their domains to intervals on which they are one-to-one. The sine

—j—‘—]'—’ o function increases from — 1 at x = —/2 to +1 at x = 77 /2. By restricting its domain to the

P interval [—/2, 7 /2] we muke it one-to-one, so that it has an inverse sin~'x (Figure 7.21),
Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

L]
-
N

FIGURE 7.21 The graph of y = sin™' x.

L x
_T
2
:
y = sinx y = cosx y = tanx
Domain: [~ /2, /2] Domain: [0, 7] Domain: (—7 /2, 7 /2)
Range: [—1,1] Range: [—1,1] Range: (—co, 00)
y y sec x Y escx
| P ]
[ :
I H
| : 1+
T 0 g T : _ 0 T
| -1r I LA 2
1 | i 1
| | H H
! ! i i
1 ! H i
| ' ! :
y = cotx y =secx y = cscx
Domain: (0, ) Domain: [0, 7/2) U (w/2,7]  Domain: [—7/2,0) U (0. = /2]

Range: (—00, 00) Range: (—00,—1] U [1,0) Range: (—00,—1] U [ 1, o0)
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" s -7
y ¥ sm.l'.—-z-s.\':-

2

Domain: [—/2, #/2]

1
1 1 hY X
N =i 0 T
(2)
v
x=siny
y=sin"lx
a Domain: [—1.1]
2 [ Range: [—m/2.7/2]
R S CAN E———
-1 710 1
L
3T
(b)

FIGURE 7.22 The graphs of
(@y=snx.—%/2=<x=7/2and

(b) its inverse, y = sin~

! x. The graph

of sin™! x, obtained by reflection across
the line y = x, is a portion of the curve

x = siny.

| The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the
arc length equation s = rf becomes
s = 8. so central angles and the arcs
they subtend have the same measure.
If x = siny, then, in addition to being
the angle whose sine is x, y is also the
length of arc on the unit circle that
subtends an angle whose sine is x. So
we call y “the arc whose sine isx.”

Arc whose sine js x

Chapter 7: Transcendental Funclions

Since these restricted functions are now one-to-one, they have inverses, which we

denote by
y=sin'y  or
v =cos 'y or
yv=tn'y or
y=cot'y or
v=sec'x or
y=cselx or

These equations are read "'y equals the arcsine

Caution

Y=

Ji

aresin .
AFCCOs X
arctan x
arceot x
aresec x

dreese x

of x" or “y equals arcsin x™ and so on.

The =1 in the expressions for the inverse means “inverse.’ It does not mean

reciprocal. For example, the reciprocal of sin xis (sinx)™' = 1/sinx = csc x.

The graphs of the six inverse trigonometric functions are obtained by reflecting the
graphs of the restricted trigonometric functions through the line y = x. Figure 7.22b
shows the graph of y = sin™! x and Figure 7.23 shows the graphs of all six functions. We

now take a closer look at these functions.

Domain: =l =x=1
. T =T
Range: -3 =y=3

0=y

Domain; -l =ux=1
Range:

=7

Domain: x=—-lorx=1 Domain: x=-lorx=1
Range: 0=y= 17.)’#1—;- Range: —%S)'S%.,\#O
) ¥

Tl
/7'_ L] 2 Ly =cscly
= o
x| y=seeclx bl
f’/ 2 L1 R e
S =2 -1 |
-~ -
/ ™
— 1 { - v \.,____._g
-2 -1 | 1 2
(d) (c)

(©

Range:

o0<y<mw

FIGURE 7.23 Graphs of the six basic inverse trigonometric functions.

The Arcsine and Arccosine Functions

Arc whose  We define the arcsine and arccosine as functions whose values are angles (measured in
radians) that belong to restricted domains of the sine and cosine functions.

cosine is x

o x
Angle whose
cosine is X

DEFINITION

y = sin~'x is the number in [—=m/2, w/2] for which siny = x.

y = cos™'x is the number in [0, 7] for which cos y = x.




