Why Digital Control Instead of Analogue?

Since almost all control functions can be achieved with analogue
(continuous-time) hardware, one is tempted to ask why we might wish to
study digital control theory. Engineers have been long interested in the
possibility of incorporating digital computers into the control loop because
of the ability of a digital computer to process immense quantities of data and
base control policies logically on the data. If we follow the historical
development of digital computers, we find that they were initially very
complex large devices which generally cost too much for application in
control systems of a moderate degree of complexity. At this stage cost
limitations relegated digital control to only the largest control systems such
as those for oil refineries or large chemical-processing plants.

With the introduction of the minicomputer in the mid-1960s the
possibilities for digital control were greatly expanded because of reduction
of both size and cost. This allowed application of computers to control
smaller and less costly systems. The advent of microprocessor unit in the
early 1970s has similarly expanded the horizons, since capabilities which
formerly cost thousands of dollars may be purchased for, at most, a few
hundreds of dollars. These prices make digital control hardware competitive
with analogue control hardware for even the simplest single-loop control
applications. We now see that microprocessor units complete with system
controller, arithmetic unit, clock, limited read only memory (ROM), and
random-access memory (RAM) on a single LSI, 40-pin, integrated circuit
chip are available for less than five dollars. It is acknowledged that other
hardware is required for A/D and D/A conversion but inexpensive hardware
is also available to accomplish these tasks. Some of these devices are also
beginning to appear aboard the CPU chip. A cost which is not easily
estimated is that of software development which is necessary in control
applications, but it is safe to say that the more complex the control task the

more complex the software required regardless of the digital system



employed. Some of these difficulties are now being alleviated by
development of high-level languages, such as PASCAL and C-languages,
especially suited for microprocessor application. The availability of
hardware in LSI form has made digital hardware attractive from space,
weight, power consumption, and reliability points of view.

Computational speed is directly affected by hardware speed, and
hence there has been considerable effort to increase component speed,
which has increased exponentially in the past two decades.

Thus, the development of LSI circuit density which is, in itself, a
measurement of the progress in the field of digital hardware. It is interesting
to note that the Intel 8086 microprocessor has in excess of 30,000 transistors
on a single integrated circuit chip.

Another indicator of speed of technological development is the cost
of hardware to accomplish a particular task. If one examines the cost history
of a particular line of microprocessors it becomes clear that the price is

halved yearly.

The Computer as a Control Unit

Let us consider a single-loop position servomechanism in continuous-
time form as shown in Fig.(1). The reference signal is in the form of a
voltage, as is the feedback signal, both generated by mechanically driven

potentiometers.
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Figure (1) Position servomechanism with continuous signals



Let us now investigate how this simple task, outlined in Fig.(1),
might be accomplished by employing a digital computer to generate the
signal to the power amplifier. We must postulate the existence of two
devices. The first of these devices is the analogue-to-digital (A/D) converter
which will sample the output signal periodically and convert this sample to a
digital word to be processed by the digital computer and thus generate a
control strategy in the form of a number. The second device is a digital to
analogue (DAC) converter which converts the numerical control strategy
generated by the digital computer from a digital word to an analogue signal.
The position servomechanism is shown in Fig.(2) controlled by a digital
computer.

Generally, the A/D and D/A converters operate periodically and
hence the closer together in time the samples are taken, and the more often
the output of the D/A converter is updated, the closer the digital control
system will approach the continuous-time system. However, it is not always
desirable to have the system approach the continuous system in that there

are desirable attributes to a discrete-time system.
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Figure (2) Digitally controlled positioning system

The Single-loop Digital Control System

There are several configurations of a single-loop control system, two

of which are shown in Figs.(3-a) and (3-b). In both cases a single



continuous-time variable y(t) is being controlled to follow some reference
signal which might be zero or constant as in the case of a regulator.

The signal leaving the digital computer in both cases is a periodic
sequence of numbers which represent the control strategy as generated by
the computer. The input to the digital computer is a periodic sequence of
numbers which represent the periodic samples of the continuous signal
which is the input to the A/D converter. The purpose of developing digital
control theory is to find desirable algorithms by which the digital computer
converts the input sequence into the output sequence which is the numerical
control strategy. The design process is one of selecting the algorithm

reflected in the function D(z).
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Figure (3) Several configuration of a digital control system



Advantages of digital controllers over analogue controllers:

One must recognize that many physical systems have inherent
sampling, or their behavior can be described by sampled data or digital
models. Many modern control systems contain intentional sampling and
digital processors. The sampled-data and digital control are characterized
by: Improved sensitivity, better reliability, no drift, less effect due to noise
and disturbance, more compact and light weight, less cost, and more
flexibility in programming.

Some of the advantages of digital controllers over analogue controllers
may be summarized as follows:

1 Digital controllers are capable of performing complex computations with
constant accuracy at high speed. Digital computers can have almost any
desired degree of accuracy in computations at relatively little increase in
cost. On the other hand, the cost of analogue computers increases rapidly
as the complexity of the computations increases if constant accuracy is to
be maintained.

1 Digital controllers are extremely versatile than analogue controllers. The
program which characterizes a digital controller can be modified to
accommodate design changes, or adaptive performances, without any
variations on the hardware. By merely issuing a new program, one can
completely change the operations being performed. This feature is
particularly important if the control system is to receive operating
information or instructions from some computing center, where economic
analysis and optimization studies are being made.

1 Because of inability of conventional techniques to adequately handle
complex control problems, it has been customary to subdivide a process
into smaller units and handle each of these separate control problem.
Human operators are normally used to coordinate the operation of units.
Recent advances in computer control systems have caused changes in this

use of industrial process controls. Recent developments in large-scale



computers and mathematical methods provide a basis for use of all
available information in the control system. In conventional control, this
part of control loop is being done directly by humans.

1 Digital components in the form of electronic parts, transducers and
encoders, are often more reliable, more rugged in construction, and more
compact in size than their analogue equivalents. These and other glaring
comparisons are rapidly converting the control system technology into a
digital one.



Z-transform

The simple substitution
z=e
Converts the Laplace transform to the z transform. Making this substitution into the Laplace

transform of the sampled signal

F'6)=Z [f (O]=F(2)= fO)+f(T)e ™+ f(2T)e™" +--
=fO)+ f(M)z +f@T)z72+---

=> f(nT) 2" (1)
n=0
where F(z) designates the z transform of f(t). Because only values of the signal at the

sampling instants are considered, the z transform of f (t) is the same as that of f " (t).

Z Transform by Definition:

In the following analysis, the z transform is derived using Eq.(1), where f(nT)is the

function for which the z transform will be obtained.

Impulse function: o (KT)

The discrete unit impulse function is defined as 1

STy =1+ n=0
o otherwise

<
<

T T 0 T 27 -
The z transform of the delta function & (nT) can be given as

Z {5(nT) }=iul(nT) 1" =2"=1
n=0

Discrete unit step function;

u(nT)

The discrete step function is defined as

1 n>0
u(nT) =

0 n<0 ) .
The z transform of the unit step 3T 2T T 0 T 2T 3T 4T ..

Z { u(nT) }=U(z)=iu(nT) 2" =1+t vz 4
n=0

Multiplying both sides of this last equation by z results in



U@ =z+1+z2 2% +23 +....

U(2) (z-D) =2z or U(z)=i

Discrete ramp function:

. . ! T
The discrete ramp function is defined as X‘(;n )
4T
X(nT) nT n=0
= 3T
0 n<0
then 21
o0 o0 T
X@2)=>nTz"=T> nz™" < .
@ nZ:(:) % = v o T ot 31 a - T
since nz"=-z i(z‘"), then
dz
X(z)=—Tzi iz‘“
dz \ =%
. = z
since 2" = . then
25 ey
Discrete cosine function:
Let xEPT):Acos(wnT +¢)
Acos(onT + n=0
Ty = | Acos(@nT +9) L
0 n<o0
DR R & 3T;5‘7I' 7Tngmigr >nT

The first step is the choice of the alternative representation of cosine function using Euler

identity:

Then,



X (2) =§Zej¢ej‘“”z‘“ +§Ze‘j¢e‘j‘“”z‘”

n=0 n=0
A zel? A ze )
= — + = :
27— 2 7—el?

Discrete exponential decay function:

x(nT)=e2"
Let t
g-ant n>0 1
x(nT) =
{0 n<0 !
Then, e
e
X(z)=) ez DT e i T >
n=0
0 \4
:Z(eaTZ)—n
n=0
~ (eaTZ)
(e¥Tz)-1
Z _
:—aT f |Z| >e at
7—e"

In Table (1) is given a partial listing of Laplace transforms and corresponding z
transforms for commonly encountered functions.

Z Transform Using Partial Fraction:

When the Laplace transform of a function is known, the corresponding z transform may
be obtained by the partial fraction

Ex: Determine the z transform for the function whose Laplace transform is

s(s+1) s s+1

From Table (1), the z transform corresponding to 1/s is z/z —1 and that corresponding to
Ys+1is z/z—e™" . Thus,



z z z(1l-eT)
F(z)= - — = ~
z-1 z-e (z-D(z-¢")
Table (1) z transforms
Time function Laplace Transform Disfﬂr?ég;i]me AT
6(t) 1 6(nT) 1
u(t) 1 u(nT) L
S z-1
. 1 T zT
— n
52 (z-1)2
t? 1 (nT)? 2(z+DT?
2 s 2 2(z-1)°
1 Z
—at —-anT
¢ s+a ¢ z—e
1 Te ™
t —aii T —anT
€ (s +a)? nte (z—e)?
1 z
t/T —_— n a> O
) s—(L/T)In(a) a —a @0
. . zsin(wT
sin(wt) > @ > sin (onT) 5 (@)
S“+w 2 —2zcos(wT) +1
2
- T
cos(mt) > > > cos(wnT) 22 zcos(@T)
S°+w z°-2zcos(wT) +1

Ex: Determine the z transform of cos(wt).

It is known that the Laplace transform is s/(s?+w?).

expansion gives

Performing a partial-fraction

_ U2 12
S+jw S—jo

L {cos(wt)}

52+a)2

The corresponding z transform is



Z Transform Using Residue Method:
This is a powerful technique for obtaining z transforms. The z transform of f”(t) may be

expressed in the form

F(2)=Z [ (t)] = residues of F(s)—

- at poles of F(s)
z—-e

When the denominator of F(s) contains a linear factor of the form s—rsuch that

F(s) has afirst-order pole at s = r, the corresponding residue R is

R:urﬂ(s—r){F(s) ZsT}

sor Z-¢€

When F(s) contains a repeated pole of order q, the residue is

As is illustrated by the following examples, the determination of residues is similar to
evaluating the constants in a partial-fraction expansion.
Ex: Determine the z transform of a unit step function.
For F(s) =1/s, there is but one pole at s=0. The corresponding residue is

R=Iims{l Z T}:_z
50 LS z-e® z-1

Ex: Determine the z transform of e ™",

For this function, F(s) =1/(s+a), which has but one pole at s=-a. Thus,

. z z
R=1Ilim (s+a) =
s>-a {(Ha) z—eST} -
Ex: Determine the z transform of for the function whose Laplace transform is F(s) = ( ! D
S (s+

The poles of F(s)occur at s=0 and s=-1. The residue due to the pole at s=0 is

: z z
R, =lim s =
0 L (s+1) z_eST} z-1

The residue due to the pole at s=-1is

Adding these two residues results in



2 z z

z(1-e™)

R=>» R=R+R, =
él 1 2 -1 7-e

Ex: Determine the z transform of cos(wt) .

The Laplace transform is
s S
s?+0®  (s—jo)(s+ jo)

F(s) =

The polesareat s= jo and s=—jw. Thus,

Adding these verify the previous result
22 —zcos(wT)

2
R=Y"R, =R, +R, =
iZ=1:I tP T 22 _27c08(wT) +1

T -

(z-D(z-eT)

Ex: Determine the z transform corresponding to the function f(t) =t.

The Laplace transform is

1
F(S)ZS—2

This has a second-order pole at s=0. Thus, the residue becomes

1 2-1
(2 1)' s—0 d >

{(S -r)? I:(S)

=

or



Theorems

+ Initial value theorem:

Suppose f(nT) has z transform F(z) and lim F(z) exist, then the initial value f(0)
Z—>0

of f(nT) isgiven by

Proof: Note that

F(2) =if(nT) 27" = f(0)+ f(T)%Jr f(2T)i2+...
n=0 Z

letting z — oo, the theorem is verified.

+ Final value theorem :

Suppose f(nT) has z transform F(z). Then,

Proof: Consider the following sums S, and S,

Dividing the second series by z and then subtracting the second from the first gives

(1—%jf(o)+...+(1_%j f[(n—l)T]+ f(nT)

Zn—1 Zn

Taking the limit as z approaches 1 gives

When n is very large, S, ; =S, ~F(z). Thus, the final-value theorem given by Eq.(1) is

verified.

Ex: For a discrete data system with transfer function



H(z)=Y(Z)= : z+1
U(z) z°-14z+048
and a unit step input for which the z transform is

find the final value of the response sequence y(nT). The response in the z domain is

z(z+1)
(22 -1.42+0.48)(z-1)

Y(2) =
and employing the final value theorem
y (o) = lim {Z—‘l Y(z)}
71 z
+ Shifting property:

Left shifting: When f(nT) is delayed k sampling instants, the function f (nT —KkT)shown in
Fig.(1-b) results. The value of f(nT —kT) when n=k is f(0), the value when n=k +1 is
f(T), etc. The z transform of f(nT —KT) is

Z[f(nT—kT)zi f(nT —KkT)z™"

n=0
= f(-kT)+ FA-KT)+--+fO) z ¥+ f@)z*Y 1 £(2)z* 2 4...
n=0 n=1 n=k n=k+1 n=k+2

— f(o)z—k + f(l)z—(k+1) + f(z)z—(k+2) Tens
27 (FO)+ f@z 7+ F(Qz2+--)
=2 % F(2)

Right shifting: When the function f (nT) of Fig.(1-a) is shifted one sampling period to the left,
the function f (nT +T)shown in Fig.(1-c) results. The value of f(nT +T) when n=0 is
f(T), the valuewhen n=1is f(2T), etc. The z transform of f(nT +T)is
ZIfT+T)=) f(nT+T)z" = f(T)+ f@T)z 7+ f@T)z 72+
n=0
Multiplying through both sides by z* and adding f (0) to both sides gives
2P ZFMT+T)]+ )= fO)+f(T)z +f@2T)z 2+ =F(2)
Thus,



Z[f(nT+T)]=zF(2)-z f(0)
Similarly, it follows that
Z[f(nT+2T)]=2°F(2)-2* f(0)-z f (1)

In general,

+ Multiplication by (nT):

The z transform of nT f(nT) is

Proof: To verify this theorem, note that

-T ziF(z)z—T zi[f(0)+ fMzt+f@T)z7%+--]
dz dz

=T[f(TM)z " +2f(T) 22 +3f(@T)z > +-+]
=T[fM)z +2f(T)z 2 +3f@T)z 3 +--]

=>nT f(nT)z™
n=0

=Z[nT f(nT)]

+ Multiplication by a":

The z transform of " f (nT) is

Proof: This theorem is readily proved by placing z by z/a in F(z)

af(n) af(mn
z 7?2

F(z/a)=f(0)+

-1 2 © -n
F(z/a)=f(0)+ f(T)(éj + f(2T)(éj T f(nT)(éj
n=0

The right side is the z transform of a" f (nT).



Ex: The z transform of a unit step function,

1 >0
f(nT) = "
0 n<0
is given by F(z) = i, then
z-1
Z[a"] = F(z/a) =213 ___Z
(z/a)-1 z-a
f(RT) f(nTﬂ_kT) f(:l‘T+l)

Figure (1) Translation of a discrete function f(nT)

A listing of z transform theorems and properties is given in Table(2)

Table (2) Properties of the z transforms

f(nT) Z[f(nT)]
a f(nT) a F(z)
fi(nT) + f,(nT) F(2)+F,(2)
f(KT —nT) 2" F(2)
f(KT +T) zF(z)-z (0)
f (kT +2T) 22 F(z2)-z2 £(0)—z f(T)
f(KT +nT) 2"F(z)-z" f(0)-z" f(T)——z F[(N-DT]
d
nT f(nT) _ZTE(F(Z))
e ™ f(nT) F(ze? )
a™ f(nT) F(z/a)
d d
Ef(nT,a) EF(z/a)




Inverse z transform

Inspection of Table (1) shows that z transform tend to be more complicated than
corresponding Laplace transforms. Fortunately, there are some relatively simple techniques for

obtaining inverse z transforms.

+ Partial-Fraction Method:

In this method, obtaining x(nT) is based on the partial fraction expansion of X (z)/z

and the identification of each of the terms by the use of a table of z transforms. Note that the

reason we expansion we X (z)/z into partial fractions is that the functions of z appearing in

tables of z transforms usually have the factor z in their numerators.

Consider X(z) given by

2™ +bz™t +..+b, ,Z+b,

X(z):bo

- (m<n)
a,2" +a

n-1
2"+ +a,4z+a,

O Factor the denominator polynomial of X(z) and find the poles.

O Expand X (z)/z into partial fractions so that each of the terms is easily recognizable in a
table of z transforms.

Ex: Find x(nT) if X(z) is given by

X (Z) = 10—2
(z-D(z-2)
we first expand X(z)/z into partial fractions as follows

Then we obtain
X(Z):—lo z 10z
z-1 z-2
From table (1), one can obtain

2Lt |=1, oz A=
z-1 z2-2

x(nT)=10(-1+2") n=0,12, ...

