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Why Digital Control Instead of Analogue? 
Since almost all control functions can be achieved with analogue 

(continuous-time) hardware, one is tempted to ask why we might wish to 

study digital control theory. Engineers have been long interested in the 

possibility of incorporating digital computers into the control loop because 

of the ability of a digital computer to process immense quantities of data and 

base control policies logically on the data. If we follow the historical 

development of digital computers, we find that they were initially very 

complex large devices which generally cost too much for application in 

control systems of a moderate degree of complexity. At this stage cost 

limitations relegated digital control to only the largest control systems such 

as those for oil refineries or large chemical-processing plants. 

With the introduction of the minicomputer in the mid-1960s the 

possibilities for digital control were greatly expanded because of reduction 

of both size and cost. This allowed application of computers to control 

smaller and less costly systems. The advent of microprocessor unit in the 

early 1970s has similarly expanded the horizons, since capabilities which 

formerly cost thousands of dollars may be purchased for, at most, a few 

hundreds of dollars. These prices make digital control hardware competitive 

with analogue control hardware for even the simplest single-loop control 

applications. We now see that microprocessor units complete with system 

controller, arithmetic unit, clock, limited read only memory (ROM), and 

random-access memory (RAM) on a single LSI, 40-pin, integrated circuit 

chip are available for less than five dollars. It is acknowledged that other 

hardware is required for A/D and D/A conversion but inexpensive hardware 

is also available to accomplish these tasks. Some of these devices are also 

beginning to appear aboard the CPU chip. A cost which is not easily 

estimated is that of software development which is necessary in control 

applications, but it is safe to say that the more complex the control task the 

more complex the software required regardless of the digital system 
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employed. Some of these difficulties are now being alleviated by 

development of high-level languages, such as PASCAL and C-languages, 

especially suited for microprocessor application. The availability of 

hardware in LSI form has made digital hardware attractive from space, 

weight, power consumption, and reliability points of view.    

Computational speed is directly affected by hardware speed, and 

hence there has been considerable effort to increase component speed, 

which has increased exponentially in the past two decades.  

Thus, the development of LSI circuit density which is, in itself, a 

measurement of the progress in the field of digital hardware. It is interesting 

to note that the Intel 8086 microprocessor has in excess of 30,000 transistors 

on a single integrated circuit chip.  

Another indicator of speed of technological development is the cost 

of hardware to accomplish a particular task. If one examines the cost history 

of a particular line of microprocessors it becomes clear that the price is 

halved yearly.  

 

The Computer as a Control Unit 
Let us consider a single-loop position servomechanism in continuous-

time form as shown in Fig.(1). The reference signal is in the form of a 

voltage, as is the feedback signal, both generated by mechanically driven 

potentiometers.  

 

 

 

 

 

 

 

Figure (1) Position servomechanism with continuous signals  
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Let us now investigate how this simple task, outlined in Fig.(1), 

might be accomplished by employing a digital computer to generate the 

signal to the power amplifier. We must postulate the existence of two 

devices. The first of these devices is the analogue-to-digital (A/D) converter 

which will sample the output signal periodically and convert this sample to a 

digital word to be processed by the digital computer and thus generate a 

control strategy in the form of a number. The second device is a digital to 

analogue (DAC) converter which converts the numerical control strategy 

generated by the digital computer from a digital word to an analogue signal. 

The position servomechanism is shown in Fig.(2) controlled by a digital 

computer.  

Generally, the A/D and D/A converters operate periodically and 

hence the closer together in time the samples are taken, and the more often 

the output of the D/A converter is updated, the closer the digital control 

system will approach the continuous-time system. However, it is not always 

desirable to have the system approach the continuous system in that there 

are desirable attributes to a discrete-time system.  

 

 

 

 

 

 

 

Figure (2) Digitally controlled positioning system 

 

The Single-loop Digital Control System 
There are several configurations of a single-loop control system, two 

of which are shown in Figs.(3-a) and (3-b). In both cases a single 
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continuous-time variable y(t) is being controlled to follow some reference 

signal which might be zero or constant as in the case of a regulator.  

The signal leaving the digital computer in both cases is a periodic 

sequence of numbers which represent the control strategy as generated by 

the computer. The input to the digital computer is a periodic sequence of 

numbers which represent the periodic samples of the continuous signal 

which is the input to the A/D converter. The purpose of developing digital 

control theory is to find desirable algorithms by which the digital computer 

converts the input sequence into the output sequence which is the numerical 

control strategy. The design process is one of selecting the algorithm 

reflected in the function D(z).    

 

 

    

 

 

                                           (a)  

 

 

 

 

 

                                               

                                                  (b) 

Figure (3) Several configuration of a digital control system 
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Advantages of digital controllers over analogue controllers: 
One must recognize that many physical systems have inherent 

sampling, or their behavior can be described by sampled data or digital 

models. Many modern control systems contain intentional sampling and 

digital processors. The sampled-data and digital control are characterized 

by: Improved sensitivity, better reliability, no drift, less effect due to noise 

and disturbance, more compact and light weight, less cost, and more 

flexibility in programming.  

Some of the advantages of digital controllers over analogue controllers 

may be summarized as follows: 

��   Digital controllers are capable of performing complex computations with 

constant accuracy at high speed. Digital computers can have almost any 

desired degree of accuracy in computations at relatively little increase in 

cost. On the other hand, the cost of analogue computers increases rapidly 

as the complexity of the computations increases if constant accuracy is to 

be maintained.  

��   Digital controllers are extremely versatile than analogue controllers. The 

program which characterizes a digital controller can be modified to 

accommodate design changes, or adaptive performances, without any 

variations on the hardware. By merely issuing a new program, one can 

completely change the operations being performed. This feature is 

particularly important if the control system is to receive operating 

information or instructions from some computing center, where economic 

analysis and optimization studies are being made.   

��   Because of inability of conventional techniques to adequately handle 

complex control problems, it has been customary to subdivide a process 

into smaller units and handle each of these separate control problem. 

Human operators are normally used to coordinate the operation of units. 

Recent advances in computer control systems have caused changes in this 

use of industrial process controls. Recent developments in large-scale 
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computers and mathematical methods provide a basis for use of all 

available information in the control system. In conventional control, this 

part of control loop is being done directly by humans.   

��   Digital components in the form of electronic parts, transducers and 

encoders, are often more reliable, more rugged in construction, and more 

compact in size than their analogue equivalents. These and other glaring 

comparisons are rapidly converting the control system technology into a 

digital one.           
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Z-transform 
 
The simple substitution  
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where F(z) designates the z transform of )(* tf . Because only values of the signal at the 
sampling instants are considered, the z transform of )(tf  is the same as that of )(* tf .   
 
Z Transform by Definition:   
 

In the following analysis, the z transform is derived using Eq.(1), where )(nTf is the 

function for which the z transform will be obtained.                              
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Multiplying both sides of this last equation by z results in  
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Discrete ramp function: 
 
The discrete ramp function is defined as  
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Discrete cosine function: 
 
Let  
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The first step is the choice of the alternative representation of cosine function using Euler 
identity: 
     
 
Then, 
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Discrete exponential decay function: 
 
Let  
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In Table (1) is given a partial listing of Laplace transforms and corresponding z 

transforms for commonly encountered functions. 

 
Z Transform Using Partial Fraction: 

When the Laplace transform of a function is known, the corresponding z transform may 
be obtained by the partial fraction  
Ex: Determine the z transform for the function whose Laplace transform is  
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From Table (1), the z transform corresponding to s1  is 1zz  and that corresponding to 
11 s  is  Tezz  . Thus, 
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Table (1) z transforms 
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Ex: Determine the z transform of )cos( t . 