Y y=cosx0sxsq
Domain: [0, 7)
1 Range:  [=1.1]

B N

X

x=cosy

ak
ye= cos~ly
Domain: [=1,1]
g"\Rnngc: [0, 7]
. X

-1 0 1

(b)

FIGURE 7.24 The graphs of
(@) y =cosx, 0 = x = 7, and (b) its

inverse, y = cos™'x. The graph of cos™'x,

obtained by reflection across the line

¥ = X, is a portion of the curve x = cos y.
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7.6 Inverse Trigonomelric Functions

The graph of y = sin™'x (Figure 7.22b) is symmetric about the origin (it lies along the
graph of x = sin y). The arcsine is therefore an odd function:

sin”(—=x) = —sin~'x. )

The graph of y = cos™' x (Figure 7.24b) has no such symmetry.

EXAMPLE 1 Evaluate (a) sin"‘(—\g—i) and (b) cos"(—%).

Solution
(a) We see that

sin™! (—?) = %

because sin(w/3) = V/3/2 and /3 belongs to the range [—m/2, 7/2] of the
arcsine function. See Figure 7.25a.

(b) We have
L 1\ _ 27
cos ‘(_ 5) =5

because cos (277/3) = —1/2 and 277/3 belongs to the range [0, 7] of the arccosine
function. See Figure 7.25b. |

y

¥ )
sin"ﬁ "3" cos"(—

3 =

u
FIGURE 7.25 Values of the arcsine and arccosine functions
(Example 1).

Using the same procedure illustrated in Example 1, we can create the following table of
common values for the arcsine and arccosine functions.

x sin”'x cos'x
V3/2 /3 /6
V2/2 /4 /4

1/2 /6 /3
-1/2 —-7/6 2m/3
-V2/2 -m/4 3m/4
—\/5/2 -7 /3 5m/6
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Chicago

e
-\
St. Louis /'

Plane position

c

FIGURE 7.26 Diagram for drift correc-
tion (Example 2), with distances rounded to
the nearest mile (drawing not to scale).

cos™)(—x)

=I\-x 0 x 1

FIGURE 7.27 cos™'xand cos™!(—x) are
supplementary angles (so their sum is 7).

FIGURE 7.28 sin™ x and cos™ x are
complementary angles (so their sum is 7/2).

EXAMPLE 2 During a 240 mi airplane flight from Chicago to St. Louis, after flying
180 mi the navigator determines that the plane is 12 mi off course, as shown in Figure 7.26.
Find the angle a for a course parallel to the original correct course, the angle b, and the
drift correction angle ¢ = a + bh.

Solution  From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 mi, had the plane been flying along the original cor-
rect course (see Figure 7.26). Knowing the flight distance from Chicago to St. Louis, we
next calculate the remaining leg of the original course to be 61 mi. Applying the Pythagorean
theorem again then gives an approximate distance of 62 mi from the position of the plane to
St. Louis. Finally, from Figure 7.26, we see that 180 sina = 12 and 62 sin b = 12, s0

. 12 :
=y 1_£ ~ A =~ °
a = sin"'7e5 0.067 radian = 3.8
b = sin' 42 ~ 0,195 radian ~ 11.2°
) X )
c=a+b =15 |

ldentities Involving Arcsine and Arccosine
As we can see from Figure 7.27, the arccosine of x satisfies the identity

cos™'x + cos”(—x) = 7, (2)
or

cos”'(—=x) = 7 — cos'x. (3)
Also, we can see from the triangle in Figure 7.28 that for x > 0,
'x + cos™'x = 7/2. 4)

Equation (4) holds for the other values of x in [—1, 1] as well, but we cannot conclude this
from the triangle in Figure 7.28. It is, however, a consequence of Equations (1) and (3)
(Exercise 113).

sin”

Inverses of tan x, cot x, sec x, and csc x

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.

DEFINITIONS .
y = tan~'x is the number in (= /2, 7r/2) for which tan y = x. |

y = cot™!x is the number in (0, 77) for which coty = x.

= sec™x is the number in [ 0, 7/2) U (7/2, m ] for which sec y = x. i

y = cs¢”'x is the number in [—7/2,0) U (0, 7/2] for which csc y = x. ‘

|

We use open or half-open intervals to avoid values for which the tangent, cotangent, secant,
and cosecant functions are undefined. (See Figure 7.23.)