Hence

Ex:Find f(nT) if F(z) is given by
l-e ")z

F(z)= z-D(z-eT)



Performing a partial fraction expansion of F(z)/z gives

Fo [ a-e™) | [k K
2 @-De-eN)] [ (@z-eT)

z z
F(Z)_|:(Z_1) - (Z_e—T):|

From Table (1), the corresponding discrete time function

or

f(nT)=1-e"" n=0,1 2, ...
+ Residue Method:

The third method of finding the inverse z transform is to use the inversion integral. Note
that

F(z) =if(nT) 27" =f0)+f(M)z L +f(2T)z 2 +---
n=0

By multiplying both sides of this last equation by 2" we obtain
F(z)z2" = f(0)z" "+ f(T) 2" %+ f(2T) 2" ® +-- (+)

If s= o+ jo is substituted in this last equation, we obtain z =e©*I)T or
lz|=e°", z#£oT
If the poles of L[X] lie to the left of the line s = o, in the s plane, the poles of Z [x] will lie inside

the circle with its center at the origin and radius equal to e®' in the z plane.
Suppose we integrate both sides of Eq.(*) along this circle in the counterclockwise

direction:
§F(z)z"-1dz =§ f(0)z"*dz +§ f(T)z"2dz +.--+§ f(T)z Yz +---

Applying Cauchy's theorem, we see that all terms on the right-hand side of this last equation

are zero except one term
j? f(T)z tdz
Hence
§F(z)z"-1dz =§ f(T)z tdz

from which we obtain the inversion integral for the z transform

x(nT) =%§ X(z) 2" dz



which is equivalent to stating that
x(nT) = Z[residues of X (z)z"*at polesof X(z)]
In particular, the residue due to a first order poleat z =r is

R=lim(z-r) [F(z) z"]

Similarly, the residue due to a repeated pole of order q is
1 . det

) (q-1)! ianr dz9t [(z-r)?F(2)z" 1]

Ex: Using residue method, find f(nT) if F(z) is given by

. (l-eTM)z
F(z)= (z-1(z-eT)

Application of the residue method to determine the inverse of the above equation

Adding these residues gives

f(nT)=1-e"" n=0,123, ...
Ex: Determine the inverse z transform for the function
F(z)=— 2
(z-1)

This function has a second-order pole at z =1; thus

For f(nT)=nT , the corresponding time functionis f(t) =t .



Sampling Theory

The Unit-impulse Train

Let us first consider the Dirac delta or unit-impulse function located
at t=a as shown in Fig.(1). The delta function will be denoted as &(t —a)and

it will be defined by the relations

1 t=a
and
T&(t—a) dt=1 (2)

One should first state the shifting or sampling property of the impulse

function which is given by

u@=ffmga—@m (3)

Let us define a periodic train of unit-impulse function &(t-a) as

illustrated in Fig.(2). This so-called function can written as a series of Dirac

delta functions or

or(t) = Zé(t—kT) 4
k=—o0
S(t—a) or (1)
A A
A
g 3 > time 0 T 2t 3 4 "™
Figure (1) Dirac delta or unit Figure (2) Unit impulse train

impulse function



Since this train of impulse functions is a periodic function with a

period T and fundamental radian frequency w, =27 /T, it is reasonable to

discuss the complex Fourier series of this periodic function or
Sr(t)= Y c el ®)
N=—00

where the complex Fourier series coefficients are given by

(6)
Since the interval of integration includes only the impulse function at the

origin, one can employ the shifting property of that impulse to yield

(7)

which implies that the Fourier series representation of o;(t) is non-

convergent. This tells us that the contribution of each frequency to the

waveform is equal. The infinite train of impulse may be written as

(8)

The Impulse Sampling Model

Let us generate the sampled version f *(t) of some arbitrary function
f (t) to amplitude-modulate the impulse train o (t). This is simply done by
multiplying the two functions together as shown in Fig.(3). Then, it is clear

that f*(t) is given by
()= ) S 5(t—KT) )
k=—o0

It is assumed here that there were no jJumps in the function f (t) at the
sampling instants. Let us now consider temporal functions which are
Laplace transformable (i.e., functions which are zero negative time and of
less than exponential order), where the transform is defined in the usual

sense by

Fs)=E [f(®)]= (10)



If expression (8) for the impulse train has been substituted in Eq.(9), one can
get
(11)

f () T T T > time o (t)
|10 { [
» time f&» f () T

Figure (3) Impulse train modulator

Now let us find the Laplace transform of f*(t) and call it F*(s) by using
the definition of the Laplace transform
(12)

In the light of the definition of F(s) given by expression (10), one
can see that the terms under the summation are the same except for the
arguments being shifted by jnw, so

(13)
This expression states that the operation of impulse sampling f (t) has made

the Laplace transform of f*(t) periodic in the s domain.

The Samping Theory

The implications of expression (13) are wide and sweeping, but one
of the most interesting is the sampling theorem. Let us consider only-signals
f (t) which have Fourier transform F(jw). The operation of sampling gives
a sampled frequency domain function which can be evaluated by simply

evaluating the expression (13) on the jw axis, or



F'(jo) == ¥ F(jo - jno,) (14)

where F(jw) is the Fourier transform of the unsampled function f (t). This
expression states that portions of F(jw) which existed for o >w,/2 are
now mapped down into the primary frequency band —w, /2 < o < w,/2 and

from the sampled function it is impossible to separate these contributions
from those which came from that band in the unsampled function. This is
the dilemma of sampling in that by sampling, information about the signal is
lost which can never be retrieved unless the signal has no frequency content

greater than oy /2.

In short, it is best to now state the sampling theorem as first advanced
by Nyquist (1928) and later proven from an information theoretic point of
view by Shannon (1948). The sampling theorem states:

If a signal contains no frequency components above o, rad/sec, then
it is completely described by its sampled values uniformly spaced in time
with period T <(z/w,) sec. The signal can be reconstructed from a
sampled waveform f*(t) by passing it through an ideal low-pass filter with

bandwidth o; where o, <w; <o, -, wWith o, =27/T . The frequency

o, 1s referred to as the "Nyquist frequency.”

Example 1:
Consider a function which has a magnitude spectrum (| F(jw)|) as

indicated in Fig.(4). This signal has a cutoff frequency of , rad/sec and we

shall consider sampling this signal at different rates denoted by sampling

frequency o .
|F(jo)l |F*(jo)]

o, > 20,

A
A 4
S
A




|F (jo)| |F (jo)l

A

20, o, <2,

I I > < : ‘:\.1 \ 2 ; a)
Figure (4) @ffect®f sampling frequency on spectra of sanfdeddpand-limited

1 When o, > 20, , the expression (14) indicates that the spectrum will be
periodic, but since o, > 2w, , there will be no overlapping so we get the
spectrum of Fig.(4-b).

1 If the sampling frequency has been decreased to exactly twice the cutoff

frequency of the signal, then we get a spectrum as indicated in Fig.(4-c)

still with no overlapping.
0 If the sampling frequency is lowered such that o, <2w,, now the

contributions of adjacent terms are additive in a band of frequencies

around the frequency w, /2 as illustrated in the spectrum of Fig.(4-d).

We see that by sampling at too low a rate some of the lower end of the
second lobe of the periodic spectrum has crept down into the primary
frequency band —w,/2<w < w /2. There is no way to process the
resulting sampled data to get rid of this contribution, which is called
"aliasing" or "folding."
Example 2:
Consider the following function of time:
f(t):{ “t 2t <
5e7" sin(3t) —3e t>0
The Laplace transform of this function is

_ -3s(s—-3)
Fs) (s+2)(s+1)? +32

for which the pole-zero plot is shown in Fig.(5-a). Now if we sample f(t) to

create f*(t) at a rate of w, =4 rad/sec, we see that the complex pair of



poles lie outside the primary strip in the s-plane, indicating that we did not
sample fast enough to get accurate information on the frequency content of

f(t) . If we investigate the implication of the expression (13), we see that

the complex poles at (-1, £ j3) are now mapped down into the primary
strip at(-1, £+ jl)which creates frequency content in f*(t) which was not

present in f(t). The pole-zero plot for f*(t) is shown in Fig.(5-b).

jo
A
x 13
| j2
L j1
< K—t o0—- 0
2 -1 2 3
-1
-2
X -3 (a)
A 4

Figure (5) Pole-zero plots for a function and its sampled version: (a) pole-zero
plot of F(s); pole-zero plot of F(s) with @, =4 rad/sec.

HW1. For a function with the Fourier magnitude spectrum shown in Fig.(6),
sketch the Fourier spectrum of the sampled version of the waveform for
sampling periods of (a) 27 /100 (b) 27 /200.

HW2. A waveform has a Fourier magnitude spectrum illustrated In Fig.(8).
Sketch the spectra of the sampled function if it is sampled at frequencies of
(a) 800 rad /sec; (b) 1600 rad/sec.

|F(jo)] |F(jo)]

| | /\
! ! L )

< } — @ 0 200 400 800 > @
50 l 50

A




Figure (6) Figure (7)

HW3. A periodic waveform with a fundamental frequency of 200 Hz has the
Fourier magnitude spectrum illustrated in Fig.(8). Sketch the resultant
spectrum if the waveform is sampled at frequencies (a) 1100 Hz; (b) 1000
Hz.

|C, |
A
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2- [
P T | N
- 0 200 400 600 ”
Y

Figure (8)
HW4. Sketch the pole-zero diagram for the sampled versions of the time
domain functions associated with s-domain functions given below for a

sampling frequency o, =10 sec.

5 S+ 2 s? +4s+8
a) F(s)=—— b) G(s) — >~ c) Hs)=> 1772
) FO) sS+5 ) ()sz+4s+40 ) HE) s? +4s+20



Pulse Transfer Function

In Fig.(1) is shown a sampling switch followed by a linear element
whose transfer function is G(s). The transformed equation for the output Y(s) is

Y(s)=F (s)G(s) 1)
O For 0<t<T, the response y(t) is that due to the first impulse at t =0 of area
f(0). Thus, for this interval

yt)=L f (0) G(s)] = (0) L™[G(s)] = (0) 9 (t)
where g(t)= L [G(5)] is the response of the linear element to a unit impulse

which occurs at t=0.
Q For T <t< 2T, the response y(t) is that due to the first impulse at t=0 plus
that at t =T . For this interval, F"(s) = f (0)+ f(T)e ™. Thus,
Y(s)=[f(0)+ f(T)eT™1G(s)
Inverting gives
y(®) =fO)g®+ f(T)gt-T)
where g(t-T)= L*[G(s)e ™] is the response of the linear element to a unit

impulse which occurs at t=T.

Q For 2T <t <3T, the response y(t) becomes
y(t)=f(0)g(t)+ f(M)gt-T)+ F(2T)g(t-2T)

In general, the response y(t) is

y® = f(nT)gt-T) )
n=0

F(s) o ot O, GGs) ——Y(s)

Figure (1) A sampling switch followed by a linear element



When n is such that nT >t, then g(t—nT)is zero. That is, the impulse

response is zero for negative time. For t =0,T,2T,..., etc, EQ.(2) becomes

y(0)=1(0)g(0) + f(T)g(=T) + f(2T)g(=2T) +---

=0 =0
y(T) = f(0)g(T)+f(T)g(0)+ f(2T)g(-T) + f(3T)g(-2T) +--- 3)
=0 =0

y(2T) = £(0)g(2T) + f(T)g(T) + f(2T)g(0) + F(8T)g(-T) + F(8T)g(-2T) +---

=0 =0

One can classify the response y(t) depending on the order of denominator

with respect to that of numerator:

Q

When the order of denominator exceeds the order of numerator by only one,
the response function y(t) becomes discontinuous at the sampling instants,
as shown in Fig.(2). Then, Eq.(1) yields the values of y(t) immediately
after the sampling instants [that is, y(0+), y(T+), y(2T+),...].

When the order of denominator exceeds the order of numerator by two or
more, y(t) is continuous at the sampling instants. Then, Eq.(1) yields the

values at the sampling instants.

y(t)
A

N

>t

0 T 2T 3T 47
Figure (2) Response function which is discontinuous at the sampling instant

Sampling of Y (s) gives

Y (s) = y(0) + y(T)e™ ™ + y(2T)e 2™ +...

Substitution of the values from Eq.(1) into the preceding expression gives:



Y'(s)=f(0)g(0)+[f(0)g(T)+ f(T)g(0)]e™™ +---
= f(0)[g(0)+ g(T)e ™ +g(2T)e %" +--]
+f(M)e ™ [g(0)+gMe ™ +g(2T)e™?" +--]

Y(s)=[F(0)+ F(T)e ™ + f(T)e?™ +--1[g(0) + g(T)e "* +g(2T)e %" +--]
Thus,

Y(s)=F(s)G(s) (4)
The term G (s) is called the pulse-transfer function.

Comparison of Eq.(1) and Eq.(4) reveals a basic mathematical

relationship for starring quantities. That is, starring both sides of Eq.(1) gives

Letting z =e'™ in Eq.(4) yields the z transform relationship

Y(2)=F(2)G(2)
Ex: For the sampler configuration shown in Fig.(3), determine the pulse transfer
function when Gy(s) = (I/s) and G,(s) =1/(s+1)

F(s) O/c F(s) J 6 J 6 Y(s)

Figure (3) Sampled-data system

The Laplace transform relationship is
Y(s) = F(5)G1(5) Ga(s)
Starring gives
Y7 (s) = F(5)[Gy(5) Go(8)] = F ()G, Gy (s)
where [Gi(s)Go(s)] =G, G, (5)
The corresponding z transform is
Y (2) =F(2)G,G5(2)

The pulse transfer function becomes



Y(z) _
FQ) G,G,(2)
The product G;(s)G,(s)
1
s(s+1)

Gy1(s)Gy(s) =

The z transform for this function is given by

z(l—e"
G,Gy(2) =28 )
(z-(z-¢")

Ex: For the sampler configuration shown in Fig.(4), determine the pulse transfer

function when G;(s) = (1/s) and G,(s) =1/(s+1)

O FOLL g 20X o 1O

Figure (4) Sampled-data system

The Laplace transform relationship is

X(s) = F (s)Gy(s)
Y(5) = X"(5)G,(5)
Starring the first equation and then substituting this result for X “(s) into the

second equation gives
Y(s)=F (s)G1 (5) G (s)
starring gives
Y7(5) = F (s)G{ (5) G2 (s)
The corresponding z transform is
Y(2) = F(2)G1(2) G,(2)
Then the pulse transfer function becomes

% = G,(2)G,(2)

The z transforms of G,(s) and G,(s) are

z

T

Gi(2)=—"1 . Gy(2)=

Thus



2

z
P T

From the preceding two examples it is to be noted that

Ex: For the two sampled-data feedback systems, find the pulse transfer

function.

R(s) ZQ E(s) o/c EG) | G(s) C(s)

|—B(5) H(s)

(@)

R(s) CE(S) /Oﬂ Gy(s) Mo/om G,(s) C(s)

[ 2L H(S)

(b)
Figure (5) Sampled-data system

The equation relating the inputs and outputs of Fig.(5-a) are

C(s)=E (s)G(s)

E(s)=R(s)—E (s)G(s)H (s)
Starring gives

C'(s)=E"(s)G(s)

E"(s)=R"(s)—E (s)GH(s)

Solving the last equation for E"(s) and substituting into the first gives

s, v G(s) =
¢ (S)_1+GH*(S)R )

The corresponding z transform is

c@=—20

ETTOR

The equation relating the inputs and outputs of Fig.(5-b) are



C(s) =M"(5)G;(s)
M (s) = E"(s)Gy(s)
E(s)=R(5) =M (5)G(s)H(s)
Starring all equations, then solving for C”(s) gives

() = G{(S)Gz(sz R (5)
1+G; (S)GoH (s)

The corresponding z transform is

C(z) _  Gi(2)Gy(2)
R(z) 1+G1(z2)G,H(2)

R(z)



Zero Order Hold

Digital-to-Analogue Converter:

The digital-to-analogue converter is the device which converts the
numerical contect of some register of the digital processor to an analoge
voltage and holds the voltage constant until the content of the register is update,
and then the output of the digital-to-analogue converter is updated and held

again. The D/A converter will be modelled as a zero order hold.

Filters and Zero-Order Hold:

Sampled-data systems usually incorporate a filter, as illustrated in
Fig.(1). A perfect filter would convert the sampled data signal f”(t) back to the
continuous input f(t). Thatis, the output y(t) of the filter would equal f(t). If

such a perfect filter were possible, then the sampled-data system would behave

the same as the continuous system.

f(t)o/c o >  Filter — y(t)

Figure (1) Schematic representation of sampler and filter

The most commonly used filter is that in which the value of the last
sample is retained until the next sample is taken. This type of filter is called a
zero-order hold. Figure (2) shows the operation of zero-order hold. The
continuous curve represents the continuous function f(t). The discrete lines
are values of f (t) at the sampling instants (the sampled signal f " (t)). Because
the zero-order hold retains the value of f(t) at each sampling instants, y(t) is

the series of steps.



f(:ﬂ-)f(ﬂ)

f(2T) fon)
: f(IT)‘ ‘ If(fn

0 T 2T 3T 4T 57 6T
f(t) y(t)

f(nT) y(®)
o ZOH >

Figure (2) Zero order hold operation

The signal at the output of the zero order hold y(t) could be

decomposed into a series of pulse functions as shown in Fig.(3). Therefore, one
can write the output signal of the ZOH as follows:

y(t) =Uy +Up +Uy +--- )

y(t) y(t) y(t) y(t)

Uy o
+ !_E + i i R

[— > t
0 T 2T 3T 41 5T

—> t >t

! a i
0 T 2T 3T 4T 5T 0 T 2T 37 4T 57

Figure (3) Decomposition of the zero-order hold output

The pulse functions u, and u; of Fig.(3) could be further decomposed

into step functions as shown in Fig.(4). One can write uy and u; as follows

Up = f(Ou® -u-T)] , w=FfMu-T)-u(t-2T)]
where u(t) is unit step function and u(t—T) is unit step function delayed by

one sampling time T, etc.Thus, Eq.(1) can be rewritten as

f(t) = fO)[u(t) —u(t—T)]+ f(T)[u(t-T)—u(t— 2T)]
+ F(2T)[u(t —2T) —u(t —3T)] +---

Taking the Laplace transform of the preceding equation:

Y(s)= f(O)[l_z_TS}r f(T)[ﬁ}r f(2T)($J+---




Y(S)Z[QJ [f(0)+ f(T)e—TS + f(ZT)e—ZTs n f(3-|-)e—2Ts +]
Y@%{?jiiJFYQ

w | D

S
Y (S) = Gzoh (S) F i (S) (2)

where G, (s) is the transfer function of zero order hold.

fOu® ~f(O)ut-T) Uy

r A A

fO)u(t
fOp—mmmm (0) UL

= + =

0 T 21 31 4T5T‘t 0 T 21 3T 4T5.I';t

} >t > t
0 T 2T 3T 4T 57 0 T 2T 3r 4T 57

-f(0) -f(0)
Y Y

-fO)ut-T)

u fTMu-T) —f(T)u(t-2T) Uy
! k A K

fMut-T)

(M) f(T) f(T)
= + =
0T 2T3'|'4T5Tkt 0 T 2T 3T 4T 5T

> t >t
0 T 2T 3T 4T 5T 0 T 2T 3T 4T 5T

-1m -1m
Y

Y

“f(M)u(t-2T)

Figure (4) Decomposition of pulse functions u, and u;

Continuous-time Plant Driven by a Zero-order Hold:

Figure (5) shows a continuous-time plant represented by transfer
function G(s), driven by a zero-order hold (the D/A converter) and followed by

an output sampler (A/D) converter.