       It is known that the Laplace transform is )( 22 ss . Performing a partial-fraction 

expansion gives  
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Z Transform Using Residue Method: 
      This is a powerful technique for obtaining z transforms. The z transform of )(* tf may be 

expressed in the form  
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When )(sF contains a repeated pole of order q , the residue is  

                       
 
       As is illustrated by the following examples, the determination of residues is similar to 
evaluating the constants in a partial-fraction expansion. 
Ex: Determine the z transform of a unit step function.  
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Ex: Determine the z transform of ate .  

 For this function, )(1)( assF  , which has but one pole at s=-a. Thus, 
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Ex: Determine the z transform of for the function whose Laplace transform is 
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The residue due to the pole at s=-1 is  
                               
 
Adding these two residues results in 
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Ex: Determine the z transform corresponding to the function ttf )( . 

The Laplace transform is  
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Theorems 
 

  Initial value theorem: 

Suppose )(nTf  has z transform )(zF  and )(lim zF
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letting z , the theorem is verified.  
                                                                          
 

  Final value theorem : 

 
Suppose )(nTf  has z transform F(z). Then, 
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Taking the limit as z approaches 1 gives  

         
 

When n is very large, )(1 zFSS nn  . Thus, the final-value theorem given by Eq.(1) is 

verified.   
 
Ex: For a discrete data system with transfer function  
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  Shifting property: 
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Right shifting:  When the function )(nTf  of Fig.(1-a) is shifted one sampling period to the left, 
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Figure (1) Translation of a discrete function )(nTf  
 
A listing of z transform theorems and properties is given in Table(2) 

 
Table (2) Properties of the z transforms 

)(nTf  )]([ nTfZ  

)(nTfa  )(zFa  
)()( 21 nTfnTf   )()( 21 zFzF   

)( nTkTf   )(zFz n  
)( TkTf   )0()( fzzFz   
)2( TkTf   )()0()( 22 TfzfzzFz   
)( nTkTf   ])1[()()0()( 1 TnfzTfzfzzFz nnn     

)(nTfnT   )(zF
dz
dzT  

)()( nTfe nTa   aTezF  
)()( nTfa nT   azF /  

),( anTf
a
   azF

z
/


  
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Inverse z transform 
 

Inspection of Table (1) shows that z transform tend to be more complicated than 
corresponding Laplace transforms. Fortunately, there are some relatively simple techniques for 
obtaining inverse z transforms.  

 

  Partial-Fraction Method: 

In this method, obtaining )(nTx  is based on the partial fraction expansion of zzX )(  

and the identification of each of the terms by the use of a table of z transforms. Note that the 

reason we expansion we zzX )(  into partial fractions is that the functions of z appearing in 

tables of z transforms usually have the factor z in their numerators.  
Consider )(zX  given by  

)()(
1

1
1

1
1

1 nm
azazaza
bzbzbzb

zX
nn

nn
o

mm
mm

o 













  

  Factor the denominator polynomial of )(zX  and find the poles. 
  Expand zzX )(  into partial fractions so that each of the terms is easily recognizable in a 

table of z transforms. 
 
 
Ex: Find )(nTx  if )(zX  is given by 
 

  
)2)(1(

10)(



zz
zzX  

we first expand zzX )(  into partial fractions as follows  
 
             
 
Then we obtain  

              
2

10
1

10)(








z
z

z
zzX  

From table (1), one can obtain 

                 1
1

1 








z
zZ ,        n

z
zZ 2

2
1 






  

Hence  
                 ,2,1,0)21(10)(  nnTx n  
 
Ex: Find )(nTf  if )(zF  is given by 

                
))(1(

)1(
)( T

T

ezz
ze

zF







  
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Performing a partial fraction expansion of zzF )(  gives 
 

           






























)()1())(1(
)1()( 21

TT

T

ez
K

z
K

ezz
e

z
zF  

or  

           














 )()1(
)(

Tez
z

z
zzF  

 
From Table (1), the corresponding discrete time function 
 

       ,2,1,01)(   nenTf nT  
  Residue Method: 

       The third method of finding the inverse z transform is to use the inversion integral. Note 
that  

 




 21

0
)2()()0()()( zTfzTffznTfzF

n

n  

By multiplying both sides of this last equation by 1nz , we obtain  
 
               3211 )2()()0()( nnnn zTfzTfzfzzF                                          ( )      
 
If  js   is substituted in this last equation, we obtain Tjez )(   , or  
         Tez || ,      z T      
  
If the poles of L[x] lie to the left of the line 1s  in the s plane, the poles of Z [x] will lie inside 

the circle with its center at the origin and radius equal to Te 1  in the z plane. 

       Suppose we integrate both sides of Eq.( ) along this circle in the counterclockwise 
direction: 

                dzzTfdzzTfdzzfdzzzF nnn 1211 )()()0()(  

Applying Cauchy's theorem, we see that all terms on the right-hand side of this last equation 
are zero except one term  

               dzzTf 1)(  

Hence 

               dzzTfdzzzF n 11 )()(  

from which we obtain the inversion integral for the z transform 

            dzzzX
j

nTx k  1)(
2
1)(

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which is equivalent to stating that  

          ])()([)( 1 zXofpolesatzzXofresiduesnTx n   

In particular, the residue due to a first order pole at rz   is  

           ])([)(lim 1


 n

rz
zzFrzR  

Similarly, the residue due to a repeated pole of order q is  

           ])()[(lim
)!1(

1 1
1

1










 nq

q

q

rz
zzFrz

dz
d

q
R  

Ex: Using residue method, find )(nTf  if )(zF  is given by 

            
))(1(

)1()(
T

T

ezz
zezF







  

Application of the residue method to determine the inverse of the above equation 
              
              
 
 

Adding these residues gives  

                 ,3,2,1,01)(   nenTf nT  

Ex: Determine the inverse z transform for the function 

                
2)1(

)(



z

TzzF  

This function has a second-order pole at 1z ; thus 
                 
 
For nTnTf )( , the corresponding time function is ttf )(  .       



 1

)(tT

T T2 T3 T40

)( at 

a0

Sampling Theory 
 

The Unit-impulse Train 

Let us first consider the Dirac delta or unit-impulse function located 

at t=a as shown in Fig.(1). The delta function will be denoted as )( at  and 

it will be defined by the relations 









at
at

at
0
1

)(                                              (1) 

and  

           




 1)( dtat                                                                         (2) 

One should first state the shifting or sampling property of the impulse 

function which is given by 

              dtattfaf )()()(  




                                                         (3) 

Let us define a periodic train of unit-impulse function )( at   as 

illustrated in Fig.(2). This so-called function can written as a series of Dirac 

delta functions or  

     )()( kTtt
k

T  



                                                               (4) 

 

 

 

 

 

 

      
     Figure (1) Dirac delta or unit                     Figure (2) Unit impulse train             
                        impulse function   
  



 2

Since this train of impulse functions is a periodic function with a 

period T and fundamental radian frequency Ts /2  , it is reasonable to 

discuss the complex Fourier series of this periodic function or 

               





n

tjn
nT

sect  )(                                                                   (5) 

where the complex Fourier series coefficients are given by  

                                                                      (6) 

Since the interval of integration includes only the impulse function at the 

origin, one can employ the shifting property of that impulse to yield 

                                                                                           (7) 

which implies that the Fourier series representation of )(tT  is non-

convergent. This tells us that the contribution of each frequency to the 

waveform is equal. The infinite train of impulse may be written as          

                                                                              (8) 

 

The Impulse Sampling Model 

Let us generate the sampled version )(tf   of some arbitrary function  

)(tf  to amplitude-modulate the impulse train )(tT . This is simply done by 

multiplying the two functions together as shown in Fig.(3). Then, it is clear 

that )(tf   is given by   

                    )()()( kTttftf
k

 




                                                    (9) 

It is assumed here that there were no jumps in the function )(tf  at the 

sampling instants. Let us now consider temporal functions which are 

Laplace transformable (i.e., functions which are zero negative time and of 

less than exponential order), where the transform is defined in the usual 

sense by 

                     )(sF £ [ )(tf ] =                                          (10) 
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If expression (8) for the impulse train has been substituted in Eq.(9), one can 

get 

                                                                         (11) 

)(tT

T T2 T30
)(tf

)(tf
)(tf 

)(tf 

)(tT

 
                           Figure (3) Impulse train modulator  

 

Now let us find the Laplace transform of )(tf   and call it )(sF   by using 

the definition of the Laplace transform 

                                                     (12) 

In the light of the definition of )(sF  given by expression (10), one 

can see that the terms under the summation are the same except for the 

arguments being shifted by sjn  so 

                                                  (13) 

This expression states that the operation of impulse sampling )(tf  has made 

the Laplace transform of )(tf   periodic in the s domain.  