The graph of y = tan™'x is symmetric about the origin because it is a branch of the
graph x = tany that is symmetric about the origin (Figure 7.23c). Algebraically this
means that

tan~'(—x) = —tan~'x;

the arctangent is an odd function. The graph of y = cot™x has no such symmetry
(Figure 7.23f). Notice from Figure 7.23c that the graph of the arctangent function has
two horizontal asymptotes: one at y = /2 and the other at y = -7 /2,



Domain:

Range:
“ \
A~ 4

x| =1

05}'51!'.)‘*%

__________ In
-3z
o
____________ s
2
\—___/”——
L X
0 1N
.
R |
3
______ 3=
““““ 2

FIGURE 7.29 There are several logical
choices for the left-hand branch of
¥ = sec”'x. With choice A,

sec”!

X = cos~'(1/x), a useful identity

employed by many calculators.
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= = sin"'x
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FIGURE 7.30 The graph of y = sin”

'x

has vertical tangents at x = —1 and

x= 1

415

7.6 Inverse Trigonometric Funclions

The inverses of the restricted forms of sec x and c¢sc x are chosen to be the functions
graphed in Figures 7.23d and 7.23e.

Caution  There is no general agreement about how to define sec ™' x for negative values of x.
We chose angles in the second quadrant between 7/2 and w. This choice makes
sec”'x = cos™' (1/x). It also makes sec™x an increasing function on each interval of its
domain. Some texts choose sec™' x to licin [—7, —7/2) for x < 0 and some texts choose
itto lie in [, 3m/2) (Figure 7.29). These choices simplify the formula for the derivative
(our formula needs absolute value signs) but fail to satisfy the computational equation
sec™'x = cos™ (1/x). From this, we can derive the identity
9
X

oc'y = cos~' [ L
sec”'x = cos7'| ¥

by applying Equation (4).

T
5 — sin

5 (5)

EXAMPLE 3

The accompanying figures show two values of tan™' x.

g lnn"\—li = mn"%—j = 1(:-
b -
2 A /1
ofvi | ! ;
tnn%: —\1/—3
x tan”'x
V3 w/3
1 w/4
V3/3 /6
-V3/3 -7/6
-1 —-/4
-V3 -m/3

The angles come from the first and fourth quadrants because the range of tan'x is
(=m/2,7[2). |

The Derivative of y = sin~!u

We know that the function x = siny is differentiable in the interval =7 /2 < y < 7/2
and that its derivative, the cosine, is positive there. Theorem 1 in Section 7.1 therefore
assures us that the inverse function y = sin~'x is differentiable throughout the interval
—1 < x < 1. We cannot expect it to be differentiable at x = 1 or x = —1 because the
tangents to the graph are vertical at these points (see Figure 7.30).
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We find the derivative of y = sin”'x by applying Theorem | with f(x) = sin.x and
S71) = sinha

—1ye 1
(r)w = ;,(_I_T‘_))' Theorem |
= ! S0 = cosu

cos (sin”'x)
L
V1 = sin(sin"'x)
= ﬁ sin(sin”'x) = x
If u is a differentiable function of x with |u| < 1, we apply the Chain Rule to get the
general formula

1 du

-, —d_ 20—} [ . Sy
e (sin""ut) = Vi [u] < 1.

EXAMPLE 4 Using the Chain Rule, we calculate the derivative

2
d X ]

I B DU
2y (sin 1x?) = V1 - 2P dr(xz) IRV =y

The Derivative of y = tan~!u

We find the derivative of y = tan™'x by applying Theorem 1 with f(x) = tanx and
f£7'x) = tan~'x. Theorem 1 can be applied because the derivative of tan x is positive for

w2 <x <7/
1)) = ——— eorem
U = s Thotrem |
1

=i J'w) = sec*u
sec? (tan™' x) °
_ |
1 + tan?(tan”'x)

.
1+ x%

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

sectu =1 + an'u

tan (tan™'x) = x

1 du
| + wldy’

%, (tgll"l:) =

The Derivative of y = sec™'u

Since the derivative of sec x is positive for 0 < x < /2 and /2 < x < 77, Theorem 1
says that the inverse function y = sec™ x is differentiable. Instead of applying the formula