— > C(t)
ZOH Plant

f(nT f(t
& Gon(s) ® > G(s) °>( » C(nT)
T
Figure (5) Continuous-time plant to be digitally controlled.

For the Fig.(5), the Laplace relationships are

C(s)=G(s)F(s)
F(s) =Gyon(s) F ()



Substituting the second equation into first equation will gives

C(5) = Gyon(s) G(s) F(s)
Starring yields

C’(5)=GorG (5) F'(9)
The corresponding z transform is

C(2) =Gyon G(2) F(2) 3)
where

—Ts
G106 (2) = Z{Gyon(s) G(s)}=Z {(1 ¢ ’G(s)}

since z=¢e'®, then

Gmhe(z>=z{(1 ) s >}

or

(4)

C@)

Ex1: If G(s) = (s-lia) in Fig.(5), find the pulse transfer function (s

From Eq.(3) and (4), the pulse transfer function is

£ -6 60 - 074 280

making a partial fraction and the application of z transform table yields

€@ _ a-z71 Z{ﬁ(i—ij}
F(z) als s+a



Ex2: If G(s) =i2 in Fig.(5), find the pulse transfer function @.
s

F(2)
Consulting a table of z transform gives

Ex3: Find the pulse transfer function % for the sampled-data system shown
z

in Fig.(6).

R(s) : Es) — E'@e) [ 1= K C(s)
* [ s | s(s+4)

Figure (6) Sampled-data system with a zero-order hold

The overall open-loop transfer function when zero hold is included is

To determine G(z) when G(s) containsa (1—e™ "

G(s) into G;(s) and G,(s) as follows
G(s) =G1(2) G, ()

) factor, first we decompose

where G,(s)=(1-e ") and G,(s)is the remaining portion of G(s). The
function G, (s) is the Laplace transform of a unit impulse at the origin and a
negative unit impulse at t=T. The corresponding g,(t) is shown in Fig.(7).

Because this time function g, (t) exists only at the sampling instants, the
sampled function gf(t), will be the same as g, (t) . Thus,

Gy(s) =G; ()
Substitution of this result into equation of G(s) shows that

G(s) =Gy ()G, (5)



Starring gives

G’ (s)=G; (5)G;(s)

o ()

0 T ,t

|

Figure (7) Time function g, (t) = L [G,(2)]= L *ta-e™)

The corresponding z transform is

G(2)=G,(2)G,(2) = (1-27) G,(2)

-2 g ()
Z

Since

Thus

Substitution this result into G(z) equation

G(z)=Gl(z>Gz<z>=%(f—T—1+ Z__luj

-1 Z—e
For T=1/4, then G(z) becomes



Numerical Integration

The fundamental concept is to represent the given filter transfer
function H(s) as a differential equation and to derive a difference equation
whose solution is an approximation of the differential equation. For
example, the system

ues) _
E(s)

H(s)=—

s+a

1)
is equivalent to the differential equation
u+au=ae

Now, if one write Eq.(1) in integral form

u(t)=j'[—au(r)+ae(r)]dr
0

kT-T kT
u(kT)= [[-au(r)+ae(r)ldr+ [[-au(z)+ae(r)]dz
0 KT =
u(kT) =u(kT —T)+{ Areaof (—aTuT+ae) over KT —T <7 <kT (2)

Many rules have been developed based on how the incremental area

term is approximated. Three possibilities are sketched in Fig.(1).

1. Forward rectanqular rule:

In this rule, we approximate the area by the rectangle looking forward
from kT-T and the amplitude of the rectangle to be the value of the integrand
at kT-T. The width of the rectangle is T. The result is an equation in the first
approximation:

UKT)=u(kT —=T)+T [-au(kT =T)+ae(kT —T)]

=(1-aT) u(kT =T)+aT e(kT —-T)]
The transfer function corresponding to the forward rectangular rule in this

case is



aTz? a

= == (Forward rectangular rule)
1-1-aT)z™ (z-1)/T+a

He(2)

u(kT) u(kT) u(kT)

WKT-T) u(kT =T) | |_> u(kT)

(b) (c)
Figure (1) Sketches of three ways. The area under the curve from kT to kT+1 can be
approximated (a) Forward rectangular rule (b) Backward rectangular rule (c) Bilinear or

trapezoid rule

2. Backward rectangular rule:

A second rule follows from taking the amplitude of the
approximating rectangle to be the value looking backward from kT toward

KT-T, namely, -a u(kT)+ae (kT). The equation for u is

U(kT) =u(kT —=T)+T [-au(kT)+ae(kT)]
_ u(kT =T) N aT
1+aT 1+aT
Again we take the z-transform and compute the transfer function of the

e(kT)

backward rectangular rule

aT 1 _aflz
1+aT 1-z'/1+aT) z(+aT)-1
3 a
C(z-1D/Tz+a

Hg(2) =

(backward rectangular rule)

3. Trapezoid rule (Bilinear Transformation):

The final version of integration rules is the trapezoid found by taking
the area approximated in Eq.(2) to be the trapezoid formed by the average of

the previously selected rectangles. The approximating difference equation is

u(kT) =u(kT —T)+%[—au(kT —T)+ae(kT —-T)—au(kT)+ae(kT)]



_1-(aT/2) B aT/2 B
_—1+(aT/2) u(kT T)+—1+(aT/2)[e(kT T)+e(kT)]

The corresponding transfer function from the trapezoid rule is

aT (z+1) a
H:(2)= =
(2+aT)z+aT -2 (2/T)[(z-1)/(z+D)]+a

(trapezoid rule)

One can tabulate the above obtained results in Table (1). We can see
the effect of each of our methods is to present a discrete transfer function
that can be obtained from the given Laplace transfer function H(s) by
substitution of an approximation for the frequency variable. Each of the

approximations given in Table (1) can be viewed as a map from the s-plane
to the z-plane.

Table (1)

H(s) Method Transfer function Approximation

a Forward a z-1
can rule He=—— Se—
s+a (z-2/T +a T

a Backward a z-1
can rule He =2 ——0=— -
s+a (z-1)/Tz+a Tz

a Trapezoid a 2z7-1
et a rule He = ST
s+a @/M[(z-H/(z+)]+a Tz+1

Since the (s=jw)-axis is the boundary between poles of stable
systems and poles of unstable systems, it would be interesting to know how
the jw-axis is mapped by the three rules and where the left (stable) half of

the s-plane appears in the z-plane. For this purpose we must solve the
relations in for z in terms of s. We find

1. z=1+Ts (Forward rectangular rule)
2. 7= 1 (backward rectangular rule)
1-Ts
z= L1+Ts/2 (trapezoid rule)

1-Ts/2



If we let s= jwin these equations, we obtain the boundaries of the

regions in the z-plane which originate from the stable portion of the s-plane.
The shaded areas sketched in Fig.(2) are these stable regions for each case.
Because the unit circle is the stability boundary in the z-plane, it is
apparent from Fig.(2-a) that the forward rectangular rule could cause a
stable continuous filter to be mapped into an unstable digital filter.
To see how points map from s plane to the z plane under backward

mapping, the z expression for bilinear can be written as (1/2 is added to and

subtracted from the right-hand side)

o1 ) 1 1 11+47Ts
2 (1-Ts 2 2 21-Ts
or
z—EH—l“TS
2 21-Ts

Consider a point s=o+ jo where —co<w<oo. Then

‘Z_g‘zg 1+ T(o + jo)|_1|a+To)+jo| _140+To)* +w?
2| 2[1-T(o+jo) 2|0-To)+ie] 2 [1-To)+w?

Now it is easy to see that with ¢ =0(s= jw), the magnitude of z-1/2 is

constant

7—=|=
2| 2

1‘ 1
and the curve of rule (2) is thus a circle as drawn in Fig.(2-b). Also, if o <0,
then |1+To)+ jo|<|@-To)+ jo| and |z-1/2|<1y2. On the other hand if
o >0, then |1+To)+ jo|>|1-To)+ jo| and |z-1/2|>1/2. Therefore, it is
clear that the backward rule maps the stable region of the s-plane into a
circle of radius 0.5 inside the unit circle (stable region) of the z-plane, as
shown in Fig.(2-b).

To see how points map from s plane to the z plane under bilinear

mapping, the z expression for bilinear can be written as



_s+(21T)

s—(2/T)
Then
,_ O+ jo+(2/T) =_(0+2/T)+ jo
oc+jo—-(2IT) (c-2IT)+jo
and

|- (o +2/T)+jo| _|(c+2/T)+ jo
(0-2/T)+ jo| |(c-2/T)+ ja|

Note for o <0, then |(c +2/T)+ jo|<|(c-2/T)+ jo| and |z|<1 . On the other
hand if o >0, then |(c—-2/T)+ jo|<|(c-2/T)+ jo| and [z|>1. Also, if ¢ =0

then

7= I2/T)+ jo _
I2/T)+ jo

Therefore, it is interesting to notice that the bilinear rule maps the

stable region of the s-plane exactly into the stable region of the z-plane (see.
Fig.(2-c)).

Imaginary
axis

Imaginary
xis
A

Real
axis

(@) (b) (€)
Figure (2) Maps of the left-half of the s-plane by the integration rules into the z-plane. Stable s-

plane poles map into the shaded regions in the z-plane. (a) Forward rectangular rule

(b) Backward rectangular rule (c) Bilinear or trapezoid rule

The original H(s) had a pole at s=-a, and for real frequencies,

s= jw, the magnitude of H(jw) is given by



2
) a 1
|H(ja))| =a)2+a2 =coZ/a2 +1

Thus our reference filter has a half-power point, |H|2 =12,at w=a. It will
be interesting to know where H; (z) a half-power point has.

Signals with poles on the imaginary axis in the s-plane (sinusoids)
map into signals on the unit circle of the z-plane. A sinusoid of frequency
@, corresponds to z; =eJ®" and the response of H;(z) to a sinusoid of
frequency o, is H; (z;).

a a

Hr(z1)= 5 eloT _q T (9 glaTi2_g-inTl2
( +aj ( +aj

T eja)lT +1 T erlT/Z-i-e_leT/Z

a

(7))

The magnitude squared of H; will be % when

2 tan (a’l—sza
2

T

o, T\ aT
tan[lT) = (3)

or

The latter equation is a measure of the frequency distortion or warping

caused by Tustin's rule. Whereas we wanted to have a half-power at w=a,

we realized a half-power at o, = (2/T)tan*(aT /2). w, will be approximately

correct only if aT/2<<1 so that tan‘(aT/2)=aT/2, that is, if
o,(=27/T)>>a and the sample rate is much faster than the half-power
frequency.

We can turn our attentions around and suppose that we really want
the half-power point to be at »,. Equation can be made into an equation of

prewarping: If we select a according to Eq.(3), then, using bilinear rule for



the design, the half-power point will be at »,. A statement of a complete set

of rules for filter design via bilinear transformation with prewarping is

1. Write the desired filter characteristic with transform variable s and

critical frequency w, in the form H(s/ ).

2. Replace «; by a such that

azgtan LA
T 2

and in place of H(s/,), consider the prewarped function H(s/a). For more
complicated shapes, such as bandpass filters, the specification frequencies,
such as band edges and center frequency, should be prewarped before the
continuous design is done; and then the bilinear transformation will bring all
these points to their correct frequencies in the digital filter.
3. Substitute

g-22-1

Tz+1

in H(s/a)to obtain the prewarped equivalent H,(z). As a frequency

substitution the result can be expressed as

Hp(Z)=H[ij S 1 7-1 (4)

o - tan(ey T/2) z+1

It is clear from Eq.(4) that when w=w;, H,(z)=H(jl) and the discrete

filter has exactly the same transmission at «; as the continuous filter has at

this frequency. This is the consequence of prewarping.

Ex1: Apply the method of bilinear transformation to following filter (T=1
sec.):

1

H(s)=—5———
s240.2s+1



We make the following substitution for s in the original s-domain transfer
function

S_gz—l_z(z—l)
Tz+1 (z+)

After cleaning up the numerical details, the resulting discete-time transfer

function is

2
H(z)=0.185| — (2+1)
2°-1.111z2 +0.852

Ex2: Let us first prewarp the poles of the filter considered in the above
example. The critical frequency of the filter is o, =1rad /sec.
1.Write the desired filter characteristic with transform variable s and
critical frequency «; in the form H(s/ ).
)= 1
(s/@1)? +0.2(s/ ) +1

2.Replace o, by a such that

azgtan a)l—T =gtan & =1.092
T 2 1 2

H(s

Then H(s) becomes

~ 1
- (s/a)2 +0.2(s/a)+1
~ 1.1924

 $%40.2185 +1.1924

H (s)

3.Substitute s= 22~1
Tz+1

Cleaning up the numerical details,

2
H(2) =0.226| 2+
22 -0.9977 +0.845




Hw: The transfer function of a third order low-pass filter designed to have
unity pass bandwidth (e, =1rad/sec.) is

1

H(s) =
34252 +2s5+1

Compute the discrete equivalents and plot the frequency response using

forward, backward, and bilinear rules. Use T=0.1, 1 and 2 sec.



Response between sampling instants

Two different time functions which have the same sampled values are illustrated in
Fig.(1). The inverse z transform Z7'[F(z)]=f"(t) yields the value of the function at the

sampling instants. The behavior between sampling instants may be determined by synthetic

sampler method.

flt)
A

N

» t

0 T 2T 3T 41 5T
Figure (1) Two functions with the same values at the sampling instants

The dotted box in Fig.(2) represents a fictitious, or synthetic, sampler which is inserted
in series with the actual sampler. The sampling rate of the fictitious sampler is m times that of
the actual sampler (m=2,3,...). The corresponding period is T/m. At submultiple of the sampling
period T/m, when the fictitious sampler is closed, the actual sampler is open. Thus, the fictitious
sampler does not affect the operation of the system. The fictitious sampler does not actually

exist, but is merely employed as an aid for understanding the following analysis.

Fictitious Sampler

if(t) o o f (t)mi o o > G(s) > y(t)

Figure (2) Fictitious sampler

The continuous function can be written as

ORPUICISLIE



Submultiple of the sampling period are represented by the term kT/m wherek =0,1,2,.... For
example, if m =3, the successive intervals kT/m are 0,T/3,2T/3,4T/3,.... The value of the

output at the submultiple intervals is obtained by letting t = kT /m in the preceding equation.
kT < kT
— =) f(nT) g| ——nT 1
y(mj nZ::,)( )g(m j 1)
The output at the submultiples sampling instants y(kT /m) =y (t),, may also be expressed as

an impulse train. That is,
* (KT kT
)y = — |y t——
y ( )m kZ:E)Y( m j 1( m j
The Laplace transform is

V=Y y(k_Tj o KTs/m
k=0

m

The corresponding z transform is
< KT\ __
-3 o)
ko \M

Substituting y (kT /m) from Eq.(1) into the preceding expression gives

Y(Z)p, :i 3 f(nT) g{(%—n)ﬂ z-K/m
=0

k=0 n

Y(2)n :i 3 f(nT) z™"g {(%—HJT} ;= (k/m-n) )
=0

k=0 n

Consider the expansion of a typical term in which m=2 and n=3,
Df@EN) 273 g KK—SJT} 7~ (k/2-3)
k=0 2

—1@n 2 {9(0) 2° +g@z‘“2 +gM) z—1+ggj 732 +}

=f@3r)z2 Zg(ﬂj ztm

o \M
For a physically realizable system the impulse response g(t)is zero for negative time. Thus,
the first term to appear in the bracket is for k=6, in which case g[(k/2-3)T]|=g(0). Fom the

preceding result, the general form of Eq.(1) is

Y@=, f(nT)z‘”Zg(%jz‘“m
n=0 =0

=F(2)G(2)n (3)



where
6@ =[6@]_sm 11/m (4)
Thus, G(z),,is obtained by substituting z¥’™ for z and T/m for T in G(z). The result given
in Eq.(3) may also be obtained by letting k/m—n=¢/m where /=0,12,...,in Eq.(2).
The equation for G(z),, for the system of Fig.(3) is obtained as follows:

C(@)m =E(2)G(2)n

E(s) =R(s)—E"(s)G(s)H(s)
Starring gives

E"(s)=R"(s)—E (s)GH(s)
Thus,

E(z)=R(z)-E(z) GH(z)
Solving this last equation for E(z) and then substituting E(z)into the first equation gives the

desired result.