 

 

The Samping Theory 

The implications of expression (13) are wide and sweeping, but one 

of the most interesting is the sampling theorem. Let us consider only-signals 

)(tf  which have Fourier transform )( jF . The operation of sampling gives 

a sampled frequency domain function which can be evaluated by simply 

evaluating the expression (13) on the j  axis, or 
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|)(| jF 

o


s

os  2

|)(| jF

o


 





n
sjnjF

T
jF )(1)(*                                              (14) 

where )( jF  is the Fourier transform of the unsampled function )(tf . This 

expression states that portions of )( jF  which existed for 2/s   are 

now mapped down into the primary frequency band 2/2/ ss    and 

from the sampled function it is impossible to separate these contributions 

from those which came from that band in the unsampled function. This is 

the dilemma of sampling in that by sampling, information about the signal is 

lost which can never be retrieved unless the signal has no frequency content 

greater than 2/s .  

 In short, it is best to now state the sampling theorem as first advanced 

by Nyquist (1928) and later proven from an information theoretic point of 

view by Shannon (1948). The sampling theorem states: 

            If a signal contains no frequency components above o  rad/sec, then 

it is completely described by its sampled values uniformly spaced in time 

with period )/( bT   sec. The signal can be reconstructed from a 

sampled waveform )(tf   by passing it through an ideal low-pass filter with 

bandwidth f  where osfo    with Ts /2  . The frequency 

o  is referred to as the "Nyquist frequency." 

 
Example 1: 

          Consider a function which has a magnitude spectrum ( |)(| jF ) as 

indicated in Fig.(4). This signal has a cutoff frequency of o  rad/sec and we 

shall consider sampling this signal at different rates denoted by sampling 

frequency s . 
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|)(| jF 

o


s

os  2

|)(| jF 

o


s

os  2

 

 

 

 

                            
Figure (4) Effect of sampling frequency on spectra of sampled band-limited 

 

��  When os  2 , the expression (14) indicates that the spectrum will be 

periodic, but since os  2 , there will be no overlapping so we get the 

spectrum of Fig.(4-b). 

��  If the sampling frequency has been decreased to exactly twice the cutoff 

frequency of the signal, then we get a spectrum as indicated in Fig.(4-c) 

still with no overlapping.  

��  If the sampling frequency is lowered such that os  2 , now the 

contributions of adjacent terms are additive in a band of frequencies 

around the frequency 2/s  as illustrated in the spectrum of Fig.(4-d). 

We see that by sampling at too low a rate some of the lower end of the 

second lobe of the periodic spectrum has crept down into the primary 

frequency band 2/2/ ss   . There is no way to process the 

resulting sampled data to get rid of this contribution, which is called 

"aliasing" or "folding." 

Example 2: 

Consider the following function of time: 

                   









 03)3sin(5

00
)( 2 tete

t
tf tt  

The Laplace transform of this function is 

                  22 3)1)(2(
)3(3)(





ss
sssF  

for which the pole-zero plot is shown in Fig.(5-a). Now if we sample )(tf  to 

create )(tf   at a rate of 4s rad/sec, we see that the complex pair of 
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



 

j



|)(| jF



|)(| jF

poles lie outside the primary strip in the s-plane, indicating that we did not 

sample fast enough to get accurate information on the frequency content of  

)(tf  . If we investigate the implication of the expression (13), we see that 

the complex poles at )3,1( j  are now mapped down into the primary 

strip at )1,1( j which creates frequency content in )(tf   which was not 

present in )(tf . The pole-zero plot for )(tf   is shown in Fig.(5-b). 

 

 

 

     

 

    

 

 

 

 

 
Figure (5) Pole-zero plots for a function and its sampled version: (a) pole-zero  

plot of F(s); pole-zero plot of F(s) with 4s rad/sec. 
HW1. For a function with the Fourier magnitude spectrum shown in Fig.(6), 

sketch the Fourier spectrum of the sampled version of the waveform for 

sampling periods of (a) 100/2   (b) 200/2 .  

HW2. A waveform has a Fourier magnitude spectrum illustrated In Fig.(8). 

Sketch the spectra of the sampled function if it is sampled at frequencies of 

(a) 800 rad /sec; (b) 1600 rad/sec.  
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f

|| nC

                   Figure (6)                                                                        Figure (7)  
 
HW3. A periodic waveform with a fundamental frequency of 200 Hz has the 

Fourier magnitude spectrum illustrated in Fig.(8). Sketch the resultant 

spectrum if the waveform is sampled at frequencies (a) ll00 Hz; (b) 1000 

Hz. 
 
 
 
 

 

 

Figure (8) 

HW4. Sketch the pole-zero diagram for the sampled versions of the time 

domain functions associated with s-domain functions given below for a 

sampling frequency s =10 sec. 

a)  
5

5)(



s

sF               b) 
404

2)( 2 

ss

ssG           c)  
204
84)( 2

2





ss
sssH    
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)(sF )(* sF )(sY)(sG

Pulse Transfer Function 
 
 

In Fig.(1) is shown a sampling switch followed by a linear element 

whose transfer function is G(s). The transformed equation for the output Y(s) is      

                           )()()( * sGsFsY                                                           (1) 

  For Tt 0 , the response y(t) is that due to the first impulse at 0t of area 

f(0). Thus, for this interval  

)(ty =L 1 [f (0) G(s)] = f (0) L 1 [G(s)] = )()0( tgf  

where g(t)= L 1 [G(s)] is the response of the linear element to a unit impulse 

which occurs at t=0. 

  For TtT 2 , the response y(t) is that due to the first impulse at 0t  plus 

that at Tt  . For this interval, TseTffsF  )()0()(* . Thus, 

                )(])()0([)( sGeTffsY Ts  

Inverting gives 
                 )()()()0()( TtgTftgfty   

where g(t-T)= L 1 [G(s) Tse ] is the response of the linear element to a unit 

impulse which occurs at t=T. 

 

  For TtT 32  , the response y(t) becomes  

 )2()2()()()()0()( TtgTfTtgTftgfty       

In general, the response )(ty  is  

                  )()()(
0

TtgnTfty
n






                                                                    (2) 

 

 

 
               Figure (1) A sampling switch followed by a linear element  
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T T2 T3 T4 t

)(ty

0














When n  is such that tnT  , then )( nTtg  is zero. That is, the impulse 

response is zero for negative time. For ,2,,0 TTt  , etc, Eq.(2) becomes 

 





 00

)2()2()()()0()0()0( TgTfTgTfgfy   





 00

)2()3()()2()0()()()0()( TgTfTgTfgTfTgfTy                           (3) 





 00

)2()3()()3()0()2()()()2()0()2( TgTfTgTfgTfTgTfTgfTy  

 
One can classify the response )(ty  depending on the order of denominator 

with respect to that of numerator:  

  When the order of denominator exceeds the order of numerator by only one, 

the response function )(ty  becomes discontinuous at the sampling instants, 

as shown in Fig.(2). Then, Eq.(1) yields the values of )(ty  immediately 

after the sampling instants [that is, ),2(),(),0(  TyTyy ].  