FIGURE 7.31 The slope of the curve
y = sec™ x is positive for both x < —1
and x > 1.
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in Theorem 1 directly, we find the derivative of y = sec 'x, [x| > 1. using implicit dif.
ferentiation and the Chain Rule as follows:

v o= sec 'y
secy = X Inverse funcion relatonshg

d d )
—(secy) = 54X Differentinte both «ides
(I,‘( ¢ )) dx u ¢ [

dy

secytany - = | Chain Rule
? “dx
Sinee v = Loy hesin
dy 1 0.7/ 7,2 = and

dx secytany’ secvtny <),

To express the result in terms of ., we use the relationships
seccy=x and tany =t Vsecly -1 =LV - |
to get

dy
by,

o
=

xVal -

Can we do anything about the t sign? A glance at Figure 7.31 shows that the slope of the
graph y = sec”x is always positive. Thus,

p +T ifx>1
—sec'x = AVt =1
N 1 ifx < =1
-_—— ifx<—1.
xVx? -1

With the absolute value symbol, we can write a single expression that eliminates the *
ambiguity:

It

d oo
S=5ECT X

R
dx - Ve =1

If u is a differentiable function of x with |u| > 1, we have the formula

1 du
v M

A1) =
dx(sec i)

EXAMPLE 5 Using the Chain Rule and derivative of the aresecant function, we
find
-i, sec™ (5xY) =

= | i ( 5 ‘.-\ )
dx |5ad| V(5a) = p e

1
= Ao L
S¥'V25F — | (20¢") S>>0

xSyt =1
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Derivatives of the Other Three Inverse Trigonometric Functions

We could use the sume techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an casier way,
thanks to the following identities,

Inverse Function=Inverse Cofunction Identities
cos™'v = 7/2 — sinx
cot™lx = /2 — tan”'x
csc!x = /2 — sec”x

We saw the first of these identities in Equation (4). The others are derived in a similar
way. It follows casily that the derivatives of the inverse cofunctions are the negatives of the
derivatives of the corresponding inverse functions. For example, the derivative of cos™'x is
calculated as follows:

d

dx(cos".t) = ‘%(g - sin".\') Identity

=- %(sin“x)

e ————— Derivative of aresine

Vi=g

The derivatives of the inverse trigonometric functions are summarized in Table 7.3.

TABLE 7.3 Derivatives of the inverse trigonometric functions

] d(sin™"u) = 1 du | <1 ‘
L dx ﬁ——l = u2dx' u ,
d(cos™'u) _ o= da

! 2. T = ,——] = uza, ]u] <1

dian™u) 1 du

& dc 1 +uldx \
. d(cot™ u) ___ 1 _du
i dx 1 + ldx
d(sec™'n) _ ] dn
5. A= = lul\/u’Tla' IHl > |
lj(CSC-lN) i | du

6. T '"I\/ﬁm' IHI > 1

Integration Formulas

The derivative formulas in Table 7.3 yield three useful integration formulas in Table 7.4,
The formulas are readily verified by differentiating the functions on the right-hand

sides,
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TABLE 7.4 Integrals evaluated wulh inverse trlgonometrlc functions

d" =i n"(g) + C (Valid for 12 < a?)
1"

The following formulas hold for any constant @ > 0. I
I
|
|
|

/“2({;‘ i (]7“'“—'(;;> +C (Valid for all )
du I BT ) ,
3 /“ "2_02_558" 'l(‘,,‘*C (Valid for |u| > a > 0) |

The derivative formulas in Table 7.3 have @ = 1, but in most integrations a £ 1, and
the formulas in Table 7.4 are more useful.

EXAMPLE 6  These examples illustrate how we use Table 7.4.

V32 dx Vi
(ﬂ) \B 1 e = Sin_l.l’]\/_ a = 1,u= vinTable 7.4. Formula |
3 V1= 1)
ca (M e (V2\_@m_a_@
sm ( ) sin ( 2 ) 3 2 12
(b) / \/-3—‘{_% 4 \/a—du_—"— a=\3u=2uanddu/2 = dx
1. yfu .
= ism alt C Table 7.4, Formula 1

du/u = cvdu=c'd,
(c) / dx = / / dy = (hl/'(" = du/u.
-6 JVi-d Y

= %scc" I—I +C Table 74, Formula 3

EXAMPLE 7 Evalunte

oy dy
‘H)/ ¥? “')/4\144““

Solution

(a) The expression Vax — x? does not mateh any of the formulas in Table 7.4, so we
first rewrite 4x = 42 by completing the square:

G- s--d)=-GW-dt+td+td=4-(x-2)°
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Then we substitute a = 2, u = x — 2, and du = dx to get

d dx
/\/4,\’—,\'2_/\/4—0(—2)2
=/ du

— 1
sin”! (El) + C Table 7.4, Formula 1

= sin”! ("—;2> +C

(b) We complete the square on the binomial 4x? + 4x:

X 2oand du = dy

19
=
]

4x2+4x+2=4(x2+.r)+2=4(.\'2+.\'+%)+2—3
=4(.\'+%) Fl= @k 2+ L,
Then,
dx = ‘ dx = l/L a=lyu=221t1,
4,\’2 + 4x + 2 (2.\' bz l)z + 1 2 u2 + a2 and du/2 = dx
= % ' (l,um—l (%) +C Table 7.4, Formula 2
= %um"(Z.\' + 1)+ C a=lu=2+ | [
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7. 7 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions ¢' and ¢™*. The hyperbolic functions simplify many mathematical expressions and
occur frequently in mathematical and engineering applications. In this section we give a
brief introduction to these functions, their graphs, their derivatives, their integrals, and
their inverse functions.

Definitions and Identities
The hyperbolic sine and hyperbolic cosine functions are defined by the equations
—5 and coshx = %
We pronounce sinhx as “cinch.x,” rhyming with “pinchx,” and cosh x as “kosh x,”
rhyming with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent,
secant, and cosecant functions. The defining equations and graphs of these functions are
shown in Table 7.5. We will see that the hyperbolic functions bear many similarities to the
trigonometric functions after which they are named.

Hyperbolic functions satisfy the identities in Table 7.6. Except for differences in sign,

these resemble identities we know for the trigonometric functions. The identities are
proved directly from the definitions, as we show here for the second one:

2 sinh xcoshx = 2("‘ —2 c'")(e ; c")

2 L,\' =y c,‘.l’
sinhx =

elt a2 e—l\
mi=
= sinh 2v.
TABLE 7.5 The six basic hyperbolic functions |
y Y y=coshx ¥ !
et 3 3 ) | v =cothx |
) = -t \
)—2 2-,_\'=5inh.\' _\':fT 2 y=] = =
1 _,/ Bt W=z 45 @ TUEEESpeEL _f= r "
SO 70 55 et A T W | B Y Ll v - /IT-E":h ¢
~3-2-1407 23 X -3-2-1 2.7 12
_2_)-=—%- _2 vy =<l :
-3 v =cothy! i
(a) (b) (¢)
—— — Hyperholic sine: Hyperbolic cosine: Hyperbolic tangent:
Y I o ¥oeh 28 i ' V- o™
. TABLE 7.6 Identities for P LT corhx = L€ Wi ?mh.\. L 2
hyperbolic functions 2 2 coshy et e

Hyperbolic cotangent:
cosha _ e+ e

cosh?x — sinh®x = |

sinh 2x = 2 6i sh x othy = = =L T
sinh 2x = 2 sinh x cosh x vl ¢ Soht - e = et
cosh 2x = cosh?x + sinh®x e T

h2x + | o

cos L
cosh’x = . y=secha ! = eseha
inh? ~_cosh2x — |
s x —_—2 (e)
unh®x = 1 — sech’x Hyperbolie secant: Hyperholie cosecant:
| 2 | 2

cothx = | + cschix sechy = —— = =—=— o))y = r——— |

coshx €' + ¢

‘ sinhy e = ¢! ‘



TABLE 7.7 Derivatives of

_hyperboiic fl_:_nclions -
d .. = el Al
7 (sinh ) = cosh u T

d _ R du
P73 (cosh u) = sinh u G

(% (tanh «) = sech? u%

4 = —eschtp @
dx(coth u) = —csch u &

4 it du
dx(sech u) = —sech u tanh u de

d __ du
d.::(CSCh i) = —csch u coth 1 o

1

‘ TABLE 7.8 Integral formulas for
| hyperbolic functions

/sinh udn = coshu + C

/cosh wdu = sinhu + C

l /scchzudu

/ csch®udu = —cothu + C

tanhu + C

/scch utanh u du

~sechu + C

/csch ucothudu = —cschu + C
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The other identities are obtained similarly, by substituting in the definitions of the
hyperbolic functions and using algebra. Like many standard functions, hyperbolic func-
tions and their inverses are casily evaluated with calculators, which often have special
keys for that purpose.