C(Z) _ G(Z)m

~ 1+GH(2) R(2) ©)

R(S) E(S) E*(S)m/ E*(S) C(S)
= e EIUNS)
T/ ” T

d m
L(S) HS)

Figure (3) Sampled-data system with a fictitious sampler

EX: Consider that the sample-data system of Fig.(1) has the transfer function
1
G(s)=——
®) s+1

The input r(t)is a unit-step function. The sampling period is 1 second. It is desired to find the
response of the system at time instants of t=kT/3, k=0,1,2,....

From Eq.(3), the z-transform of the system at the submultiple-sampling instants is
written as
Y(2) =F(2)G(2)n

where m=3, and



z

G(2), =06(z =—
@ ()z=z”3,T=T/3 z-e T z=7Y3T=T7/3

Thus,

The z-transform of the unit-step input is F(z) =z/(z—1). The z-transform of the submultiple-

sampled output is

6)
However, one difficulty remains in that the last expression has fractional powers as well as

integral powers of z. To overcome this difficulty, we introduce a new variable w , such that
w=z3

Eq.(6) becomes

Expanding the C(z),, into a power series in w, we have

The coefficients of the power-series expansion of y(z), are the values of y"(t),, at

t=kT/3, k=0,1,2,.... The response y" (t),is shown in Fig.(4). In this case, the value of the

submultiple sampling method is clearly demonstrated, since the ordinary z-transform obviously

would produce a misleading result.

s
Final Value
AN S S
D SO N
Pl TP
AN S NS S N S O S N S
T 2T 3T 4T 5T

Figure (4) Output responses at t=kT/3



EX: Determine the response midway between the sampling instants for system of Fig.(3 to a

unit step-function input and for G(s) = K
s(s+

2 and H(s)=1.

For this system, GH(z) =G(z)is given by
z (1—e‘4T)

(z-1)(z-e™*T)

“Replacing T by T/mand z by z2/™ =z¢

G(z2) =

12

For K=1 andT = % , this becomes

For K=1andT = % the function G(z)is given by

Substitution of these results into Eq.(5), one can obtain

0.098z%2 (z-1)(z —0.368)

(z% -1)(z"% -0.607) [(z-1)(z - 0.368) +0.1587] R

C(Z)m =

To eliminate fractional powers of z, let w =z%'2. Thus,

Cross-multiplying yields

The significance of replacing z*'2 by w is seen by noting that because

Then
cw), =C(0)+C(TEJW_1 +o(T w2 +c(%)w‘3 (2w 4+

Thus, the w sampling instants are the desired submultiple sampling instants. The difference

equation associated with Eq.(7) is



+0.098r (k —1)— 0.134r (k — 3) + 0.0361 (k — 5) (8)

Because
R(z)=r(0)+r(T)z  +r(2M)z 72 +---

Then replacing z by w2 gives

Thus, r=0 at 1,3,5,...sampling instants of w. Application of Eq.(8) to obtain the values at the

submultiple sampling instants gives

Replacing k by kT/2 shows that the response at the sampling instants c(0), c(1), c(3), etc.,
corresponds to the response at time c(0), c¢(0.5T), ¢(T), ¢(1.5T), etc.

HW: Find the inverse using the long division method. For R(z)=z/(z-1), then
Rw)=w?/(w?-1). Thus, substituting this value of R(w)into Eq.(8), and then dividing the
numerator of C(w),, by the denominator yields the desired values as the coefficients of the

answer.



Time Response

In this section the time response of the sampled data system of Fig.(1)
to unit step input will be determined. Three methods will be explained: long-

division, difference equations and partial fraction expansion.

+ K R
RES) \ s(s+4) >Ce)

Figure (1) Sampled data system
The corresponding z transform of G(s)

_2(K/4) (1-e™T)
(2= (z-e)

G(2)

Letting K =1 and T = 0.25 sec, then

B 0.158z
(z-1)(z-0.368)

G(2)

The pulse transfer function c@ is
R(z)
C(z) _ G2

R(z) 1+G(z)
C(2)

0.158z 0.158z

= [Z=1)(z-0368)+ 0.1587] "\~ (z-0.61)2 R@)

+ Long division method:

For unit step input, R(z) = il Then
Z —_—

2
C(2) = 0.15822
(z-0.61)“(z-2)
Using the long-division method to determine the inverse gives

0.158271+0.349272 +05222 +---
23 -2.217% +1.582 —0.368 )0.158z2




Because

then
c(0)=0, ¢(T)=0.158, ¢(2T)=0.349, and c(3T)=0.522
A plot of the response c(nT) at the sampling instants is shown in

Fig.(2).The long division method becomes quite cumbersome for computing

c(nT) for larger values of n. A more convenient procedure results from

expressing the solution in the form of a difference equation.

c(nT)
A
1 . . . .
G
» NnT
0 T 2T 3T 4T 5T 6T

Figure (2) Sampled data system

+ Difference Equations:

To determine the inverse z transform by this method, one can write the
equation for C(z) in the form

0.158z

C(2)=
@ [22 —=1.21z +0.368]

R(2)

Thus
C(z)-1.2127*C(z) + 0.36827°C(z) = 0.1582'R(2)
Application of right shifting property
Z[f(nT -kT)=2""F(2)
Then the preceding expression yields directly the difference equation
c(nT)=1.21¢(nT-T)-0.368 c(nT —2T )+ 0.158 r(nT =T)



This difference equation gives the value c¢(nT) at the nthsampling instants in

terms of values at the preceding sampling instants. Application of this result to
obtain the values at the sampling instants gives

c(0)=0,
¢(T)=0.158 r(0) = 0.158
c(2T)=1.21c(T)+0.158 r(T) = 0.349
c(3T) =1.21¢(2T)-0.368 ¢(T) +0.158 r(2T) = 0.522

Such recurrence relationships lend themselves very well to solution by a digital
computer.

+ Partial-fraction expansion:

The response c¢(nT) at the sampling instants may be also be obtained by

performing a partial fraction expansion and then inverting. Thus

~ 0.1582 _| A B, B,
o= [(2—1)(2—0.61)2} Z [(2—1) T a-060? (2—0-61)}

The partial-fraction expansion constants are A=1, B, =-0.24, and B, =-1.0.

Thus, C(z) becomes

z 039 0.6122_ z
(z-1) (z-0.61)°> (z-0.61)

By noting that

Z‘l[il]zl, Z‘l[i]=a”, and Z‘l[( az{ﬂ)}:nTanT
7— 7—a 7—

The inverse is found to be

C(z2) =

With this method, the value c¢(nT) at any sampling instants may be calculated

directly without the need to compute the value at all the preceding instants.



Mapping of s-plane to z-plane

It is possible to map fro the s plane to the z plane using the relationship

ST

z=¢e
Now
s=atjb
Therefore,
7 = esT _ e(aijb)T — eaT eiij — reje (1)

where r =|z|=e"and 6 =bT .

Since o, =27 f, = 2_|_—7Z then 0=D0bT = [ZT—”) T=2rz, where o, is the
switching frequency in rad/sec and f, is the switching frequency in Hz.
Equation (1) results in a polar diagram in the z plane as shown in Fig.(1).

Imaginary axis
A

P

AN

% 0=bT | Real

axis

Figure (1) Mapping from the s to the z plane

Two horizontal lines of constant of constant b are shown in the s-plane
of Fig.(2.a). The corresponding paths in the z-plane are radial straight lines.
ST _ g(atip)T _ jbT

7=¢ e gt

The angle of inclination of these radial linesis 8 = +bT .

Two vertical lines of constant a (i.e. constant settling time) are shown in
Fig.(2.b). The corresponding paths in the z-plane are circles of radius e®' . For
negative values of a the circles are inside the unit circle of the z-plane. For
positive values of a the circles lie outside the unit circle of the z-plane. Thus,

one can conclude that the left-hand side (stable) of the s plane corresponds to a

region within a circle of unity radius (the unit circle) in the z plane.



Imaginary axis ImaginFFy axis

A
_p—-l_)_ N Unit circle
_ Real
T axis
—»——-P————->——— b
s plane (a) Z plane
Imaginary axis Imaginary axis
b \
b=w,/4
/2 -~ Unit circle
1
1
> A
1
1
1
: b=0
1
-a ‘a _ Real /" Real
| axis " axis
i
S A

1
i
1
1
i

-, /2

s plane

. . Imaginary axis
Imaginary axis

y

.

Unit circle
g0,
A
B<90° 57 _ Real . Real
" axis axis
s plane

Figure (2) Corresponding paths in the s plane and z plane



Radial lines of constant damping ratio £ =cosf are shown in Fig.(1.c).

In polar coordinates, s=a+ jb=-{ 0, jo, \/1—7 Thus,
7 = g 00T gFioT =
The corresponding paths in the z-plane are logarithmic spirals. For S <90°
the spirals decay within the unit circle, and for 8 > 90°the spirals grow outside
the unit circle.
Consider now how a given point, z=r e’ in the z plane maps back

into the s plane. For

7=relf —aST = p(atjb)T
Equating real and imaginary parts shows that

In(r)=aT

0 =xbT
This verifies the fact that a circle of constant r in the z plane is a vertical line of

constant a in the s plane. Similarly, a ray at angle 6 in the z plane is a
horizontal line of constant b in the s plane.

Ex: Find the corresponding locations of points in the s-plane into z plane

A A
5>
6
------ t, S
10 9 e
X jog 12 Unit Circle .~
e 7
8 6] . 5
D ; ———————————— jogl4 X
87
3 2 1 4 L 9 10 3 2 1. 4 R
[ o S H-mmmm-mmo- N —j X 8
A 3 g jog 14 %
9
X A —jogl2 L
..6.)___.
5
v v
S plane Z plane

Figure (3) Corresponding pole locations between the s plane and the z plane



Since = r=e?" and

Points 3, 2, 1 and 4:
b11b21b3 aﬂd b4 = O = 0 = bT = 01‘2‘3‘4 = O

a.1:0:> r1=GOT=1,

and =1, (%) >nEe*),
au>0>
Upper points 10 and 9:
bg andb10=%=%=$ = 09=b9T=7Z' and 010=b10T=7T

and ag> a;p =

Upper points 10 and 9:

bg and blO :—%:—¥:—$ = 09 = bgT =-7T and 010 =b10T =—7

and a;p < ag =

Therefore, the lower and upper points 9 and 10 coincide on each other. The
same argument may be performed with the other points. This results in the
corresponding points at z plane.

EX: The time-response characteristics of the z-plane pole locations are
illustrated in Fig.(4). Since z =e°", the response characteristics are a function
of bothsand T.

The poles in the s-plane occur at s=a=+ jb. These poles result in a
system transient-response term of the form k; e®' cos(wt+¢). When
sampling occurs, these s-plane poles result in z-plane poles at

Z:esT :eaT eiij:

s=azx jb

reti?

The roots of the characteristic equation that appear at z =re*? result in

a transient response term of the form



Unit Circle /

Figure (4) Transient response characteristics of the z plane pole locations.

Lines of Constant Damping Ratio ¢ :

In the s-domain, the lines of constants damping ratio ¢ are rays
originating at the origin while the curves representing constant undamped
natural frequency w,, are quarter circles, as shown in Fig.(5).

Figure (6) shows the real and imaginary parts of the complex variables s

expressed in terms of £ and w,. That is

s=—(0, + joy\1-¢°
The equivalent point in the z-plane is found by applying the transformation

7 =" to obtain

_ H _r2
Z=¢ gwnTernTVl 4 (2)
Im (s)
A Im (s)
A
Line of constant o, T
\Line of constan
(Od = (On
X wn
P 9 -
< »Re (s) < o, >
A 4
Figure (5) Lines of constant"a)n and curves Figure (6) Components of line

of constant £ of constant @,



Ifin Eq.(2) we fix £ and vary o, we will plot a log spiral curve, since the
magnitude of z will vary exponentially with ®,, while the phase varies
linearly. As shown in Fig.(6), we only need consider the portion of the ray of
constant damping ratio between the origin and the point where the ray
intersects the edge of the primary strip.

For w, =0a ray of constant damping ratio starts at the point

z=e=1
The other end of the array in the s plane touches the edge of the primary strip.
At the point of intersection

o, 1= =$

or, equivalently,

Hence

Thus z is a vector of length

and angle 180°. Note that the larger ¢ the shorter the length of the vector.
The log spiral curves connecting the end points of the curves for

¢ =0.1,0.2,...,0.9 in increments of 0.1 are shown in Fig.(7).
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Figure (7) curves of constant ¢
Curves of constant natural frequency @, :

To find the curves of constant », we again use the transformation

z=e"", but this time we fix », and vary ¢ . It is customary to let

_kr

o, =—= k=0,12,...,10
10T

Then
3)
Eq.(3) can be used to plot the curves of constant w, by holding w,constant
and varying ¢ between zero and one. When ¢ =0, corresponding to
s= jkz/10
;—e0pl k 74/1-0% /10
In this case z, is a vector of length one and angle kz/10 rad. Thus, all the

curves of constant «,,originate on the unit circle at the angles

0
K x 180
10

=k x18°, k=123, ..., 10.
At the other end of each these curves, { =1, and

7 — @~ kz T/10T ejknwﬁ/lm _ g kn/10 k=12 3 ... 10.
These points lie on the positive real axis in the z plane. The smaller k, the

larger e "% The curves that connect these end points are shown in Fig.(8).
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Figure (8) curves of constant @,
We see that the curves show increasing distortion as k increases. For k=1, the
curve is very close to a quarter circle centered at z=1. The curves for k=2 and

k=3 still have the general shape of a quarter circle, but for k>3 they do not.

Ex: Map the shaded area in Fig.(9) in the s-plane into corresponding poles in

the z plane. In Fig.(8), the lines of constant w,, are labeled

T mw 3rx Vs

T'5T°10T ' T
indicating the value of w, that corresponds to each curve. As noted, the curves

end at the angles

By combining the curves of constant ¢ and constant w, we can locate points

in the z plane with any desired combination of damping ratio and natural

frequency. Im (s)

A

r
T

=0.6

'\4\

» Re (s)

Figure (9) Desired pole locations in s-plane

In Fig.(9), poles locations in the s plane with damping rations between
0.6 and 0.9 and natural frequencies between /10T and 3z/10T are in the shaded
area. The corresponding poles in the z plane are shown in Fig.(10).

Notes:
Q The curves of constant £ do notdependon T



Q The curves of constant «, depends on T, and then, on the sampling rate.

For instance, for a sampling rate of 10 Hz, the poles in the shaded region
will have natural frequencies between 0.5 and 1.5 Hz, or one tenth and three
tenths of the maximum frequency that can be sampled without aliasing,
namely, 5 Hz. On the other hand, if the sampling rate is 100 Hz poles in

this same region will have natural frequencies between 5 and 15 Hz.
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Figure (10) Desired pole locations in z-plane

The primary strip:
Suppose we map the primary strip of the s plane into the z plane. We

begin by mapping the points of a vertical line
s=a+ jb
where a < 0 is fixed. Under the mapping z=e*", a point on this line maps to

7 = e(a+jb)T — eaT eij

The term is e®"is a real number that can be thought of as a scaling
factor for the unit phasor e!®T. If —z/T <b<7z/T, and a is fixed, with

a < 0, then the mapping of this portion of the vertical line in the s plane to the
z plane is a circle with radius e=®T <1 as shown in Fig.(11). If a >0, the line
segment maps to a circle with radius greater than one, as shown in the figure. It
should be noted that

—-7/T<b<7/T = —-x<0<~x



A

The area confined between —z/T <b < z/T is called the primary strip. One
can easily see from Fig.(11) that the width of the primary strip is 2z/T . The

other strips of the same width as that of primary strip are called the secondary

strips.

Imaginary axis
A

unstable region

Stable region

Imaginary axis
A

The line on s=+a

The line on s=-a /

Primary srtip
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» Real axis

\b =0
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1+ 3T

Unit circle
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o
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Figure (11) Mapping of the Primary strip into z-plane



Routh-Hurwitz Criterion to Discrete-Data System

Since the stability boundary in the z-plane is unit circle |z|=1, then to

apply this criterion, it is necessary to transform the unit circle of the z-plane to
the vertical imaginary axis of the A plane. This is accomplished by the

transformation

Solving for z gives

A+1
7=""-
1-1

This will transform the interior of the unit circle onto the left half of the

(1)

A -plane. When the characteristic equation is expressed in terms of A, then the
Routh-Hurwitz criterion can be applied in the same manner as for the

continuous system.

Ex1: For a sampling time period T =1/4 s, determine the value of K such that
the system shown in Fig.(1) becomes unstable. That is, roots of the
characteristic equation lie on the unit circle of the z —plane (i.e., the imaginary

axis of the 4 plane.

RS)  ~ E6) Es) | K C(s)
AN o | s(s+4)

Figure (1) Sampled-data system

For T=1/4, the corresponding z-transform of G(s) = K IS
s(s+4)
G(z)=K 0.158z
(z-1)(z-0.368)
The characteristic equation becomes
14G(2) =0 1+K— 2182 4 . (7_1)(2-0.368) + K0.1582 = 0

(z—1)(z—0.368)



Using z=% to transform from the z plane to the A plane. The

characteristic equation becomes

The Routh array for the numerator is

0.158K (2.736-0.158K) 0

1.264 0
(2.736-0.158K) 0

Thus, this system is unstable for

If, in the preceding example, the sampling rate is increased from 4
samples per seconds (T=1/4) to 10 samples per second (T=1/10), then the
system would be unstable for K >42. In general, making the sampling time
shorter tends to make the system behave more like the corresponding

continuous system.

Ex2: If a zero-order hold is included as shown in Fig.(2), find the value of K
such that the system becomes unstable using Routh-Hurwitz criterion. (Use
T=0.25 second).