  When the order of denominator exceeds the order of numerator by two or 

more, )(ty  is continuous at the sampling instants. Then, Eq.(1) yields the 

values at the sampling instants.  

 

 

 

 

 

 

 

 
Figure (2) Response function which is discontinuous at the sampling instant 

 

Sampling of )(sY  gives  

            TsTs eTyeTyysY 2* )2()()0()(   

Substitution of the values from Eq.(1) into the preceding expression gives: 
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)(sF )(* sF )(sY
)(1 sG )(2 sG

        TsegTfTgfgfsY )]0()()()0([)0()0()(*  
                ])2()()0([)0( 2   TTs eTgeTggf  
                   ])2()()0([)( 2   TTsTs eTgeTggeTf  
                                

       ])2()()0([])()()0([)( 22*    TTsTsTs eTgeTggeTfeTffsY  

Thus,  

       )()()( ** sGsFsY                                                                                         (4) 

The term )(* sG  is called the pulse-transfer function.  

Comparison of Eq.(1) and Eq.(4) reveals a basic mathematical 

relationship for starring quantities. That is, starring both sides of Eq.(1) gives 

)()]([ ** sYsY   
 

          )()()]([)()]()([ ***** sGsFsGsFsGsF   
 

Letting Tsez   in Eq.(4) yields the z transform relationship 

         )()()( zGzFzY   

Ex: For the sampler configuration shown in Fig.(3), determine the pulse transfer 

function when )1()(1 ssG  and )1(1)(2  ssG  

 

 

 
                                                 Figure (3) Sampled-data system 

 

The Laplace transform relationship is  

                   )()()()( 21
* sGsGsFsY      

Starring gives  

                       )()()]()([)()( *
21

**
21

** sGGsFsGsGsFsY   

where           )()]()([ *
21

*
21 sGGsGsG   

The corresponding z transform is  

                               )()()( 21 zGGzFzY     

The pulse transfer function becomes  
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)(sF )(* sF )(sY
)(1 sG

)(* sX)(sX
)(2 sG

                               )(
)(
)(

21 zGG
zF
zY

  

The product )()( 21 sGsG  

                   
)1(

1)()( 21 


ss
sGsG    

The z transform for this function is given by 

                   
)()1(

)1()(21 T

T

ezz
ezzGG 






  

Ex: For the sampler configuration shown in Fig.(4), determine the pulse transfer 

function when )1()(1 ssG  and )1(1)(2  ssG  

 

 
                                                 Figure (4) Sampled-data system 

 

The Laplace transform relationship is  

                   )()()( 1
* sGsFsX    

                   )()()( 2
* sGsXsY    

Starring the first equation and then substituting this result for )(* sX  into the 

second equation gives  

                       )()()()( 2
*
1

* sGsGsFsY   

starring gives  

                    )()()()( *
2

*
1

** sGsGsFsY   

The corresponding z transform is  

                   )()()()( 21 zGzGzFzY    

Then the pulse transfer function becomes 

                     )()(
)(
)(

21 zGzG
zF
zY

  

The z transforms of )(1 sG  and )(2 sG  are  

                    
1

)(1 


z
zzG  ,  Tez

zzG 
)(2   

Thus  
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)(sE )(* sE )(sC)(sG

)(sH

)(sR

)(sB

)(sE )(* sE
)(sC)(1 sG

)(sH

)(sR

)(sB

)(* sM)(sM
)(2 sG

              
)()1(

)(
2

21 Tezz
zzGG 

              

From the preceding two examples it is to be noted that  

              )()()( 2121 zGzGzGG    

 

Ex: For the two sampled-data feedback systems, find the pulse transfer 

function.          

 

 

 
 (a) 

 

 

 

 
(b) 

                                                 Figure (5) Sampled-data system 

 

The equation relating the inputs and outputs of Fig.(5-a) are  

          )()()( * sGsEsC   
         )()()()()( * sHsGsEsRsE   
Starring gives 

         )()()( *** sGsEsC   
         )()()()( **** sGHsEsRsE   

Solving the last equation for )(* sE  and substituting into the first gives 

         )(
)(1

)()( *
*

*
* sR

sGH
sGsC


  

The corresponding z transform is 

        )(
)(1

)()( zR
zGH

zGzC


   

The equation relating the inputs and outputs of Fig.(5-b) are  
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         )()()( *
2

* sGsMsC         
        )()()( 1

* sGsEsM   
       )()()()()( 2

* sHsGsMsRsE   

Starring all equations, then solving for )(* sC  gives 

            )(
)()(1

)()()( *
*

2
*
1

*
2

*
1* sR

sHGsG
sGsGsC


  

The corresponding z transform is  

          )(
)()(1

)()(
)(
)(

21

21 zR
zHGzG

zGzG
zR
zC


  
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)(tf )(* tf )(ty

Zero Order Hold 
 
 
Digital-to-Analogue Converter: 
 
         The digital-to-analogue converter is the device which converts the 

numerical contect of some register of the digital processor to an analoge 

voltage and holds the voltage constant until the content of the register is update, 

and then the output of the digital-to-analogue converter is updated and held 

again. The D/A converter will be modelled as a zero order hold. 

  

Filters and Zero-Order Hold: 

 Sampled-data systems usually incorporate a filter, as illustrated in 

Fig.(1). A perfect filter would convert the sampled data signal )(* tf  back to the 

continuous input )(tf . That is, the output )(ty  of the filter would equal )(tf . If 

such a perfect filter were possible, then the sampled-data system would behave 

the same as the continuous system.  

 

   

 
Figure (1) Schematic representation of sampler and filter 

 

 The most commonly used filter is that in which the value of the last 

sample is retained until the next sample is taken. This type of filter is called a 

zero-order hold. Figure (2) shows the operation of zero-order hold. The 

continuous curve represents the continuous function )(tf . The discrete lines 

are values of )(tf  at the sampling instants (the sampled signal )(* tf ). Because 

the zero-order hold retains the value of )(tf  at each sampling instants, )(ty  is 

the series of steps.  
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Figure (2) Zero order hold operation 

 

The signal at the output of the zero order hold )(ty  could be 

decomposed into a series of pulse functions as shown in Fig.(3). Therefore, one 

can write the output signal of the ZOH as follows: 

 21)( uuuty o                                                                              (1) 
 

 
 
 
 
 

 
 

Figure (3) Decomposition of the zero-order hold output 
 

The pulse functions 0u  and 1u  of Fig.(3) could be further decomposed 

into step functions as shown in Fig.(4). One can write 0u  and 1u  as follows 

)]()([)0(0 Ttutufu    ,  )]2()([)(1 TtuTtuTfu        

where )(tu  is unit step function and )( Ttu   is unit step function delayed by 

one sampling time T, etc.Thus, Eq.(1) can be rewritten as  

 

        



)]3()2([)2(

)]2()([)()]()([)0()(
TtuTtuTf

TtuTtuTfTtutuftf
 

 
Taking the Laplace transform of the preceding equation: 
 

     






 






 






 


s
eeTf

s
eeTf

s
efsY

TsTsTsTsTs 322
)2()(1)0()(  
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)(tf)(nTf
)(sG

T

)(nTC

)(tC

)(sGzoh

     ])3()2()()0([1)( 22 






  


TsTsTs
Ts

eTfeTfeTff
s
esY  

    )(1)( * sF
s
esY

Ts








 




 

    )()()( * sFsGsY zoh                                                                                     (2) 
 
where )(sGzoh is the transfer function of zero order hold. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4) Decomposition of pulse functions 0u  and 1u     
 
 
Continuous-time Plant Driven by a Zero-order Hold: 
 
 Figure (5) shows a continuous-time plant represented by transfer 

function )(sG , driven by a zero-order hold (the D/A converter) and followed by 

an output sampler (A/D) converter.  

 
 
 
 
 

Figure (5) Continuous-time plant to be digitally controlled.    
 