For any real number i, we know the point with coordinates (cos u, sin «) lics on the
unit circle 2 + y? = 1, So the trigonometric functions are sometimes called the circular
functions, Because of the first identity

cosh?n — sinh?u = 1,

with 1 substituted for x in Table 7.6, the point having coordinates (cosh w, sinh «) lies on
the right-hand branch of the hyperbola x2 — y2 = 1, This is where the hyperbolic func-
tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8.
They play an important role in science and enginecring as well. The hyperbolic cosine
describes the shape of a hanging cable or wire that is strung between two points at the
same height and hanging freely (see Excrcise 83). The shape of the St. Louis Arch is an
inverted hyperbolic cosine. The hyperbolic tangent occurs in the formula for the velocity
of an oceun wave moving over water having a constant depth, and the inverse hyperbolic
tangent describes how relative velocities sum according to Einstein's Law in the Special
Theory of Relativity.

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions
¢* and ¢, have derivatives at every point at which they are defined (Table 7.7). Again,
there are similarities with trigonometric functions.

The derivative formulas are derived from the derivative of e

l . ]
(%(smh u) = %(e’_z_e) Definition of sinh u
e dufdx + e du/dx
S Derivative of ¢*
2
= cosh ll@, Definition of cosh u

dx

This gives the first derivative formula. From the definition, we can calculate the derivative
of the hyperbolic cosecant function, as follows:

1 df 1 4
(%\-(CSCh ) = ;f—t smh Delinition of esch
_ _coshudu ‘ o
= ﬂinhzua Quotient Rule for denvatives

sinh wsinh u dx

|__cosh udu
T A Rewrunge termas.

du .
= —csch i coth “l:._\' Definitions of esch e and coth i

The other formulas in Table 7.7 are obtained similurly,
The derivative formulas lead to the integral formulas in Table 7.8,
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EXAMPLE 1

(@) g;(t:mh V1 +1) =

e i cosh 5y, _
(b) jcoth\ X /——sinll Sy dx 3

1 ]
(c) / sinhlx dy = f CiSh—z—r——_—]dx
0 0 2

I
= % A (cosh 2xv = 1)dx = 3

—sinh2 1 _ 0.40672

4

In2
() / 4e*sinh xdx =
0

We illustrate the derivative and integral formulas.

sech? V1 + l’-{%(VI + 1)

=sech? V] + ¢

!
VI o+ 1

l @ 1 = sinh 5x,
n die = 5 cosh Svdy

| 1 ;
5!n|u| + C= glnlsmhir] + C

Table 7.0

][sinh 2 ]
e X

2 0

Evaluate with a calculator.

2

In2 R In2
/ 400 & € dy = / (2¢2 — 2) dx
0 2 0

[cl' = ?_\.](')"3 =(*"?2=2In2) - (1 —0)

4—-2In2 -1 = 16137

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see Chap-
ter 8). Since d(sinh x)/dx = cosh.x > 0, the hyperbolic sine is an increasing function of

x. We denote its inverse by

vy = sinh7x,

For every value of x in the interval —co < x < oo, the value of y = sinh™' x is the number

whose hyperbolic sine is x. The graphs of y =

Figure 7.32a.

Y y=sinhy y=x
L

| ’/’
: / Y= sinh~! x
[ s (x=sinhy)

= sinh x and y = sinh™'x are shown in

y ¥ = cosh.,

r =0 y=Eu ) y=x
81 p y = sech™!y 4
s i (x=sechy, 7
O e 3 y=0) 7
5k P yid
4/ / 2 nd
Ir e //

2 / v =cosh™!x | 4 ¥y =sechy
17 (x = coshy, ¥y = 0) \" =0
{ Ny I | X | Wiwnen o, |
012345678 0 | 2 3
(b) (c)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries

about the line y = x,



TABLE 7.9 Identities for
inverse hype_@cﬂc_!u_nctiqns

= 1
sech™ x = cosh™ %

b=l oy — cinh—
csch™ x = sinh <

coth™ x = tanh™ )!‘:
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The function y = cosh x is not one-to-one because its graph in Table 7.5 does not
pass the horizontal line test. The restricted function y = cosh.x, x = 0, however, is one-
to-one and therefore has an inverse, denoted by

y = cosh™'x.

For every value of x = 1,y = cosh™ x is the number in the interval 0 = y < 00 whose
hyperbolic cosine is x. The graphs of y = coshx,x = 0, and y = cosh™'x are shown in
Figure 7.32b.