R(s) : Es) _— E'()|1-¢T 1K Ces)
+ [ s | s(s+4) s

Figure (2) Sampled-data system with a zero-order hold

For T =0.25, G(z) is

G(2) = 0.368K (z+0.717)
16(z-1)(z-0.368)
The corresponding characteristic equation for this sampled-data system is




1+G(2)=0 =

Replacing z by (1+1)/(A —1) so that Routh's criterion may be applied gives
0.0395K A2 + (1.264—0.033K) A +(2.736—0.0065K) =0

The Routh array is

0.0395K (2.736-0.0065K) 0
(1.264-0.033K) 0
(2.736—0.0065K) 0

Thus, the system becomes unstable for

Without the zero-order hold, this system becomes unstable for . Thus

one can conclude that




Jury's Test

Jury's test is a stability test which has some advantages over the
Routh's test for continuous-data system. In general, given the polynomial in
Z,

'+..+a,2°+a,z+a,=0 1)

F(z)=a,2"+a, ;2"
where a,, a,,...,a, are real coefficients. Assuming that a, is positive, or that
it can be made positive by changing the signs of all coefficients, the

following table is made:

Row 2 7 7 Lo ST B L
1 a a d, s a,, 4,
2 a, AU W a, a, a,
3 b, b, b, v by, by,

4 bn—l bn—Z bn—3 bk 0
5 Co C, c, C,.,
6

2n-5 Py P P2 P
2n -4 Ps P2 Pr P
2n-3 Qo Q: ad,

Note that the elements of the (2k+2)th row (k=0,1,2,...) consists of
the coefficients of the (2k+1)th row are written in the reverse order. The

elements in the table are defined as

bk — aO an—k ’ Ck — b0 bn—l—k ’ dk _ C0 Cn—2—k
an ak bn—l bk Cn—2 Ck
q =P P q, =P P
" lps o “lps P,

The necessary and sufficient conditions for the polynomial F(z) to have no

roots on and outside the unit circle in the z-plane are:



F(1)>0

0
F(-1) = > n even
<0 n odd

lag| < ay
Ibo| > [on 4] (2)
[co| > [cn—2]

(n—1) constaints
[do|>[dn—s|

do|> [a2|

For a second-order system, n=2, Jury's tabulation contains only one row.
Therefore, the requirements listed in Eq.(2) are reduced to
F(1)>0, F(-1)<0 and [a,|<a,

As in the Routh-Hurwitz criterion which is used for stability testing of linear
continuous-data, occasionally the first element of a row or a complete row
of the tabulation may be zero before the tabulation is scheduled to terminate.
These cases are referred as singular cases. In Jury's tabulation a singular
case is signified by either having the first and the last elements of a row be

zero, or having a complete row of zeros.

The Sinqular Cases:

When some or all of the elements of a row in the Jury's tabulation are
zero, the tabulation ends prematurely. This situation is referred to as the
singular case. The singular case can be eliminated by expanding and
contracting the unit circle infinitesimally, which is equivalent to moving the
roots off the unit circle. The transformation for this purpose is

z=(1+¢)z (3)
where ¢ is a very small real number. When & is a positive number in

Eq.(3), the radius of the unit circle is expanded to 1+¢, and when ¢is

negative, the radius of the unit circle is reduced to 1-¢. This is equivalent



to moving the roots slightly. The difference between the number of roots
found inside ( or outside) the unit circle when the unit circle is expanded or
contracted by ¢ is the number of roots on the circle.

The transformation in Eq.(3) is actually ver easy to apply, since
(l+e)" =(1+neg)z" 4)

This means that the coefficient of z" term is multiplied by (1+ng).

Examplel:
If the characteristic equation of a system is

F(z)=2>+2+0.25=0
The first two conditions of Jury's test in Eq.(2) lead to
and
Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements
for stability. Next, we tabulate the coefficients of F(z) according to Jury's

test; we have

Since 2n-3=1, Jury's tabulation consists of only one row. The result is

and thus the system is stable, and all roots are inside the unit circle.

Example 2:
Consider the equation

F(z)=z*+3.32°+32+0.8=0
which has roots at z=-0.5, -0.8, and -2.



From Jury's test, F(1)=8.1 and F(-1)=0.1. For odd n, since F(-1) is not

negative, F(z) has at least one root outside the unit circle.

Example 3:
For the following characteristic equation

7% —7(1.48 - 0.025K) + (0.5026 + 0.0204K) = 0

Find the range of K for stability.

The first two conditions of Jury's test in Eq.(2) lead to
F(1)=

F(-1)=
Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements

for stability. Next, we tabulate the coefficients of F(z) according to Jury's

test; we have

Since 2n-3=1, Jury's tabulation consists of only one row. The result is

2| =

Since K > 0, then the range of stability is and for

HW: For the following block diagrams, use Routh-Hurwitz criterion and

Jury's test to find the range of K for stable system. (T=0.25 sec)

AEQ X EQ[ KO 2 ')
R(s) —> — S65+4) ?r»




s(s+4)




Root Locus in the z-plane

As with the continuous systems, the root locus of a discrete system is a plot of the
locus of the roots of the characteristic equation
1+GH(z)=0
in the z-plane as a function of the open-loop gain constant K. The closed-loop system will

remain stable providing the loci remain within the unit circle.

Root Locus Construction Rules:

These are similar to those given in continuous systems.

Q Starting points (K = 0). The root loci start at the open-loop poles.

Q Termination points (K =o). The root loci terminate at the open-loop zeros when they
exist, otherwise at co.

Q Number of distinct root loci (branches): This is equal to the order of the characteristic
equations (or the number of poles of open loop transfer function).

Q Symmetry of root loci: The root loci are symmetric about the real axis.

O Root locus locations on the real axis: A point on the real axis is part of the loci if the sum of
the open-loop poles and zeros to the right of the point concerned is odd.

Q Break away (in) points. The points at which a locus breaks away from (or break in) the real

axis can be found by letting K as a function of z, taking the derivative of dK/dz and then

setting the derivative equal to zero.
Q Unit circle crossover: This can be obtained by determining the value of K for marginal

stability using Jury test or Routh-Hurwitz criterion.

1. Root Locus without Zero Order Hold

Ex: Sketch the root locus for the diagram shown in Fig.(1)

R(s) CESSZ _~E"(s) K
* [ s(s+4) «©

Figure (1) Sample-data system

The z-transform for the output C(z) is

~ G2
C(Z)_1+G(z) R@2)




The z-transformed characteristic equation is

1+G(z)=0
The partial fraction expansion for G(s) is

0-K(2-2,)

S s+4
The corresponding z transform is

_K(z 2z )_(K)_za-e)
G(Z)_4(Z—1 z—e‘4Tj_(4J(z—l)(z—e‘4T)

For T=0.25 sec.

Q Open-loop poles and zeros:
Poles: z=1 and z =0.368
Zeros: z=0
Q Number of branches: Number of branches equals No. of poles=2.
O Root locus locations on the real axis: The root locus on the real axis lies between poles
(z=1andz = 0.368) and to the left of zero (z=0).
Q Break away and in points:
The characteristic equation is
0.158 z

1+G(z)=1+K =
(z-1)(z - 0.368)
or
2
Then dK z_( 1 jz(22—1.368)—(z ~1.3682+0.368) _
dz  10.158 (z)?
or

To find the value of K at break away and in points, we use the magnitude condition:

The gain K at breakaway point:

« _|(2-D(z-0.368)| _ P(Z -1)||(z —0.368)@
| z=0.606

01582 | oo 0.1582 |



The gain K at break in point:

z-1)(z-0.368)|
0.158z

K=|<

|z=—0.606

a Crossing points of z-plane imaginary axis:

In general z=a+ jb, and when the root locus crosses the imaginary axis of the
z-plane, then the real part becomes zero, or z=jb. Substitute this value in the
characteristic equation one can obtain:

72 -1.3682+0.368+0.158K 2 =0
(jb)? —1.368(jb) + 0.368+0.158K (jb) =0
or
—b? - 1.368b+0.368+ j0.158Kb =0

(~-b?+0.368) + j(—1.368b + 0.158Kh) =0
Real Im aginary
Two equations will be obtained:

~b®+0.368=0 and —1.368b+0.158Kb=0
From the first equation one can obtain the point of interception of root locus with the
imaginary axis
~b2+0.368=0 = b=+0.606 — z=+j0.606
Substitute the value of b at the second equation, the value of gain K at the imaginary

axis becomes
-1.368b+0.158Kb=0 = —1.368x0.606+0.158K 0.606=0 — K =8.658

Alternatively, one can use the magnitude condition to find the value of K at

imaginary axis crossing points: (use either z = j0.606 or z=—j0.606)

« _|@-1)(z-0368) _ P(z ~1)||(z —0.368)@
01582 |,_ o606 0.1582] |, oo

1(j0.606 —1)||(j0.606 —0.368)|
|0.158j0.606 |



O K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K
as the root locus crosses the unit circle into the unstable region is
K=17.316
a Unit circle crossover: Inserting K =17.3 into the characteristic equation

14G(z) =1+ K— 1982 g . 1,17316x— 21982

(z—-1)(z - 0.368) (z-1)(z-0.368)
— 7z2+1.3672+0.368 = Theroots are z = 1

Q Angle of asymptotes

A= w n=0,1,2,3
p—-z
where p=number of poles and z is the number of zeros. Thus A becomes
A =180

The real axis interception of the asymptotes is

p z
Zzp _Zzz
o, =0 0 =1+O'368_0=1.368
p—z2 2-1

The complete root-locus plot may now be constructed as shown in the following figure

Imaginary
A

z7=0.606
K =8.658

K =16.337
z=-0.6065

s, Unit circle
N
N

AN
I
o -

» Real axis

N
R SN




Ex2: for the diagram shown in Fig.(2),

Q Sketch the root locus for T=1/4 sec.
Q Plot the response of the system to a unit step function and for K=4.

R — () o GE ) [ 1-e K c(s)

/ s S(s+4)

Figure (2) Sample-data system

For T=1/4, one can show that G(z) has the form

_ 0.368K (z+0.717)
16(z -1)(z - 0.368)

G(2)

The z-transform closed-loop tranfer function
C@) __G@)
R(z) 1+G(z)

The characteristic equation of the above transfer function is

1+G(z)=0
or
2% +(0.023K —1.368) z + (0.368+ 0.01649 K) =0

Q Open-loop poles and zeros:
Poles:
Zgros:
Number of branches: Number of branches equals No. of poles=2.
O Root locus locations on the real axis: The root locus on the real axis lies between poles
(z=1andz = 0.368) and to the left of zero (z =0.717).
Q Break away and in points:
The characteristic equation is

0.368 (z+0.717) _
16 (z-1)(z - 0.368)

1+G(z) =1+K

or
Then

2
dK _(43.478) (z+0.717)(2z2 -1.368) - (z 2—1.3682 +0.368) 0
(z+0.717)



or
(22 +0.0662 —0.980) — (22 —1.368z + 0.368) =0 = z° +1.4347 —1.348 =0
Then

To find the value of K at break away and in points, we use the magnitude condition:

The gain K at breakaway point:

1)z — ~1)||(z-o.
K=|(43.478) (z-1)(z—0.368)| _ 43_47f{l(z )||(z 0368)|}
z+0717) | o0 |@+0.717) | |
_ 43478 0.647 ~1/<|0.647 - 0.368| | _ 3139
10.647 +0.717 |
The gain K at break in point:
1)z — ~1)(|(z -o0.
« — 43,474 @~D(2=0.368) _ 43_478?(2 )||(z 0368)@
Z+0.717) |, |z+0717| | .o
_ 43478 |-2.081-1x |- 2.081-0.368 oa0511
| -2.081+0.717|

a Crossing points of z-plane imaginary axis:

In general z =a+ jb, and when the root locus crosses the imaginary axis of the
z-plane, then the real part becomes zero, or z=jb. Substitute this value in the
characteristic equation one can obtain:

(jb)? + (0.023K —1.368) jb + (0.368+0.01649 K) =0

or

Two equations will be obtained:
(0.368+0.01649K —b?)=0 and b(0.023K —1.368) =0
From the second equation one can determine the value of gain at the point of root-

locus interception with the imaginary axis
b(0.023K —1.368) =0 = K =59.478



Substitute the value of K into the first equation, the value of z at the imaginary axis

becomes
(0.368+0.01649K —-b*) =0 =

Then, z =+j1.161 at the imaginary axis of the z-plane.

O K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K
as the root locus crosses the unit circle into unstable region is
K=383
Q Unit circle crossover: Inserting K = 38.3 into the characteristic equation
2% +(0.023x38.3-1.368) z + (0.368+0.01649 x 38.3) = 0
or
72 -0.48712+0.999=0 = z =0.2435+ j0.9693 (crossing points)

Q Angle of asymptotes

A= w n=0,1,2,3
p—-z
where p=number of poles and z is the number of zeros. Thus A becomes
A =180

The real axis interception of the asymptotes is

The complete root-locus plot may now be constructed as shown in the figure below. Let
it now be desired to determine the response of this system to a unit step function for the
case in which K=4. It follows that

 0.368K (z+0.717) _ 0.092(z +0.171)
16(z-1)(z-0.368) z?-1.368z +0.367

G(z)

The z-transform closed-loop tranfer function
C(z)  G(2) _ 0.092 (z+0.171)

R(z) 1+G(z) (z2-1.368z+0.368)+0.092(z+0.717)

Thus,
C(z) - 1.276 - C(z) + 0.43427% C(2)= 0.092 z *R(z) + 0.066 z *R(2)



The corresponding recursive time difference equation is given by

The substitution of ¢(nT)=r(nT)=0 for n<0 and r(nT)=1 for K> 0 yields the following values for

¢(nT) at the sampling instants:
c(0)=0
o(T) =
c(2T) = c(
c(3T)=c
Imaginary
K =59.478
z=j1161
N K =383
2=0.2435+ j0.9693

Unit circle

z=-2.081
K =240511

» Real axis

A

z=0.2435-]0.9693
K =383

Z=-j1.161
K =59.478

Figure (3) Root-locus plot for (z —1)(z —0.368) + 0.023K (z +0.717).



Design of Digital Control Systems with the Deadbeat Response

The design objectives of control systems can be classified as follows:

X A large number of control systems are designed with the objective that the
responses of the systems should reach respective desired values as quickly as
possible. This class of control systems is called minimum-time control systems, or

time-optimal control systems.

X With reference to the previous design methods, one of the design objectives is to
have a small maximum overshoot and a fast rise time in the step response.

In reality, the design principles discussed in the preceding sections involve the
extension of the design experience acquired in the design of continuous-data control
systems; e.g., phase-lag and phase-lead controllers, and the PID controllers.

However, since the digital controller has a great deal of flexibility in its
configuration, one should be able to come up with independent methods not relying
completely on the principles of design of continuous-data control system. We were
perhaps amazed by what the PID controller could accomplish in the improvement on
the system response for the digital control system, but can we do better?.

The answer is that in digital control system we may design the digital

compensator G, (z) to obtain a response (output) with a finite settling time. The output
response c(kT) which reaches the desired steady-state value in a finite number of

sampling intervals is called a deadbeat response.

Ex1: The block diagram of a digital control system, shown in Fig.(1), is revisited. Again,

the controlled process is represented by the transfer function

10
Gp(8)= (s+1)(5+2)

Try to find a controller with the objective to cancel all poles and the zeros of the process

and then add a pole at z=1.



z.o.h process

r(t) O e(t) —{G.(5) _>;_>1—§’“ G,(s) »c(t)

T T
T |<_Gc(z)_>|

Y

Figure (1) A digital control system with a digital controller.

The open-loop pulse transfer function of the uncompensated system is

Gzthp(z):(l—z‘l)Z{ 10 }_ 0.0453(z +0.904)

s(s+1)(s+2)| (z—0.905)(z—0.819)
The pulse transfer function of the suggested digital controller be

_ (2-0.905)(z-0.819)
©0.0453(z-1)(z+0.904)
The open-loop transfer function of the compensated system now simply becomes

1
G.(2)G,,, G, (2)=—
c() zoh p() 7.1
The corresponding closed-loop transfer function is
C@_1
R(z) z

Thus, for a unit step input, the output transform is

C(z)=L=z‘1+z‘2+z‘3+---
z-1

The following points have to be highlighted:

X The output response c(kT) reaches the desired steady-state value in one
sampling period and stays at that value thereafter.

X In reality, however, it must be kept in mind that the true judgement on the
performance should be based on the behavior of c(t) . In general, although c(kT)
may exhibit little or no overshoot, the actual response c(t) may have oscillations
between the sampling instants.

X For the present system, since the sampling period T =0.1sec is much smaller
than the time constants of the controlled process, it is expected that c(kT) gives a
fairly accurate description c(t) .

X Thus, it is expected that the digital controller will produce a unit-step response that

reaches its steady-state value of 0.1 sec, and there should be little or no ripple in
between the sampling instants.

X This type of response is referred to deadbeat response.



However, the design based on the deadbeat response still has the following

limitations and criteria:

X The deadbeat response is obtainable only under the ideal condition that the
cancellation of poles and zeros as required by the design is exact. In practice, the
uncertainty of the poles and zeros of the controlled process, due to the
approximations required in the modeling of the process, and the restrictions in the
realization of the controller transfer function by a digital computer or processor,

would make a deadbeat response almost impossible to achieve exactly.

X The system must have zero steady-state error at the sampling instants for the

specified reference input signal.

X The response time defined as the time required to reach the steady state should be

a minimum.

2\ The digital controller G, (s) must be physically realizable.