For the Fig.(5), the Laplace relationships are  
 
           )()()( sFsGsC   
          )()()( * sFsGsF zoh  
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Substituting the second equation into first equation will gives  
 
          )()()()( * sFsGsGsC zoh  
Starring yields   
       
          )()()( *** sFsGGsC zoh  
 
The corresponding z transform is  
 
          )()()( zFzGGzC zoh                                                                               (3) 
where 

           )()()( sGsGZzGG zohzoh  =










  

)()1( sG
s
eZ

Ts
 

since Tsez  , then 

                           










 




)()1()(
1

sG
s
zZzGGzoh   

or  

                           






 

s
sGZzzGGzoh
)()1()( 1                                                  (4) 

 
 

Ex1: If 
)(

)(
as

ksG


  in Fig.(5), find the pulse transfer function 
)(
)(

zF
zC . 

 
From Eq.(3) and (4), the pulse transfer function is 
 

                     






 

s
sGZzzGG

zF
zC

zoh
)()1()(

)(
)( 1  

                      
 
 
making a partial fraction and the application of z transform table yields 
 

                   

















 

assa
KZz

zF
zC 11)1(
)(
)( 1  
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Ex2:  If 2
1)(
s

sG   in Fig.(5), find the pulse transfer function 
)(
)(

zF
zC . 

 
           

 

Consulting a table of z transform gives 

                 

 

Ex3: Find the pulse transfer function 
)(
)(

zR
zC  for the sampled-data system shown 

in Fig.(6).  
 
 
 
 
 

Figure (6) Sampled-data system with a zero-order hold 

 
The overall open-loop transfer function when zero hold is included is 
 
                      
 
To determine )(zG  when )(sG  contains a )1( Tse  factor, first we decompose 

)(sG  into )(1 sG  and )(2 sG  as follows 

                     )()()( 21 sGzGsG   

where )1()(1
TsesG   and )(2 sG is the remaining portion of )(sG . The 

function )(1 sG  is the Laplace transform of a unit impulse at the origin and a 

negative unit impulse at t=T. The corresponding )(1 tg  is shown in Fig.(7). 

Because this time function )(1 tg  exists only at the sampling instants, the 

sampled function )(*
1 tg , will be the same as )(1 tg . Thus, 

                              )()( *
11 sGsG   

Substitution of this result into equation of )(sG  shows that 

                              )()()( 2
*
1 sGsGsG     
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)(1 tg

tT0

Starring gives 

                              )()()( *
2

*
1

* sGsGsG   

 
 
 
 
 
 
 
 
 

Figure (7) Time function )(1 tg L 1 )]([ 1 zG = L 1 )1( Tse  

 
The corresponding z transform is  
 
                        )()1()()()( 2

1
21 zGzzGzGzG   

                                )()1(
2 zG

z
z   

Since 
                         
 
Thus  
                         
 
 
Substitution this result into )(zG  equation 
 

                        











  Tez

z
z

TKzGzGzG 421
11

1
4

16
)()()(     

For T=1/4, then )(zG becomes 
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Numerical Integration 

 

The fundamental concept is to represent the given filter transfer 

function H(s) as a differential equation and to derive a difference equation 

whose solution is an approximation of the differential equation. For 

example, the system 

  
as

asH
sE
sU


 )(

)(
)(                                                                        (1) 

is equivalent to the differential equation 

           eauau   

Now, if one write Eq.(1) in integral form 

             
t

deauatu
0

)]()([)(   

            





kT

TkT

TkT
deauadeauakTu  )]()([)]()([)(

0

 

             kTTkTovereaauofAreaTkTukTu  )()()(         (2)  
 

Many rules have been developed based on how the incremental area 

term is approximated. Three possibilities are sketched in Fig.(1).  

 

1. Forward rectangular rule: 

In this rule, we approximate the area by the rectangle looking forward 

from kT-T and the amplitude of the rectangle to be the value of the integrand 

at kT-T.  The width of the rectangle is T. The result is an equation in the first 

approximation: 

)]()([)()( TkTeaTkTuaTTkTukTu   

                    )]()()1( TkTeaTTkTuaT   

The transfer function corresponding to the forward rectangular rule in this 

case is  
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T T3T2  TkT  kT

)(kTu

)( TkTu  )(kTu

T T3T2  TkT  kT

)(kTu

)( TkTu  )(kTu

T T3T2  TkT  kT

)(kTu

)( TkTu  )(kTu

            1

1

)1(1
)( 






zTa
zTazH F aTz

a



/)1(

    (Forward rectangular rule) 

 

 

 

 

 
 (a)                                         (b)                                               (c) 

Figure (1) Sketches of three ways. The area under the curve from kT to kT+1 can be 

approximated (a) Forward rectangular rule (b) Backward rectangular rule (c) Bilinear or 

trapezoid rule 

 

2. Backward rectangular rule: 

A second rule follows from taking the amplitude of the 

approximating rectangle to be the value looking backward from kT toward 

kT-T, namely, -a u(kT)+ae (kT). The equation for u is  

 

                 )]()([)()( kTeakTuaTTkTukTu   

                           )(
11

)( kTe
Ta

Ta
Ta
TkTu





  

Again we take the z-transform and compute the transfer function of the 

backward rectangular rule  

                  
)1/(1

1
1

)( 1 aTzTa
TazH B 

  1)1( 


Taz
zTa  

                              
aTzz

a



/)1(

    (backward rectangular rule) 

 
3. Trapezoid rule (Bilinear Transformation): 

The final version of integration rules is the trapezoid found by taking 

the area approximated in Eq.(2) to be the trapezoid formed by the average of 

the previously selected rectangles. The approximating difference equation is 

    )]()()()([
2

)()( kTeakTuaTkTeaTkTuaTTkTukTu   
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             ])()([
)2/(1

2/)(
)2/(1
)2/(1 kTeTkTe

Ta
TaTkTu

Ta
Ta 





  

 

The corresponding transfer function from the trapezoid rule is  

       
2)2(

)1()(



aTzTa

zaTzHT azzT
a




)]1/()1[()/2(
  (trapezoid rule) 

One can tabulate the above obtained results in Table (1). We can see 

the effect of each of our methods is to present a discrete transfer function 

that can be obtained from the given Laplace transfer function )(sH  by 

substitution of an approximation for the frequency variable. Each of the 

approximations given in Table (1) can be viewed as a map from the s-plane 

to the z-plane.    
Table (1) 

H(s) Method Transfer function Approximation 

as
a


 
Forward 

rule aTz
aH F 


/)1(

 
T

zs 1  

as
a


 
Backward 

rule aTzz
aH F 


/)1(

 
zT

zs 1  

as
a


 
Trapezoid 

rule azzT
aH F 


])1/()1([)/2(

 
1
12




z
z

T
s  

 

 Since the (s= j )-axis is the boundary between poles of stable 

systems and poles of unstable systems, it would be interesting to know how 

the j -axis is mapped by the three rules and where the left (stable) half of 

the s-plane appears in the z-plane. For this purpose we must solve the 

relations in for z in terms of s. We find 

 

11..  sTz 1                  (Forward rectangular rule) 

22..  
Ts

z



1

1                  (backward rectangular rule) 

33..  
2/1
2/1

Ts
Tsz


             (trapezoid rule) 
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If we let s= j in these equations, we obtain the boundaries of the 

regions in the z-plane which originate from the stable portion of the s-plane. 

The shaded areas sketched in Fig.(2) are these stable regions for each case.  

Because the unit circle is the stability boundary in the z-plane, it is 

apparent from Fig.(2-a) that the forward rectangular rule could cause a 

stable continuous filter to be mapped into an unstable digital filter.  