Like y = cosh x, the function y = sechx = 1/cosh x fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

y = sech™'x,
For every value of x in the interval (0, 1], y = sech™ x is the nonnegative number whose
hyperbolic secant is x. The graphs of ¥ = sechx,x = 0, and y = sech™'x are shown in
Figure 7.32c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

y=tanh'x, y=cothx, y=cschlx.

These functions are graphed in Figure 7.33.

N y y
1 1 |
x=ftanhy { x=cothy : x=cschy
v =panh~'x i y=coth™'x : y=csch™lx
1
: | Pl
' i | :
1 -y
=} 0o 0 -1 0] N : 0 !
1 I | |
| | ! |
| 1 | 1
I | | 1
| | \ 1
1 | |
(a) (b) (c)

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

Useful ldentities

We use the identities in Table 7.9 to calculate the values of sech™ x, csch™' x, and coth™ x
on calculators that give only cosh™'x, sinh™'x, and tanh™ x. These identities ure direct
consequences of the definitions. For example, if 0 < x = 1, then

sech (cosh“ (lv)) - —t b
cosh (cosh" (%)) G)
We also know that sech (sech™x) = x, so because the hyperbolic secant is one-to-one on

(0, 1], we have
cosh™ (l\) = sech™x,
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Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the
derivative formulas in Table 7.10.

TABLE 7.10 Derivalivgs qfﬂngse hyperbolic funrcl‘ign_s
d(sinh™'n) | du

dx T V1 + s
d(cosh™ u) 1 du S |

dx - \/"2 = I(I.\'. o
danh™ ) | du

dv 1 - ddy’ (i
dicoth™ ) 1 du

dx T = ddy’ lul > 1
d(seeh™ w) 1 dn

& T i ede 00t
desch™ w) ] du

; i [u] V1 + 12 dx’ S

The restrictions |u| < 1 and |u] > 1 on the derivative formulas for tanh™'u and
coth™' 1 come from the natural restrictions on the values of these functions. (See Figure 7.33a
and b.) The distinction between |u| < I and |u| > 1 becomes important when we con-
vert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in
Example 2, where we calculate d(cosh™ u)/dx. The other derivatives are obtained by
similar calculations.

EXAMPLE 2 Show that if u is a differentiable function of x whose values are greater
than 1, then

Ao 1

prr (cosh™ ) oy

Solution First we find the derivative of y = cosh™'x for x > | by upplying Theorem 1
of Section 7.1 with f(x) = coshx and £7'(x) = cosh™'x. Theorem 1 can be applied
because the derivative of cosh x is positive for (0 < .

Thyorem |

T |
(f "' = TR

B |
sinh(cosh™"y)

R R 711 LR Tt LT

\/cushz(c‘)“l“',\-) -1 sinhn = Veosh'y - |

— (

= — cah (cosh Yyp =
Vil =1

|Gy = sinha
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“The Chain Rule gives the final result:
q “l gy g g
pr (cosh™'u) e

With appropriate substitutions, the derivative formulas in Table 7.10 lead to the inte-
gration formulas in Table 7.11. Each of the formulas in Table 7.11 ¢an be verified by dif-
ferentiating the expression on the right-hand side,

f TABLE 7.1 l_ lntengs leading to inverse hyperbolic functions

1. /—\/;—“T'—‘z=sinh"'(;—:)+c. a>0
2. /%=cosh"(g~) + C, u>az>0
" W —a
) %Innh" (:—;) +C i < q’
n
- _/a’-u’— 1 "
;;colh“'(;—,- + C, i? > al
o <u<a

! + C, uzA0anda >0

du |
./ uVa? = u o i

5 / . L eseh
) wNa® + 1 a=

EXAMPLE 3  Evaluate

|
f 2dx
o V3 + 4x?

Solution The indefinite integral is

2dx =/ du e 2 du o= 2dv. g = V3
Vitae JVa+a | ) '

Sinh"(%) + C Formula from Table 7.1

sinh™! (%) + C.

Iherefore,

'"'“z"ﬁ'— = sinh"(-;'-) e h! inh™!
0 V34 4! NZYAR s - sinh ' ()

2
Va3
—
= sinh '(-\ﬁ) ~ 0 = (,98663. El