The closed-loop pulse transfer function of the digital-controlled system shown in
Fig.(1) is

CO) _ - _C:)6@)
R(2) 1+G,(2)G(2)
R(z)—

T

Figure (2) Rotational Dynamics of a Satellite (Pure inertia)

(1)

Plant
Controller (or Plant with ZOH)

G.(2) > G(2)

E(2)

C(z2)

Y

Solving for G,(z) from Eq.(1), we have

_ 1 M@
G(2) 1-M(2)

G.(2)

Steady-state error

The z-transform of the error signal is written
E(z)=R(z)-C(2)

_R@) -M ()= —

1+G,(2)G(2)



Let the z-transform of the input be described by the function
A(2)

%

(4)

where N is a positive integer, and A(z) is a polynomial in z™* with no zeros at z =1.
For example, for a unit-step function input, A(z)=1 and N =1; for a unit-ramp
function input, A(z)=Tz™* and N =2, etc. In general, R(z) of Eq.(4) represents
inputs of type t"~*. For zero steady-state error,

lime(kT) = lim(L-z*) E(2)

k—o0 71

“lim(1-zt) AU-M@I_, 6
e 1-z7)
Since the polynomial A(z) does not contain any zeros at z=1, it iS necessary

condition for the steady-state error to be zero is that 1— M (z) must contain the factor
(1—-z M"Y, Thus, 1— M (z) should have the form

1-M(2)=1-z")" F(2) (6)
where F(z) is a polynomial of z™*

F(2)=1+z"+z72+--+2' )
where f denote the largest order of F(z), which is selected to achieve the

realizability of the controller G, (z) . Solving for M (z) in the Eq.(6) one can have

N —(z2-DVF(z
M (z) =L D ®
Since F(z) is a polynomial in z™*, it has only poles at z = 0. Therefore, Eq.(8) clearly

indicates that the characteristic equation of the system with zero steady-state error is of
the form

z? =0 9)
where p is a positive integer > N .

Substitution of Eq.(5) into Eq.(3), the z-transform of the error is written as

E(z)=A(2)F(2) (10)
Since A(z) and F(z) are both polynomial of z™*, E(z) in Eq.(9) will have a finite
number of terms in terms in its power-series expansion in inverse powers of z. Thus,

when the characteristic equation of a digital control system is of the form of Eq.(9), that



is, when the characteristic equation roots are all at z =0, the error signal will go to zero

in finite number of sampling periods.

Physical realizability considerations

Equation (8) indicates that the design of a digital control system with the

deadbeat response for a given input requires first the selection of the function F(z).
Once M (z) is determined, the transfer function of the digital controller is obtained from
Eq.(2). However, the physical realizability requirement on G,(z) and the fact that
G(z) is transfer function of a physical process put constrains on the closed-loop
transfer function M (z). In general, let G(z) and M (z) be expressed by the following

series expansions:

G(2)=09,2"+0;2 " 409,27 " "+ n>0
11
Mz)=mz*+mz* +mz*?+... k>0
Substituting the last two equations in Eq.(2), one can have
G.(2)= (mz™*+mz*t+mz* %+
‘ (9,2 +0,27" + g,z " 2+ )A-mz X +mz* 4 m,z )
=d,z7®" 4d, 276D g,z (12)

X Thus, for G,(z) to be physically realizable, k >n; i.e., the lowest power of the
series expansion of M (z) in inverse powers of z must be at least as large as that
of G(z). Once the minimum requirement on M (z) is established, for a specific
input, F(z) must be chosen according to Eq.(6) to satisfy this requirement.

The relations between the basic form of M (z) and the type of input for a deadbeat

response are determined from Eq.(8) and tabulated in Table (1).

Table (1)
Input function N M(z) M(z) with F(z)=1
Step input u(t) 1 1-(1-z2YF(2) 771
Ramp input t u(t) 2 1-(1-zH?F(2) 2771 _ 72
Ramp input t2 u(t) 3 1-(1-zY%F(z) | 3z2'-3z27%+z7°




In fact, there does not seem to be any objection to selecting F(z)=1 for all
types of input. Thus, the results in Table (1) indicate that

. When the input is a step function input, the minimum time for the error to go to zero
is one sampling period.

X For a ramp input, it takes two sample periods for the error to be reduced to zero.

X The minimum number of sampling periods for the error, due to a parabolic input, to
diminish is three.

Another difficulty is revealed by referring to Eq.(2), when M (z) any one of the
forms given in Table (1). Since the highest power term in M(z) is z7',
M (z)/[1- M (z)] will always have one more pole than zero. Then in order that G, (z)
is physically realizable transfer function, G(z) must have at most one more pole than
zero. Of course, G(z) can not have more zeros than poles. For example, for a step
input, M (z) =z"", Eq.(2) gives

1 1

¢G50 21

Thus, the condition on G(z) given above is arrived at. The conclusion is that when

G(z) has more than one pole than zeros, F(z) can not be simply 1.

Ex2: Using the above analysis, repeat the design of the digital controller in the previous
example to give deadbeat response in one sampling interval to unit step input.

Using Eq.(2), the controller transfer function can be written as
1 M(z) _ 1 M (z)

D=5 =M@ ( 0.0453(z +0.904) j 1-M(2)

(z-0.905)(z—-0.819)
One can see that he transfer function G(z) has one more pole than zero. Thus, for the
digital controller G_(z) to be a physically realizable transfer function, then, one can
choose M(z) to be z* and F(z) to be unity. The controller transfer function

becomes

_ (2-0.905)(z-0.819)
© "~ 0.0453(z —1) (z +0.904)




Ex3: Consider that the controlled process of the digital control system shown in Fig.(2)

is described by

1

G()=—
@) 722 -7-1

A digital controller is to be designed so that a deadbeat response is obtained when the
unit input is a unit step input.
Since the transfer function G(z) has two more poles than zeros, we can not

choose M (z) to be z™, since it will lead to a physically unrealizable G_(z) . Let us try

M (z) =z"2. Then,

G.(2) = 1 M(z) 1-z7%-z7 727 1-77-77°
‘ G(z) 1-M(2) 2% 1-7? 1-z7°

which is a physically realizable transfer function. In this case, the function F(z) is
given by Eq.(6)

1-M(z) _1-M(2) _@-2z7%)_@-z"@a+z7") _

= = 1+z7°t
@-zH" @-z% @-z79 -z

F(2)=

Ex4: Consider the digital controlled system of a simple satellite rotational dynamics

shown in Fig.(3). The figure shows pure inertia plant driven by zero-order hold.

rR—O— 2 6.0

M—» ¢(kT)
T

Figure (3) Rotational Dynamics of a Satellite (Pure inertia)

The overall transfer function by
G2)=(-z7) Z [@} —~ G@)=(-2%) Z [is}
S

or

G(z)—ﬁ 27 1+z7h
2| 2@-z1)?



Letting T =0.1sec, then

6(2) = 1| z7Ma+zh
200| 2(1—z1)?

Applying Eg.(2), one can get

G.(2) = 1| 2z |_200@-z7)* z°
‘ G(z)|1-z" 27t A+z7Y) 1-z7

and upon simplification, the above expression becomes

200(1-z7) U(2)
1+z1 E(2)

G.(2)=

Substitute the expression of the above controller into the overall pulse transfer function

M (z), one can obtain the following one delay closed loop pulse transfer function

M(z):C(Z)= G, (2)G(2) =1
R(z) 1+G.(2)G(z) z

The block diagram representing the above pulse transfer function is shown in Fig.(4).

R(z)—> 1- — C(2)

Figure (4) Simple delay element

Cross-multiplication of the controller transfer function G, (z), one can get the difference

equation for the control algorithm
u(kT) =200[e(kT) —e(KT —T)]-u(kT —T)
This algorithm has to be programmed into the digital controller. Figure (5) shows the
unit step input response and control effort for both continuous and sampled forms. It is
clear from the figure that the output reaches steady-state value (with zero error) in one
sample time.
There are several possible problems which commonly occur in finite settling time

(deadbeat) response of the studied example:

X The first is that in order to get 1-step settling time there is an excessive overshoot

and sustained oscillation present in the continuous-time response.



X The second is that very high control efforts are required and these efforts could
cause saturation problems at the output of the digital-to-analogue (D/A) converter
or at best require high-power elements to generate the continuous-time control
effort u(t).

c(kT)
A
1 o
0.5+
[ >t
0.1 0.2 0.3 0.4 0.5
u(t)
A
5001
» t
[ o

- 500+

Figure (5) Response of inertial system and control effort for minimum prototype(deadbeat) controller

Ex5: Let us consider the settling of the temperature control of the thermal system to
ramp input. The pulse transfer function of plant and zero order hold for a sampling

interval T =0.25 sec is

6(2)— 0025 (2+0816)
(z-0.925)(z - 0.528)

we would like to have this system follow the sampled ramp input which is
r(kT)=4(kT)



If we apply the expression (6) for N=2, one can get a discrete controller transfer function
of

40(22-3.9627° +2.4862~° -0.5032) _U(2)
z1-1.1842%-0.6322°+0.81627" E(2)

G.(2)=

which yields a difference equation for the control algorithm:

u(kT)=1.184u(kT —T)+0.632u(kT —2T)—-0.816u(kT —3T)
+40[2e(kT)-3.96e(kT —T)+2.486e(kT —2T) —0.503e(kT —3T)]
The result of this type of algorithm for a ramp refernce input is illustrated in Fig.(6).

Ti(t)
A

4

&

» t(sec)
0.25 0.5 0.75 1.0 1.25

Figure (6) Response of thermal system deadbeat controller to ramp input

The forgoing examples have illustrated the algorithm for generation of minimal
prototype systems which settle to polynomial-type input functions in one step than the
order of the polynomial input. There are, however, some problems associated with such

control algorithms:

X They require excessively high control efforts u(t) .

X As result of these high control efforts, continuous-time plants will tend to oscillate
violently between sampling intervals.
These two problems make minimal prototype (deadbeat) systems not nearly so

desirable and one might think that they are just of academic interest.



Steady State Error

An important characteristic of a control system is its ability to follow, or track, certain
inputs with a minimum of error. The control system designer attempts to minimize the system
error to certain anticipated inputs. In this section the effects of the system transfer
characteristics on the steady-state system errors are considered.

Consider the system of Fig.(1). The signal e(t) is defined as the error; that is,
e(t) =r(t)—b()

rt) +Q e(t) a/c e(t) . 59) c(t)

H(s)

b(t)
Figure (1) A digital control system

Since it is difficult to describe e(t) in a digital control system, the sampled error e’ (t) or the
error at the sampling instants e (kT) is usually used. Thus, the steady-state error at the
sampling instants is defined as
Eqs = lim e(kT) = lim e (t)
k—c0 t—o0

Using the z-transform, the final value theorem leads to

1)
For the system shown in Fig.(1), the z-transform of the error signal is written
E(r)=— )
1+GH(2)

Substituting the last equation into Eq.(1), we have

(2)

This expression shows that the steady state error depends on the reference input R(z), as
well as the loop transfer function GH(z) . In the following, three basic types of input signals will

be considered: step function, ramp function and parabolic function.

Q Steady State Error due to a Step Function input:

Let the reference input to the system of Fig.(1) be a step function of magnitude h. The z-

transform of r(t) is
z
R(z)=h——
(2) —

Substituting the last equation into Eq.(2), we have



Let the step-error constant be defined as

Ky =limGH(z)

z—1
Then Eq.(3) becomes

* h
Ess =
1+ Kp

Thus, for the steady-state error due to a step function input to be zero, the step-error constant

K, must be infinite. This implies that the transfer function GH(z) must have at least one pole

at z=1.

Q Steady State Error due to a Ramp Function input:

For a ramp function, r(t) = ht, the z-transform of r(t) is

hT z

R(z) = (z _1)2

Substitute the previous equation into Eq.(2), we have

(4)

Let the ramp-error constant be defined as

1.
Ky = lim[(z -1) GH(2)] Q
then, Eq.(4) becomes
* h
Ess == K_ (6)

v
The ramp-error constant K, is meaningful only when the input to the system is a ramp function.
Again, Eq.(6) is valid only if the function after the limit sign in Eq.(2) does not have any poles on
or outside the unit circle |z| =1. This means that the closed-loop digital control system must at
least be asymptotically stable.

Equation (6) shows that in order for E; due to a ramp function input be zero, K, must
equal infinity. From Eq.(5) we see that this is equivalent to the requirement of (z —1)GH(z)

having at least one pole at z=1, or GH(z) having two poles at z=1.

QO Steady State Error due to a Parabolic Function input:




2
For a parabolic function, r(t) = h% , the z-transform of r(t) is

_hT2z(z+1)

RE) 2(z-1)°

From Eq.(2), the steady-state error at the sampling instants is written as

T2 i h(z +1)

SR e Ty

or
Now, let the parabolic-error constant be defined as
K, = lim [(z-1)% GH(2)] ®)
a T2 z—>1
Then, Eq.(7) becomes

Ess = K_a )

In a similar manner we must point out that the parabolic-error constant is associated only with

the parabolic function input, and should not be used with any of the other types of inputs.

Effects of Sampling on the Steady-State Error:

If the open-loop transfer function of Fig.(1) is of the following form:
K@Q+T,s)@+Tys)-—-(A+T,S)

SR =5 @+Ty S)L+T, )+ @L+T, S)

(10)

where the T's are nonzero real or complex constants, the type of the system is equal to j. The

error constants for the continuous-data system are defined as

Step-error constant: K, = lim G(s)H(s)
s—0

Ramp-error constant: K, = IirrgJ SG(S)H(s)
S—

Parabolic-error constant: K, = lim sZG(s)H(s)
s—0

According to the above equations, one can easily conclude that, for instance, a type-0
system will have a constant steady-state error due to a step function input, and infinite error
due to all higher-order inputs. A type-1 system (j=1) will have a zero steady-state error due to a

step-function input, a constant error due to a ramp function input, and infinite error due to all



higher-order inputs. Table (1) summarizes the relationships between the system type, and the

error constants for the continuous-data systems.

Table (1)
Type of System Kp Ky Ka
0} K 0} 0}
1 o K 0}
2 o 00 K

We will evaluate the error constants of digital control system shown in Fig.(1) for the cases of

j=0,1 and 2 as follows:

Q Type0(=0)
In this type j=0 and Eq.(10) becomes

K@Q+T,s)@+Tys)---A+T,S)
(A+Ts)A+Tys8)---(A+T, )

G(s)H(s) =

where we assume that the open loop transfer function has more pole than zeros. The z
transform of G(S)H(s) is

(11)
Performing partial fraction expansion to the function inside the bracket in the last equation, we

have

GH(Z):Z{ K K o Ko }
(1+Ts) (@+Ts) (1+T,s)

={Terms with nonzero poles }
It is important to note that the terms due to the nonzero poles do not contain the term (z —1) in

the denominator. Thus, the step-error constant is

K, = lim GH(z) = lim [terms with nonzero poles ]= cons tant
z—>1 z—>1
Substituting Eq.(11) into the ramp-error constant of Eq.(8), we get
K, = L im (z-1)GH(z) = 1 lim (z —1)[terms with nonzero poles |
Tz1 T z1

z—>1 -1 21

= lim {H} lim[(terms with nonzero poles]= lim {@} [constant]=0



Similarly,

1. 2 1 . 2 .
K, =—Ilim(z-1)“ GH(z) == lim(z —1)“ |terms with nonzero poles
2 =27 lim(z-? BH(z) = lim(z -1)° poles]

2 2
= lim {(Z _21) :Illm [terms with nonzero poles]= Ilm{(Z 21) :I [cons tant]=0
z—>1 T z—>1 T
Q Typel(=1)

In this type j=1 and Eq.(10) becomes

KA+T,8)A+TyS)---(1+Ty,S)
SA+Ts)A+Tys)---(1+T,s)

G(s)H(s) =

The z transform of G(s)H(S) is
(12)
Performing partial fraction expansion to the function inside the bracket in the last equation, we

have

GH(z) = Z{K +terms due to the nonzero poles}

GH(z) = K—Z+terms due to the nonzero poles
z-1

Thus, the step-error constant is

Kp = limGH(z) = lim {K—therms due to the nonzero poles} [oo +va|ue]=oo
71 z-1lz-1

Substituting Eq.(12) into the ramp-error constant of Eq.(8), we get
1. 1. Kz
K, = ?Ilm(z -1)GH(z) = T I I|m(z -1) 71 +terms due to the nonzero poles
7 _

=lim { T (ZT ) (terms due to the nonzero poIes)}

z—>1

Similarly,

=Iim{KZ(Z 1) Kz(z 1)
T2

= (terms due to the nonzero poles):l

z—>1

Q Type2(=2)
For a type-1 system j=1, Eq.(11) becomes



GH() = {K2(1+Ta S)(L+Ty8)- (L+Ty s)}
s“(@+Tys)A+Tys8)---(L+T,s)

GH(z) = Z{£ + & +terms due to the nonzero poIes}
S

52

Then, the step-error constant is

Kp = limGH(z) = lim

z—>1 21

{ KTz + % + terms due to the nonzero poles} =0

(-1 z-

The ramp-error constant is

1. 1.
K, ==Ilim(z-1) GH(z) == lim(z -1
YoT zal( ) @) T zal( ){

KTz 5+ Kz +terms due to the nonzero poles
(z-1)° z-1

The parabolic-error constant

K, =i2 lim(z —1)2 GH(z) =i2 lim(z —1)2 KT22 +£+terms due to the nonzero poles
Tcz1 T z-1 (z-1) z-1
_ 2
=lim QJF Ki2(z=1) + (z=1) (terms due to the nonzero poles) | = {5+0+0} _K
21 T T? T? T T

One can summarize the above in the following Table

Table (1)
Type of System Kp Ky Ka
0 constant 0 0
1 o K/T 0}
2 o o0 K/T

Ex1: Calculate the steady-state errors for the system of Fig(1), in which the open-loop transfer

function is given as

1-e™ K
5¢) _[ s J[s (s +1)j




Thus

G(z) =K Z{ﬁ:l:K (-1 z{ ! }

52(5 +1) z 52(s +1)

Since G(z) has one pole at z=1, the steady state error to unit step is zero, and to ramp input is

1/K provided that the system is stable.