To see how points map from s plane to the z plane under backward 

mapping, the z expression for bilinear can be written as ( 21  is added to and 

subtracted from the right-hand side) 

     
Ts
Ts

Ts
z










 



1
1

2
1

2
1

2
1

1
1

2
1  

or 
 

            
Ts
Tsz





1
1

2
1

2
1  

 
Consider a point  js   where   . Then 

 

       
22

22

)1(

)1(
2
1

)1(
)1(

2
1

)(1
)(1

2
1

2
1























T

T
jT
jT

jT
jTz  

Now it is easy to see that with 0 ( js  ), the magnitude of 21z  is 

constant 

         
2
1

2
1 z  

and the curve of rule (2) is thus a circle as drawn in Fig.(2-b). Also, if 0 , 

then  jTjT  )1()1(  and 2121 z . On the other hand if 

0 , then  jTjT  )1()1(  and 2121 z . Therefore, it is 

clear that the backward rule maps the stable region of the s-plane into a 

circle of radius 0.5 inside the unit circle (stable region) of the z-plane, as 

shown in Fig.(2-b).  

To see how points map from s plane to the z plane under bilinear 

mapping, the z expression for bilinear can be written as   
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)/2(
)/2(

Ts
Tsz




  

Then 

     






jT
jT

Tj
Tjz









)/2(
)/2(

)/2(
)/2(  

and  

              






jT
jT

jT
jTz









)/2(
)/2(

)/2(
)/2(  

Note for 0 , then  jTjT  )/2()/2(  and 1z  . On the other 

hand if 0 , then  jTjT  )/2()/2(  and 1z . Also, if 0  

then  

                1
)/2(
)/2(









jT
jT

z  

Therefore, it is interesting to notice that the bilinear rule maps the 

stable region of the s-plane exactly into the stable region of the z-plane (see. 

Fig.(2-c)).  

  

 

 

 

 

 

 

                      (a)                          (b)                            (c) 
Figure (2)  Maps of the left-half of the s-plane by the integration rules into the z-plane. Stable s-

plane poles map into the shaded regions in the z-plane. (a) Forward rectangular rule 

 (b) Backward rectangular rule (c) Bilinear or trapezoid rule 

 

The original )(sH  had a pole at as  , and for real frequencies, 

js  , the magnitude of )( jH  is given by  
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1/

1)( 2222

2
2







aa
ajH


    

Thus our reference filter has a half-power point, 212 H , at a . It will 

be interesting to know where )(zHT  a half-power point has.  

 Signals with poles on the imaginary axis in the s-plane (sinusoids) 

map into signals on the unit circle of the z-plane. A sinusoid of frequency 

1  corresponds to Tjez 1
1

 , and the response of )(zHT  to a sinusoid of 

frequency 1  is )( 1zHT .  

     
















a
e
e

T

azH

Tj

TjT

1
12

)(

1

1
1
























a
ee
ee

T

a

TjTj

TjTj

2/2/

2/2/

11

112



                                

                 



















aTj

T

a

2
tan2 1

 

The magnitude squared of TH will be 
2
1  when 

                    aT
T









2
tan2 1            

or             

                    
22

tan 1 TaT






                                                                     (3) 

 

The latter equation is a measure of the frequency distortion or warping 

caused by Tustin's rule. Whereas we wanted to have a half-power at a , 

we realized a half-power at  2/tan)/2( 1
1 aTT  . 1  will be approximately 

correct only if 12/ Ta  so that   2/2/tan 1 aTaT  , that is, if 

aTs  )/2(   and the sample rate is much faster than the half-power 

frequency.  

We can turn our attentions around and suppose that we really want 

the half-power point to be at 1 .  Equation can be made into an equation of 

prewarping: If we select a according to Eq.(3), then, using bilinear rule for 
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the design, the half-power point will be at 1 . A statement of a complete set 

of rules for filter design via bilinear transformation with prewarping is  

 

1. Write the desired filter characteristic with transform variable s and 

critical frequency 1  in the form )/( 1sH .  

2. Replace 1  by a such that  

                                  







2
tan2 1T

T
a   

and in place of )/( 1sH , consider the prewarped function )/( asH . For more 

complicated shapes, such as bandpass filters, the specification frequencies, 

such as band edges and center frequency, should be prewarped before the 

continuous design is done; and then the bilinear transformation will bring all 

these points to their correct frequencies in the digital filter.  

3. Substitute  

                      
1
12





z
z

T
s  

in )/( asH to obtain the prewarped equivalent )(zH p . As a frequency 

substitution the result can be expressed as  

                    
1
1

)2/tan(
1)(

11
1 













z
z

T
s

sHzH p



                                       (4) 

It is clear from Eq.(4) that when 1  , )1()( 1 jHzH p   and the discrete 

filter has exactly the same transmission at 1  as the continuous filter has at 

this frequency. This is the consequence of prewarping.  

 

Ex1: Apply the method of bilinear transformation to following filter (T=1 

sec.): 

                      
12.0

1)( 2 


ss
sH  
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We make the following substitution for s in the original s-domain transfer 

function 

                   
)1(
)1(2

1
12









z
z

z
z

T
s   

 

After cleaning up the numerical details, the resulting discete-time transfer 

function is 

              
















852.0111.1

)1(185.0)( 2

2

zz
zzH  

 

Ex2: Let us first prewarp the poles of the filter considered in the above 

example. The critical frequency of the filter is .sec/11 rad  

1. Write the desired filter characteristic with transform variable s and 

critical frequency 1  in the form )/( 1sH .  

                           
1)(2.0)(

1)(
1

2
1 


 ss

sH     

2. Replace 1  by a such that  

                                 092.1
2

11tan
1
2

2
tan2 1 






 









T
T

a    

Then H(s) becomes  

      
1)(2.0)(

1)( 2 


asas
sH  

              
1924.1218.0

1924.1
2 


ss

 

 
               

3. Substitute 
1
12





z
z

T
s  

         Cleaning up the numerical details,  

         
















845.0997.0

)1(226.0)( 2

2

zz
zzH  
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Hw: The transfer function of a third order low-pass filter designed to have 

unity pass bandwidth ( .sec/11 rad ) is 

                           
122

1)( 23 


sss
sH  

Compute the discrete equivalents and plot the frequency response using 

forward, backward, and bilinear rules. Use T=0.1, 1 and 2 sec.   



 1

mtf )(* )(* tf
)(ty)(tf

mT / T
)(sG

Response between sampling instants  
 
 Two different time functions which have the same sampled values are illustrated in 

Fig.(1). The inverse z transform )()]([ *1 tfzFZ   yields the value of the function at the 

sampling instants. The behavior between sampling instants may be determined by synthetic 
sampler method.   
 

 

 
 
 
 
 
 
 
 

 
Figure (1) Two functions with the same values at the sampling instants  

 

The dotted box in Fig.(2) represents a fictitious, or synthetic, sampler which is inserted 
in series with the actual sampler. The sampling rate of the fictitious sampler is m times that of 
the actual sampler (m=2,3,…). The corresponding period is T/m. At submultiple of the sampling 
period T/m, when the fictitious sampler is closed, the actual sampler is open. Thus, the fictitious 
sampler does not affect the operation of the system. The fictitious sampler does not actually 
exist, but is merely employed as an aid for understanding the following analysis.    
 
               
 
 
 
 

Figure (2) Fictitious sampler 

 

The continuous function can be written as  

       





0
)()()(

n
nTtgnTfty  
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Submultiple of the sampling period are represented by the term mkT  where ,2,1,0k . For 

example, if 3m , the successive intervals  mkT  are ,3/4,3/2,3/,0 TTT . The value of the 

output at the submultiple intervals is obtained by letting mkTt / in the preceding equation. 

 









 








0
)(

n
nT

m
kTgnTf

m
kTy                                                                             (1) 

The output at the submultiples sampling instants mtymkTy )()/( * may also be expressed as 

an impulse train. That is, 

                   





 










 m
kTtu

m
kTyty

k
m 1

0

* )(  

The Laplace transform is  

                   mkTs

k
m e

m
kTysY /

0

* )( 



 






  

The corresponding z transform is  

                  mk

k
m z

m
kTyzY /

0
)( 




 






  

Substituting )/( mkTy from Eq.(1) into the preceding expression gives  

                mk

k n
m zTn

m
kgnTfzY /

0 0
)()( 








  














    

              )/(

0 0
)()( nmk

k

n

n
m zTn

m
kgznTfzY 









  














                                                       (2)                                          

Consider the expansion of a typical term in which 2m  and 3n , 

)32/(

0

3 3
2

)3( 




 













  k

k
zTkgzTf         

                  





















  2/312/103

2
3)(

2
)0()3( zTgzTgzTgzgzTf  

                    mz
m
TgzTf /

0

3)3( 



 




  





  

For a physically realizable system the impulse response )(tg is zero for negative time. Thus, 

the first term to appear in the bracket is for k=6, in which case  Tkg )32/(  =g(0). Fom the 

preceding result, the general form of Eq.(1) is              

              m

n

n
m z

m
TgznTfzY /

0 0
)()( 



 








  





  

                        mzGzF )()(                                                                                                       (3) 
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)(sc
)(sG

)(sR

)(sH

)(* sEmsE )(*)(sE

)(sB

TmT /

where                
                       mTTzzm mzGzG /,/1)()(                                                                                     (4) 

Thus, mzG )( is obtained by substituting mz /1  for z  and mT /  for T  in )(zG . The result given 

in Eq.(3) may also be obtained by letting mnmk //   where ,,2,1,0   in Eq.(2). 

The equation for mzG )( for the system of Fig.(3) is obtained as follows: 

                       mm zGzEzC )()()(    

                       )()()()()( * sHsGsEsRsE   

Starring gives  

                        )()()()( **** sHGsEsRsE   

Thus, 
                        )()()()( zGHzEzRzE   

Solving this last equation for )(zE  and then substituting )(zE into the first equation gives the 

desired result.  

                        )(
)(1

)()( zR
zGH

zGzC m


                                                                                        (5) 

 
   
 
 
 

Figure (3) Sampled-data system with a fictitious sampler 

 

EX: Consider that the sample-data system of Fig.(1) has the transfer function  

                     
1

1)(



s

sG   

The input )(tr is a unit-step function. The sampling period is 1 second. It is desired to find the 

response of the system at time instants of 3/kTt  , ,2,1,0k . 

From Eq.(3), the z-transform of the system at the submultiple-sampling instants is 

written as  
                 mzGzFzY )()()(               

where 3m , and   



 4

                 
3/,

)()( 3/1 TTzz
zGzG m




3/,3/1 TTzzez
z

T 
   

Thus,  
                   
 
The z-transform of the unit-step input is )1/()(  zzzF . The z-transform of the submultiple-

sampled output is 
                  

                                                                                       (6)  
However, one difficulty remains in that the last expression has fractional powers as well as 
integral powers of z. To overcome this difficulty, we introduce a new variable w , such that  

3/1zw   
Eq.(6) becomes 
                            
 
Expanding the mzC )(  into a power series in w , we have  

 
                    
 
 

The coefficients of the power-series expansion of mzy )(  are the values of mty )(*  at 

,2,1,0,3/  kkTt . The response 3
* )(ty is shown in Fig.(4). In this case, the value of the 

submultiple sampling method is clearly demonstrated, since the ordinary z-transform obviously 
would produce a misleading result.  

 
 
 
 
 
 
 

 
 

Figure (4) Output responses at t=kT/3 
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EX: Determine the response midway between the sampling instants for system of Fig.(3 to a 

unit step-function input and for 
)4(

)(



ss
KsG  and 1)( sH . 

For this system, )()( zGzGH  is given by  

            
))(1(

)1()( 4

4

T

T

ezz
ezzG 




  

 ٌ ◌Replacing T by mT / and z  by 2/1/1 zz m   
             
 
For K=1 and

4
1

T , this becomes   

              
 
For K=1 and

4
1T , the function )(zG is given by  

           
 
Substitution of these results into Eq.(5), one can obtain 

          )(
]158.0)368.0)(1[(

)368.0)(1(
)607.0)(1(

098.0)( 2/12/1

2/1
zR

zzz
zz

zz
zzC m 




  

To eliminate fractional powers of z, let 2/1zw  . Thus, 
           
 
Cross-multiplying yields  
                                                                                                                           
                                                       
                                                                                                                            (7) 

The significance of replacing 2/1z  by w is seen by noting that because 
             
 
Then 

             












  4321 )2(

2
3

2
)0()( wTcwTcwTcwTccwC m  

Thus, the w sampling instants are the desired submultiple sampling instants. The difference 
equation associated with Eq.(7) is  
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                                      )5(036.0)3(134.0)1(098.0  krkrkr                                  (8) 

 
Because   

                    21 )2()()0()( zTrzTrrzR     

Then replacing 1z  by 2w  gives  

                   
 
Thus, r=0 at 1,3,5,…sampling instants of w. Application of Eq.(8) to obtain the values at the 
submultiple sampling instants gives 
 
c(0)=0 
c(1)= 
c(2)= 
c(3)= 
c(4)= 

c(5)= 
……………………………………………………………………….. 

 
Replacing k by kT/2 shows that the response at the sampling instants c(0), c(1), c(3), etc., 
corresponds to the response at time c(0), c(0.5T), c(T), c(1.5T), etc.  
 
HW: Find the inverse using the long division method. For )1/()(  zzzR , then 

)1/()( 22  wwwR . Thus, substituting this value of )(wR into Eq.(8), and then dividing the 

numerator of mwC )(  by the denominator yields the desired values as the coefficients of the 

answer.  

 
 
 
 
 
 



 1

)4( ss
K )(sC)(sR

Time Response 
 
              In this section the time response of the sampled data system of Fig.(1) 

to unit step input will be determined. Three methods will be explained: long-

division, difference equations and partial fraction expansion.   

 
 
 
 
 

Figure (1) Sampled data system 
 
The corresponding z transform of )(sG  

)()1(
)1()4/()( 4

4

T

T

ezz
eKzzG 






    

Letting 1K  and sec,25.0T  then 

)368.0)(1(
158.0)(



zz

zzG  

The pulse transfer function 
)(
)(

zR
zC  is 

          
)(1

)(
)(
)(

zG
zG

zR
zC


  

         )(
)61.0(

158.0)(
]158.0)368.0)(1[(

158.0)( 2 zR
z

zzR
zzz

zzC





  

 
  Long division method: 

 

For unit step input, 
1

)(



z

zzR . Then 

       
)1()61.0(

158.0)( 2

2




zz
zzC  

Using the long-division method to determine the inverse gives         
 





 321

223
522.0349.0158.0

158.0368.058.121.2
zzz

zzzz  
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)(nTc

nT

1

0 T T2 T3 T4 T5 T6

Because  
 
           
 
 
then  
          c(0)=0,     c(T)=0.158,     c(2T)=0.349,    and     c(3T)=0.522 
 
 A plot of the response )(nTc  at the sampling instants is shown in 

Fig.(2).The long division method becomes quite cumbersome for computing 

)(nTc  for larger values of n. A more convenient procedure results from 

expressing the solution in the form of a difference equation.     

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) Sampled data system 
 

  Difference Equations:  
 
  To determine the inverse z transform by this method, one can write the 

equation for )(zC  in the form  

                   )(
]368.021.1[

158.0)( 2 zR
zz

zzC


  

Thus               
                   )(158.0)(368.0)(21.1)( 121 zRzzCzzCzzC    
 
Application of right shifting property   

                  )()([ zFzkTnTfZ n  

Then the preceding expression yields directly the difference equation  

                 )(158.0)2(368.0)(21.1)( TnTrTnTcTnTcnTc   
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This difference equation gives the value )(nTc  at the nthsampling instants in 

terms of values at the preceding sampling instants. Application of this result to 

obtain the values at the sampling instants gives 

         0)0( c , 
         158.0)0(158.0)(  rTc  
        349.0)(158.0)(21.1)2(  TrTcTc  
        522.0)2(158.0)(368.0)2(21.1)3(  TrTcTcTc  
 
Such recurrence relationships lend themselves very well to solution by a digital 

computer.  