Ex2: Consider the system of Fig.(1), where H(s) =1 and

1-e™"

z—e"

G(z) =

Suppose that the design specification for this system requires that the steady state error to a
unit ramp input be less that 0.01. Thus, it is necessary that the open-loop transfer function have

a pole at z=1. Since the plant does not contain a pole at z=1, a digital compensator of the form

Kz
D(z)=——+K
(2) K

will be added to produce the resultant system shown in figure below.

O ] 0 o)

The compensator, called a PI or proportional-plus-integral compensator, is of a form commonly

used to reduce steady-state errors. Employing the expressions above for D(z) and G(z), we

Ki+K.)z-K, T1-eT ] K
K, = L 1im| $ K2y e K
T 251 (z-1) z—-e" T

Thus K; must equal (100T) for the required steady-state error, provided that the system is

see that

stable. The latter point is needed an important consideration since the error analysis is

meaningful unless the stability is guaranteed.



HW1: If a zero-order hold is included immediately after the sampler in the digital control system

of Figure (1), then

Q Follow the same above argument, show that the step, ramp and parabolic error constants
are the same as given in Table (1) for continuous system.

Q Do these error constants depend on the sampling period T? Why?

HW?2: For the simplified digital control system in the figure shown below, find the step, ramp

and parabolic error constants. Express the results in terms of the system parameters.

re e(t) 1 1
O Kp ;MH ZOH I S c(t)
T -




State Variable of Discrete Systems

In general, the analysis and design of linear systems may be carried out by one

of the two major approaches:

& One approach relies on the use of Laplace and z-transforms, transfer functions,

block diagrams or signal flows.

& The other method, which is synonymous with modern control theory, is the state
variable technique. The fact is that a great majority of modern design techniques
are based on the state variable formulation and modeling of the system.

In a broad sense, the state variable representation has the following
advantages, at least in digital control system studies, over the conventional transfer
function method.

& The state variable formulation is natural and convenient for computer solutions.

& The state variable approach allows a unified representation of digital systems with
various types of sampling schemes.

& The state variable method allows a unified representation of single and multiple
variable systems.

& The state variable method can be applied to certain types of nonlinear and time-
varying systems.

In the state variable formulation a continuous-data system is represented by a
set of first-order differential equations, called state equations. For a digital with all

discrete-data components, the state equations are first-order difference equations.

State Equations of Continuous-Data System:

Consider that a continuous-data system with m inputs and r outputs as shown
in Fig.(1) is characterized by the following set of n first-order differential equations,
called state equations

dx;(t) _ £
dt

where X, (t),x,(t),...,x, (t) are the state variables, u,(t),u,(t),...,u,(t) are the

[, (1), %, (1), X, (0, U, (0, U, (0, U (O] (=120..m) (@)

input variables, and f, denotes the ith functional relationship. In general, f, can be

linear or nonlinear.



The r outputs of the system are related to the state variables and the inputs

through the output equations which are of the form,

Yie(®) = hy o (0%, (1), %, (0,u (0, U, (O,u, 0] (k=120 @)

Similar remarks can be made for h, as for f;.

Uy (t) —— Linear system —> Y, (1)
1() ——— ——— (1)
: X1 Xgyeeny X,

Upy (t) ——— (1)

Figure (1) A linear system with m inputs, I outputs and N state variables
It is customary to write the dynamic equations in vector-matrix form:
State equation: % X(t)=Ff[x(t),u (t),t] ()
Output equation: y (t) =h[x(t),u (t),t] (4

where X (t) is nx1 column matrix, and is called the state vector, that is

X, (1)
x () =| 2" o
Xn.(t)
The input matrix, u (t),is mx1 column matrix, and
uy(t)
a -] ©
_Um.(t)
The output vector, y (t), is defined as
v
y=|"2" 0
LY. (1)
whichisa rx1.

If the system is linear but has time-varying elements, the dynamic equations
Eq.s (3) and (4) are written as



XxXW=A@®)x{®)+B({)u(t) (8)

y () =C () x(t)+D () u () ©)
where A (t) is nxn square matrix, B (t) is nxm, C(t) is rxn and D (t) is
rxm. All the elements of these coefficient matrices are considered to be continuous
functions of time t.

If the system is linear and time-invariant, Eq.s (8) and (9) are of the form
x=AX(t)+Bu(t) (10)
y=Cx(t)+Du(t) (12)

The matrices A, B, C and D now all contain constant elements. The block diagram

representing Eq.s (10) and (11) is shown in Fig.(2)

» D

i B [ =OX [ 2| O—>y
L——— A

Figure (2) Block diagram for continuous-time state variable system

<
<

Ex1: Consider the inertial plant which is described by the transfer function

Y(s) 1
G(s) = % s
The equivalent differential equation is
y=u(t)
Now define the two required state variables as
X, =Yy
and
X, =Y =%,

so the differential equations governing the system are

X, =X,
X, =u(t)
or in matrix form,



X 0 1||x 0
e "l U
X, 0 0]x, 1
and the measurement (output) equation is
X
ym=h0{1}
X2
Often the process of selection of system state variables in physical problems is not

straightforward.

Solution of the State Equation

1. Homogeneous Equation:

Let us consider first the homogeneous form of Eq.(10), where u (t) =0, or
X=A X(t) (12)
Taking the Laplace transform of this equation to yield
s X(s)—=x(0)=A X(s) (13)
Rearranging gives
[s1-A] X (s) = x (0)
and solving for X (s), one can get
X (s)=[s1-A]™"x(0)
=6 (s) x(0) (14)
where ¢ (s) = [s 1 - A]™ is called the "state transition matrix". Let us now invert the
Laplace transform of Eq.(14) to yield
@)=L {[s1-A]" } x(0)
=L {0 () } x(0)

or
X(t)=¢ (1) x (0) (15)
where ¢ (t) is given by
oW =LH{[sI-A]"}=L"¢0) (16)

2. Nonhomogeneous Equation:

Now let us consider the forced system, where u (t) =0, then

x=AX()+Bu () (17)



Let us, as before, take the Laplace transform to yield
s X(s)=x(0)=A X(s)+Bu(s)
or
s X(S)—A X (s)=x(0)+Bu(s)
and now solving for the s-domain solution X (s),
X(s)=[s1-A]"x©0)+[s1-A]*Bu(s) (18)
Inverting the Laplace transform, one can get

X =L H{[s1-A]"}x@©+L*{[sI-A]" Bu(s)}
or

XO)=L{o©) }x©+L"{$p() Bu@)} (19)

& The first term of Eq.(19) is the same as given for the homogeneous problem, and

can be rewritten in terms of state transition matrix and the state initial condition as:
¢ (1) X (0).
&~ The second term is the product of two s-domain matrices ¢ (s) and u (s). It is

well-known that the inverse of two functions in s-domains is equal to convolution of

their corresponding time-domain functions, i.e.; if F(s) and F,(s) are two

functions in s-domain, then the following relationship is satisfied:

LY RORO }=[Lt-9fL @ 2

Now letting F,(s)=[s - A]™ =¢ (s) and F,(s) = u (s), the second term in Eq.(19)

can be written as follows:

L {60 Bu@}=| ¢(-DBU@dr @

and Eq.(19) becomes
X(t)=¢(t)x(0)+j o (t-7)Bu (x) de 22)

In the above discussion the solution has been considered at some time t, given initial
conditions at time t=0. Now let us write the expression for an arbitrary starting time

t,, or

0!



t
X(O=9(t-t)x(t)+ [ $-9BuEdr @)
t,

State Variable of Discrete-time System

Let us now consider the system shown in Fig.(3) where a continuous-time plant

is driven by a zero-order hold and the output is sampled.

u .
< o zon YY) B —() X, J. X L ¢ )Y > Yy
T

|

Figure (3) Continuous plant driven by a zero-order with sampled output.

A <

If the output relation is given by

y®=Cx@®  {D=0} (24)
then the same relation must hold at the sample instants
y (kKT) =Cx (KT) (25)

so it sufficient to find the states at the sampling instants. Consider the case where
t=(kT+T) and t, =KT, and note that the operation of zero-order hold is to create a
vector u (KT) according to the relation
u (t)=u (kT) KT <t<(KT+T)
so from relation (22), one can get
KT+T

X(KT+T)=¢(T) x (kT) + I ¢ (KT+T—-1)Bu (kT)drt (26)

kT

Since the vector u (KT) is constant between sampling instants, it is, therefore, not a

function of t and may be extracted from the integral to the right as follows:

KT+T
X (KT +T) = ¢ (T) x (KT) +{ _[ ¢ (KT+T—7) dt B} u (kT) 27)
kT

Let us simplify the integral of the second term by letting (kKT +T—1)=A, then
dt=—dx, and the lower limit on A becomes T {(KT +T —KkT)=T} and the upper
limit becomes zero { (KT +T — (KT +T) = 0}. Then



KT+T 0

_[ ¢(kT+T—r)dr:—j 6 (1) dn 29
KT T
or reversing the limits, one can write Eq.(27) as
T
x(kT+T)=¢(T)x(kT)+{J. ¢ (1) dr B} u (KT) (29)
0
Now define the following constant matrices for constant T , or
_ _ -1 _ -1
F=oM=L{[s1-A]"} _ (30
and
T
G :{J' 6 (1) dr B} (31)
0

S0 expression (29) becomes a simple matrix-vector difference equation:

X (KT+T)=F x(kT) + G u (kT) (32)
using the shorthand notation such that x (kT) = x (k) and u (kT) =u (k), Eq.(32)
becomes

X(k+1) =F x (k) + G u (k) (33)
with an output equation

y (k) =Cx (k) (34)
Expressions (33) and (34) represent the discrete-time state variable of the continuous
plant driven by a zero-order hold and followed by an output sampler. A block diagram

for this discrete-time system is shown in Fig.(4).

Delay

Uk) ——» G _:Ow> Z_1 X(k > C > Y(k)
I— F

Figure (4) Block diagram for discrete-time state variable system

<




Ex2: For the system of Example (1), find the discrete state representation if this system
is driven by a zero-order hold and followed by an output sampler.

First find the state transition matrix ¢ (t) using the following relation:

o =L"{[s1-A]"}

aEn|
=L
0 s
Lt {1/3 1/31
0 s

1t
¢m={01}

so the matrix F can be give as,

SUURRM

or

Now let us calculate the G matrix

)
G={I 6 () dr B}
0

T T
_{I 1kdk0}—k W/2]| [0
- 01 1 lo 1
0 0
and evaluating at the limits yields
co|T T2/2|[0] [T?/2
o T |2 T
Then the discrete state-space representation for this system is now
k+1 17T k 2
X (k+1)]_ 007 [T7/2]
X, (k+1) 0 1]|x,(k) T
with an output relation

Y =l MP“”}

X2 (K)



Ex3: For the following continuous-time state space system,
X, (t -2 2 X, (t 0
(0] _ (07,1970
X,(t)| 105 —-0.75] x,(t)| |0.5

Find the discrete-time state space representation.

The matrix [s | — Al is

[SI_A]{Hz 2 }

-05 s+0.75

and the inverse matrix is

[s1-A]"= 1 {s+0.75 2 }

s2+2.755+05| 05 s+2
making the indicated partial fraction expansions after noting that the denominator roots
are at s=-0.1975 and s=-2.554 gives

0.235 N 0.765 085 085
$+0.1957 s+2.554 $s+0.1957 s+2.554

[s1-A]"=
02125  0.2125 0.765  0.235
| s+0.1957 s+2554 $+0.1957 s+2.554.

Inversion of Laplace transforms yields the state transition matrix ¢ (t):

0.235¢ %1%t £ 0.765e 2%t 0,850 0197 0,572
¢ (1) =
0.2125 ¢ 0197t _0.2125 ¢72%%*! 0,765 e 0197t 1 0,235 ¢ 2

If this matrix is evaluated at t =T =0.25 sec, one can obtain

o (T)=F = {0.627 0.361}

0.0901 0.853
Now the matrix G can be obtained as follows:

T T 0.85e—0.19577u _0.85e—2.5547u)
G={I o (1) dn B}:O.SI dn
0

0 [0.765 e %19* 10,235 ¢

and performing the integration and evaluating at the limits yields



2.17(e %1977 _1)_0.166(e 25547 1)
G=

1.95(e %1957 1)+ 0.046 (e 72>>4T —1)

and evaluating at T =0.25 sec yields

0.0251
G =
{0.1150}
The discrete-time state equations for this system are then

x,(k+1)| _[0627 0361][x,(k)] [0.0251 ”
x,(k+1)| |0.0901 0.853]|x,(k)| |0.1150 -

The Matrix Exponential Series Approach:

We have seen that the state transition matrix could be evaluated by Laplace
transforms as in expression (16). One may verify by differentiation that the solution to
x=A X (35)

can be written as

X (t) = et x (0) (36)
{ differentiation Eq.(36) gives x = A e”! x (0) = Ax which proves Eq.(35) }

where the exponential matrix is defined by

eAt=I+At+%A2t2+%A3t3+--- (37)

It is clear from comparison of relations (15) and (36) that e”** is also the state transition
matrix ¢ (t), or

¢ (1) =" (38)

Since the F matrix in the discrete system representation is ¢ (T), then from Eq.(37)
one can get

Ai -I—i
F =ZT (39)

0
1=0



and the substitution of series expression of Eq.(37) into the integral relation (31) for the

G matrix after integration gives, term by term,

T T
G={I ¢(k)dkB}={I eA d. B}
0 0

T
=I{L+Ax+%A%£+%A%§+m}MB
) ! !
2 3 T
ineal a2 ) B
2 3 0
2 3
fiteal a2l ) B
2 3
® i i+l
=§:/\T B (40)
— (i+2)!

If we are given a continuous-time plant in the form of A and B matrices and we are
able to select a sampling interval T, then we may computerize the evaluation of
truncated versions of relations (39) and (40) to give the discrete-time representation of

the system. The matrix C is the same as that in the continuous-time representation.

Ex4: Given the inertial system of Example (1) with A and G

SEREH

Find the F and G matrices by the method o matrix exponential series. First calculate

the powers of the A matrix
A2 _ 0 110 1| |0 O
|0 0Jlo 0] [0 O
Similarly all higher-order powers of A are zero. The F matrix is given exactly by two

terms of the series:

1T
F=1+AT=
ot

Similarly G is given by



2
G:TB+1T2AB=|:T /2}
2 T

This was a very fortunate case, in that higher powers of the A matrix were
zero. This is a seldom case in a real problem, and one will need to truncate the series
and assume that enough terms are retained to give reasonable approximation of the

closed form of the series.



Solved Examples

ExZ1: Find the inverse z transform of

1

Y@= (z-1)(z-05)

Then the partial fraction expansion is

1 Bz Cz
—=A+ +
(z-1)(z-0.5) (z-1) (z-0.5)

The constant A is needed because each of the partial expansion terms has a z in the

numerator. If A= 0, when we do the inverse transformation we will have a term Au,(nT). This
is not a problem, however, since u,(nT) is a well-defined function.

One can find A by setting z=0, yielding

We see that if Y (z) had a multiplicative factor z, k >1, in the numerator, then the constant

term would be zero. There are a number of ways to find B and C. One way is to put the partial

fraction expansion over a common denominator to obtain.

Equating coefficients in the numerators on both sides of the equation yields the three linear
equations
A+B+C=0, —15A-05B-C=0, and 05A=1
The last equation verifies that A= 2. The remaining two equations then become
B+C=-2, -05B-C=3
yielding B=2 and C=-4. It is worth noting at this point that if A is not included in the partial

fraction expansion, then, placing the terms over a common denominator yields

when we try to equate the numerator on hoth sides of the equation, we end up with
1=(B+C)z%>-(0.5B+C)z

which does not work. Without A we have no constant term to equate to 1.



Alternative solution:

One can write the transfer function as
- Y(@@) 1 A B C

We now proceed just as we would for a continuous system. Thus,

_ -1
B=(z-1)Y (Z)|z=1 = [m} =2
' z=1

Then,

Y@) 2 2 4

- , and
z z z-1 z-05

Applying the inverse z-transform to both side of this last equation then yields the same result as

before, namely,
The point z =0.5 corresponds to the point

in the s-plane. Thus, we could write the solution as

where « = InE
T

If we know T, then we can evaluate « .
Ex2: Find the inverse z transform of

0.2z

Y(2)= : .
(z-1)(z-0.6-j0.2)(z-0.6+j0.2)

The multiplicative factor z in the numerator means there will be no constant term in the partial
fraction expansion, which can be written as

Y& _ A, B . C
z  (z-1) (z-06-j02) (z—0.6+j0.2)

The evaluation now proceeds just as it would for a Laplace transform:



The evaluation of B proceeds in the same way:

C=1.12¢ /203

Then the inverse z-transform

where the damped frequency
o= tan—l(%] =1.25
0.6

we can obtain y(nT) as follows

with
s (\/0.22 +O.62) o ® _125
T YT T

Ex3: Solve the following difference equation:
y(nT+2T) =5y (nT +T)+ 6y (nT) =uy(nT)
with y(0)=1 and y(T)=0 and u, (nT) s the discrete impulse function.
Applying the z-transform to both sides:
[2%Y (2) = 2%y (0) ~ 2y (M)] - 5[2Y (2) ~ 2y ()] + 6Y (2) = i (2)

which can be arranged as

Y(2)= ZZY(0)+[Y(T)—5Y(0)]Z+ U (2)
722 -57+6 72°-57+6

substituting the initial conditions and since u,(z) =1 then yields

72 57 1 722 -5z+1
+ _

Y(z)= =
@) 722-52+6 2z°-52+6 2°-57+6

we can now find Y (z) by partial fraction expansion. That is,



and

Finally,

and

We have to solve the expression

eaT =2
for o using a=2 and a=3. That is,
and

yielding

Ex4: Find the partial fraction expansion and invert the resulting transform of the following z

transform function:

_ 2’ +72
~ (z2-06)(z-0.8)(z-1)

F(2)

The expansion will be of the form

_ z+1 _ 1.6 _
h (z-0.8)(z-1)|z=0.6 (-0.2)(-0.4)
_ z+1 _ 1.8 _
27 2-06)z-1)|z=08" (0.2)(-0.2)
z+1 2
and A= Z-06)z-08)|z=1" (04)02) ~ >

S0 upon inversion of the transform,



EX5: Find the inverse of the following function using the method of partial fraction expansion:

2’ +z

F(z)= a
@ (22 -1.13z2+ 0.64)(z— 0.8) @
The chosen form will be
2
F(z) = . Az +Bz N Cz (b)
(2> -1.13z+0.64) (z-0.8)
First find the coefficient C

0.8+1 1.8

C= - =478
0.64-1.13(0.8)+0.64 0.376

Now find a common denominator in (b) and equate the numerator of (a) and (b) to yield the

following:

Equating the coefficients of like powers of z yields

2% 0=A+4.78

Solving these equations for A and B yields:

A=-478
B=2.576

Then the resulting z-domain function is
—4.782% + 2.578z2 N 4,782 478z

F(z) = =R(z)+
@) 72-1.132+064 z-08 1(2) z-0.8

since

Comparing this with the first term of (c), one can obtain

e =064, e =08
Then

2e T cos(wT)=1.13

SO
cos(wT)=0.706

which implies that T = 0.786 ; then
sin(wT) =sin(0.786) = 0.707



Then F,(z) can be written as

—4.78 (z* - 0.5652) , (2576-27) 056562

F(z)=
1(2) 2% -1.132 +0.64 0.565  z2-1.13z+0.64

Inverting the resulting transforms, no forgetting to add on the last term, yields a time domain

sequence of

Ex6: Consider the homogeneous first-order difference equation
X(nT+T)—-0.8x(nT)=0

with initial value x(0) =1. Now take the z transform to yield
zX(2)-zx(0)-0.8X(z2)=0

Solving for X(z) yields

z 1

X(z) = =
@ z-08 1-08z7"

which implies that the solution is

x(n)=0.8" n=0,12,...

Ex7: Consider the same example as before with initial condition x(0)=1 and an
nonhomogeneuous term on the right side, or
x(nT+T)-0.8x(nT) =1

Taking the z transform yields

zX(z)—zx(O)—O.8X(z)=i

Solving for X(z) yields

22 z 22 A B
X(z) = + = +2 +
z—-08 (z-1)(z-0.8) z-0.8 z-1 z-038

Solving for A and B yields

So the z-domain solution



27 5z 52

X(z) = + -
z-08 z-1 z-038

and the total solution is
x(n) =-3(0.8)" +5 n=0,12,...
We can check that the initial value is needed satisfied, and by substitution into the difference

equation we see that it is identically satisfied

Ex8: Given a complex pole location in the z-plane as shown in figure below, find the damping

ratio £, the natural frequency w,, and the time constant 7 .

Imaginary axis

The point at Z-plane

50

The z-plane poles occur at z=e%" .The complex poles in s-plane appear in conjugates and

» .
P> Real axis

have the following form

Sy, =—Cw, jony1-¢?

Then, substitute the above expression for sinto z = eST , we have

z =e(_§wnijwn Vl_gz)T Z =e(_§wn)T eijwn Vl_gz =e(_§wn)T eijwn 1_§ZT =reie

Hence

r = o-¢0)T
or

¢ o7 ==In(r) 1)
Also,

0, 1-¢2T=0 )

Taking the ratio of Eq.(1) and (2), we obtain

¢ _—Inr)
Ji-gz 9
Soving this equation for ¢
—In(r)

o JIn?(r) + 62

We find w, by substituting the last equation into Eq.(1)



w, = lellnz(r)+92
The time constant, ¢, of the pole is then given by
1 =T
= -
¢wy  In(r)

EX9: For the closed-loop sampled-data system, find

QO Closed loop pulse transfer function

Q The damping ratio, the natural frequency and the time constant.

Q The damping ratio, the natural frequency and the time constant for the closed-loop
analogue system (with sampler and data hold removed).

Q Comment the change in the above parameters with different systems.

R + E 1_e_TS + 40
O——) —>( > > C
X T=002s s T s(s+4)

-Ts
G(z)=2 42(1 e ) =(Z 1]2[3_25;4}
S(s“+4s+40) z S s°+4s+40
z-1 1 S+2 1 6
=\ 1Z|<™ 2,02 1 2, a2
z S (S+2)°+6° 3(s+2)°+6

With G(z)in this form, we can obtain the z-transform from the tables.

with T =0.02 s, we evaluate the terms in G(z),

26709 ¢05(0.12) =1.907760
%e‘o-o“ sin (0.12) = 0.038339

e 0% _0.923116

Therefore,
z-1\ z 72 -0.91554 7
G(Z) = )
z z-1 z°-1.90776z+0.92312
0.00778z +0.00758

 72-1.907762 +0.92312

The closed loop transfer function is then



C(z) _ 0.00778z +0.00758
R(z) 2z%2-1.90z+0.9307

Thus, the pole locations are
2,, =095+ 0.168=0.965¢*/017°
Hence,

The closed-loop transfer function of the analogue can be expressed as
C(s) _ 40
R(S) (s+2)%+(8.72)?

Comparing the above to the standard second order transfer function

C(s) _ o

RGS) s2+20 w5+
Then,

o, =8.72 rad/sec
Since

26w, =4
Then

¢ = 2 _0.229

a’n

and the system time constant
1

= =05 s
¢w,

T

Thus the frequency @, =8.72 rad/s is excited by the system input. This frequency
has a period of 27 /w,, or 0.72 s. Hence this frequency is sampled 36 times per cycle (T=0.02

s), which results in a very good description of the signal. Also, the time constant of the poles of
the closed-loop transfer function, given by 1/, is 0.5 s. Thus, we are sampling 25 times per
time constant. A rule of thumb often given for selecting sample rates is that a rate of at least
five times per time constant is a good choice. Hence for this system, we would expect very little

degradation in system response because of the sampling.

Ex10: Is the equation
u(nT) =0.9u(nT —-T) —-0.2u(nT —2T)
Stable?



Taking the z transform of both side of the above equation
U(z)=0.9271U(z)-0.2272U(z)

Multiplying both side by z2, we have

1

Uu@z)z=—-——
@) 72 -0.9z+0.2

The characteristic equation is

z2-0.92+0.2=0
and the characteristic roots are z=0.5 and z =0.5. Since both these roots are inside the unit

circle, the equation is stable.

Ex11: Try to represent the PID (proportional, integral and derivative controller) in a discrete
form:

Continuous time PID controller can be written as

t

U =K, e(t) + K, 6() +Ki J-e(t)dt — Uy () + Uy () + U, (1)

)

where K, K4 and K, are the proportional, derivative and integral gains respectively.

letting t=nT

u(nT) =u (NT) +u,(nT) +us(nT)
where

u (nT) =K, e(nT),

[e(nT)—e(nT -T)]
T

U, (nT) =K, e(nT) =K,

and

Using backward approximation, the last integral of u;(nT) can be written as

us(nT) :{u3(nT —T)+%e(nT)T}

Taking the z transform of u, (nT),u,(nT) and us(nT), we will get

U (z) =K, e(2)
e(z)-z%(z)

0y (2) =Ky

and



Ug(2) -2 uz(2) :%e(z) T =Uy(2) = Ki (ZZ—-_I-:J e(z)

Then,

u(z) =K, e(z)+Ky @4—% [zz_-—rlj e(z)

z(z-1) u(z) =K, z(z—1)e(z)+KT—d(z2—2z +1)e(z)+%(zz)e(z)

Dividing both sides by z2

The corresponding time sequence

u(nT) =u(nT -T)+K, [e(nT) —e(nT —T)]+f_—d[e(nT)—2e(nT ~T)+e(nT —2T)]+%e(nT)
or

Ex12: Find the transfer function Y(z)/U(z) associated with the simultaneous difference

equations

y(nT +T)—2y(nT) +x(nT) =u(nT)
X(nT +T)—y(nT) =3u(nT)
Taking the z transform of these equations while ignoring x(0) and y(0), we get the linear z-
domain equations
(z-2)Y(2)+X(z)=U(2)
-Y(2)+z X(z)=3U(2)
Now using Cramer's rule to solve for the output variable we get

Ui 1

Y@= ‘3ZU(;) 1Z

-1 z

or carrying out the multiplication and combining like terms

Y(z)  z-3
U@z) z%-2z+1




Ex13: Suppose we try to sample a 6-Hz sinwave and the sampling rate f, is 10 Hz, so that

T =1/, =0.1s. Then the sine function has poles at z =e*1®™ Consider the mapping of the

poles as the frequency increases from 0 to 6 Hz. The paths followed as the frequency
increases are shown in Fig.(1).

Note that at a frequency of 5 Hz, the two paths meets at z=-1. The pole migrating to 6
Hz then continues on, ending up at point that corresponds to -4 Hz. The pole migrating to -6
Hz, does the same thing, ending up at a point on the unit circle that corresponds to 4 Hz. Thus,
the 6 Hz sin wave will appear to be a 4 Hz sine wave.

Note that as the poles continue to migrate toward 10 Hz (27/T rad/s) and -10 Hz

(—2x/T rad/s) the aliased frequency will continue to decrease.

Imaginary axis
s

o
b
(9]
S
o

ylsttig Imaginary axis

T T1T h

Mapping from origin to 6 Hz

Real axis
>

v

Ex14: Find the poles of X" (s)and X(z) of x(t) = cos(wt).

The starred transformation X(s) is

o0

X*(s) = Zcos(a) nT)e ™ =

n=0

e (e.ST — cos(T))
(eST _ erT)(eST _e—JwT)

Recalling that X(s) is periodic in s we note that X (s)will have poles at
s=+joxj2nz/T, n=12,.... Thus, X (s) has a countably infinite number of poles

repeated at intervals of 27z/T .



The corresponding Z transform is

The poles of X (z), and the related poles of X" (s), are shown in figure below.

Imaginary axis
L

5x/T
etohdany sfti Imaginary axis
1 $e L ginasy

Real axis
N

I \E ,,,,, N
AN \M

ISdedn arly rtip

Ex15: Find the poles of X'(s)and X(z) of x(t)=e™. The Laplace transform of this

function is

X(s) = ——
S+a

The starred transformation is

ST

0
* _ E —anT ,—nTs __ €
n=0

Recalling that X(s) is periodic in s we note that X (s)will have poles at
s=-a+j2nz/T, n=12,.... Thus, X"(s) has a countably infinite number of poles, one

of which is the pole of X(s) and copies of this pole, repeated at intervals of 27z/T . We can

see from the figure below that the pole of the Laplace transform will lie in a strip of width

27/T centered on the real axis of the s plane. This strip is called the primary strip. This pole is

then repeated in the secondary strips above and below the primary strip.



Imaginary axis
A

5x/T

Primary-srtip

\

A

Imaginary axis

R i
m

e I
R D o T BT B 2 A —47Z/T

-57/T

Unit circle

O All poles of X”(s)map to the same location in the z plane, as shown in the figure. As it is
known that every pole of X (s) generates an infinite number of poles in X (s)..
O The mapping of s=-a+j2nz/T, n=12,... of X(s)into z plane, using z =e*",

leads to single pointat z =e 2" e!? , where 6 =0.

Ex16: Find the pulse transfer function of the following block diagram:

R O o BO T ~EE

T T

E;(s)

G,(s)

H(s)

v

The system equations are

E1(s) =R(s) —Gy(s) Ex(s)
E2(5) =Gy(5) E; (5) =G, (S)H(S)E2(5)
C(5) = G,(S)E2(5)

Starring these equations gives

E;(s) =R7(5) ~G,(s) E5(s)

> C(s)



E;(5) =Gy (5) E; () =G, H™(S)E;(5) (2
C™(s) = G2(S)Ex(5) 3

~ ~—

Substitute Eq(1) into Eq.(2), and then solve for E(S)

E3(5) =G;(s) [R™(8) = G3(8)E3(s) | —G,H(S)E3(s)
or

From Eq.(3), the sampled output C”(s) becomes

Therefore, the pulse transfer function in z transform

C@)_ GG
R(z) 1+G,(2)G,(z)+G,H(z)

Ex17: Find the pulse transfer function of the following block diagram:

R —O a(s) =020 609 ﬁéf—»c@

o >
CE() °>Tc E;(5) T

The system equations are

E,(5) =R(5) ~C(s)

E2 () = Gy(S)E; (5) ~C(5) (
C(s) =G, (S)E,(S) +E4(9)

- —
CICEE

Substitute Eq. (1) and (2) into (3), one can obtain

C(s) =G,(s) [Gl(s) E; (s)-C(s) ] +R(s)—C(s)
C(3) =G,(5)G1(8) Ey (5) — G, (S)C(8) +R(s) —C(s) 4)
and solve for C(s)

o)~ RE) , G(8)G,(8) » 5)
+G,(s)  2+G,(9)




Substitute Eq.(5) into Eq.(1) to obtain

£,(5) =R(5) ~C(5)=R() - {2 ol e E (s)}
2 2

[1+G,(5) JR(5)  Gy(5)G, (8) - (6)

B =06 246, O

Starring of Eq.(5) and Eq.(6), we obtain

o) { R(s) T{Gﬂs)ez(s) E*}*
2+G,(s) 2+G,(s)

C*(S): R*(S) + Gle;(s) E*
24G,(s) 2+Gy(s)

oy [0+6,6RE) | [6u8)8y(S) oo vn |
El(s){ 24G,(s) 21+G;(s) B ()

(R'(5)+RG(5))  G,G;(s)
2+G,(s) 2+G,(s)

Ey(s)= E1 (5)

Solving for E; (s)

£ (6) = (R"(s)+RG;(s) )
(2+G;(s)+GG;(s) )

Substitute the last equation into C”(s) equation

Co- RO, 666 [ RE+R&E)
2+G,(s) 2+G,(s) (2+G;(S)+GlG;(s))

. [ R'(5)(2+G5(5) + 26,65 (5)) +GG5(s) RG;(s) }

(2+G;(s)+6,G5(5) )2+ Ga(s))

The corresponding z transform is

{ R(2)(2+6,(2) +2GG,(2)) +GiG,(2) RG,(2) }
C(z) =

(2+6,(2)+GG,(2))(2+G,(2)



Note that no pulse transfer function is possible for this system, since the input is fed
into a continuous element in the system without first being sampled.

Ex18: Find the pulse transfer function of the following block diagram:

6.6 Ot

P

v

R(s)

Y

l

G2(5) F—(O—>

Gs(s)

The system equations are

C(s) =G3(S)R(5) + D(5)G,(5)G3(S)E (5)
E(s) =R(s)Gy(s) -C(s)
E(s) =R(5)Gy(5) ~R(5)G3 () ~D(8)Gy(5) G3 (S)E " (5)

Starring of both Eq.(1) and (2)

C"(s) =RG;(s) + DG, G;(S)E"(s)

E"(s) =RG; (s)—RG;(s) —DG,G;(S)E”(s)
Solving for E"(s)

RG; (s)-RG;(s)
1+DG,G;(s)

E*(s) =

Substitute the last equation into Eg.(3), we obtain

900,100 P )
23

C(s) = RG,(s)+DG, G;(S)RG, ()
- 1+DG,G;(s)

in z transform

»C(s)



Ca)zvmdn+ogegana%

1+ DG,G;(2)

Note that no transfer function may be derived for this system.

Ex19: A digital control may be represented by the block diagram of figure below:

Q The open-loop pulse transfer function.

Q The closed-loop pulse transfer function.

Q The difference equation for the discrete time response.

Q Sketch the unit step response assuming zero initial conditions.
Q The steady-state value of the system output.

et et igi Ut Zero u()
0 Ot e, PO s L0 pan

Hold

Microprocessor

Sensor

A

> c(t)

The above digital control system may be redrawn as follows:

Y
Y

+ 1-e7™ 1
R(s) —>Q—°/°—> K s(s+2)

N T=05s S

a
1-e™™ 1
G(S):K[ S j[s(s+2)j
given K=1
_(1_na"Ts 1
G(S)_(l ° ){sz(s+2)}

Partial fraction expansion

or
1=s(s+2)A+(s+2)B+s
Equating coefficients gives



A=-0.25
B=05
C=0.25

Then, G(s) becomes

G(s):(l_e—Ts){—Os-25+£+ 0.25 }

s (s+2)
or

G(s) = o.25(1—e-TS){_E+£2+ 1 }

S s° (s+2)

Taking z-transforms

G(z)=0.25(1— 2‘1){— Z 2—1 ; (szlz)z 2 _Ze_ZT )}

Given T=0.5 seconds

G(z):O.ZS(Z_ljz{— L, 205, 1 }
z z-1 (z-1)° (z-0.368)

Hence

which simplifies to give the open-loop transfer function

0.092+0.066
G(Z) =1 22
z°-1.368z +0.368

Q The close-loop pulse transfer function is

which simplifies to give the closed-loop pulse transfer function

C(z) [ 0.092z+0.066
R(z) [22 ~1.2762 +o.434j
or
C(z)  0.092z7'+0.0662°2
R(z) 1-1.27627+0.434z72
Q The last transfer function can be expressed as a difference equation

Q Using the final value theorem, one can obtain



i (216,
o )_'Z*EK z JR(z) R(Z)}

. z-1 0.092z +0.066 z
C(0) =lim 5 X
e z z°-1.2762+0434| z-1

0.092 +0.066
C(0) =
1-1.276+0.434
Hence there is no steady-state error.

Q The response in the following figure is constructed solely from the knowledge of the two
previous sampled outputs and the two previously sampled inputs.

c(nT)
A

0.8

0.6

04

0.2
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