  Partial-fraction expansion:  

The response )(nTc  at the sampling instants may be also be obtained by 

performing a partial fraction expansion and then inverting. Thus 






























)61.0()61.0()1()61.0)(1(
158.0

)( 2
2

1
2 z

B
z

B
z

Az
zz

z
zzC  

The partial-fraction expansion constants are 1A , 24.01 B , and 0.12 B . 

Thus, )(zC  becomes 

      
)61.0()61.0(

61.039.0
)1(

)( 2 








z
z

z
z

z
zzC  

By noting that  

      1
1

1 








z
zZ ,      nTa

az
zZ 






1 ,    and     nTanT

az
azZ 












)(
1  

The inverse is found to be  

                  

                                        

With this method, the value )(nTc  at any sampling instants may be calculated 

directly without the need to compute the value at all the preceding instants.   
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bT

Z
r 

Mapping of s-plane to z-plane 
It is possible to map fro the s plane to the z plane using the relationship  

sTez   

Now  

              bjas   

Therefore, 
jTbjaTTjbasT ereeeez   )(                                                    (1) 

where aTezr  and bT .  

Since 
T

f ss



22  , then  22







 T

T
bT , where s  is the 

switching frequency in rad/sec and sf  is the switching frequency in Hz. 
Equation (1) results in a polar diagram in the z plane as shown in Fig.(1).  

 
 
 
 
 
 

 
 

Figure (1) Mapping from the s to the z plane 

 

Two horizontal lines of constant of constant b are shown in the s-plane 

of Fig.(2.a). The corresponding paths in the z-plane are radial straight lines.  
TbjaTTjbasT eeeez   )(   

The angle of inclination of these radial lines is bT .  

 Two vertical lines of constant a (i.e. constant settling time) are shown in 

Fig.(2.b). The corresponding paths in the z-plane are circles of radius aTe . For 

negative values of a  the circles are inside the unit circle of the z-plane. For 

positive values of a  the circles lie outside the unit circle of the z-plane. Thus, 

one can conclude that the left-hand side (stable) of the s plane corresponds to a 

region within a circle of unity radius (the unit circle) in the z plane.   
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bT

bT

o90

o90

4sb 

2sb  0b

2sb 

2s

2s

  

 

 

 

 

 

 

 

                                              (a) 

 

 

 

 

 

 

 

 

 

 

                                              (b) 

 

 

 

 

 

 

 

 

 

 

                                                (c) 

Figure (2) Corresponding paths in the s plane and z plane 
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 



















 

  

 









2/sj

2/sj



4/sj

4/sj 





Radial lines of constant damping ratio  cos  are shown in Fig.(1.c). 

In polar coordinates, 21   nn jjbas . Thus, 

                  
21   TjT nn eez  

The corresponding paths in the z-plane are logarithmic spirals. For  090   

the spirals decay within the unit circle, and for 090 the spirals grow outside 

the unit circle.  

 Consider now how a given point, jerz  , in the z plane maps back 

into the s plane. For  

                  TbjaTsj eeerz )(     

Equating real and imaginary parts shows that  

                 Tar )ln(   

                 bT  

This verifies the fact that a circle of constant r in the z plane is a vertical line of 

constant a in the s plane. Similarly, a ray at angle   in the z plane is a 

horizontal line of constant b in the s plane.  

 

Ex: Find the corresponding locations of points in the s-plane into z plane 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) Corresponding pole locations between the s plane and the z plane 
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Since                                                       aTer   and   

Points 3, 2, 1 and 4:                    

              0,, 4321 bandbbb       bT           04,3,2,1    

            01 a     10
1  Ter ,        

                                           and             )()( 32
32

TaTa erer  ,  
            04 a   
 

Upper points 10 and 9:   

     
T

Tbandb s 


2
2

2109        Tb99   and    Tb1010         

                            and 109 aa    
 

Upper points 10 and 9:   

 
T

Tbandb s 


2
2

2109      Tb99   and    Tb1010  

                             and 910 aa    
 

Therefore, the lower and upper points 9 and 10 coincide on each other. The 

same argument may be performed with the other points. This results in the 

corresponding points at z plane.  

Ex: The time-response characteristics of the z-plane pole locations are 

illustrated in Fig.(4). Since sTez  , the response characteristics are a function 

of both s and T.  

The poles in the s-plane occur at jbas  . These poles result in a 

system transient-response term of the form )(cos1  tek ta . When 

sampling occurs, these s-plane poles result in z-plane poles at  

jTbjTasT eree
jbas

ez  


  

The roots of the characteristic equation that appear at jerz   result in 

a transient response term of the form 
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

















n

n

21   nd



Td
 ntconsofLine tan

Im (s)

Re (s)

tconsofLine tan

 

 

 

 

 

 

 

 
 
 
 

Figure (4) Transient response characteristics of the z plane pole locations.  

Lines of Constant Damping Ratio  : 

In the s-domain, the lines of constants damping ratio   are rays 

originating at the origin while the curves representing constant undamped 

natural frequency n  are quarter circles, as shown in Fig.(5). 

Figure (6) shows the real and imaginary parts of the complex variables s 

expressed in terms of  and n . That is  

21   nn js  

The equivalent point in the z-plane is found by applying the transformation 
sTez  to obtain  

                 
21   TjT nn eez                                                                   (2)    

 

 

 

 

 

 
     
  Figure (5) Lines of constant n  and curves               Figure (6) Components of line   
                       of constant                                                             of constant n   
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         If in Eq.(2) we fix  and vary n  we will plot a log spiral curve, since the 

magnitude of z will vary exponentially with n , while the phase varies 

linearly. As shown in Fig.(6), we only need consider the portion of the ray of 

constant damping ratio between the origin and the point where the ray 

intersects the edge of the primary strip.  

For 0n a ray of constant damping ratio starts at the point  

10  ez  

The other end of the array in the s plane touches the edge of the primary strip. 

At the point of intersection  

               
Tn


  21   

or, equivalently, 

                 
21 





T

n  

Hence  

                    

 

Thus z is a vector of length                                                                 

                   

 

and angle 0180 .  Note that the larger   the shorter the length of the vector.  

 The log spiral curves connecting the end points of the curves for 

9.0,,2.0,1.0   in increments of 0.1 are shown in Fig.(7).  
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Figure (7) curves of constant   

Curves of constant natural frequency n : 

To find the curves of constant n  we again use the transformation 

sTez  , but this time we fix n  and vary  . It is customary to let 

                   
T

k
n 10

                            10,,2,1,0 k  

Then  

             
                                                                                                                 (3) 
Eq.(3) can be used to plot the curves of constant n  by holding n constant 

and varying   between zero and one. When 0 , corresponding to 

10jks   

             10010 2 kjeez  
In this case z, is a vector of length one and angle 10k  rad. Thus, all the 

curves of constant n originate on the unit circle at the angles  

             .10,,3,2,1,18
10

180 0
0

 kkk  

At the other end of each these curves, 1 , and  

             10101110  kTTkjTTk eeez           .10,,3,2,1 k  
These points lie on the positive real axis in the z plane. The smaller k, the 

larger 10ke . The curves that connect these end points are shown in Fig.(8). 
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T


T10


T10
3

6.0

9.0

 

Figure (8)  curves of constant n  

We see that the curves show increasing distortion as k increases. For k=1, the 

curve is very close to a quarter circle centered at z=1. The curves for k=2 and 

k=3 still have the general shape of a quarter circle, but for k>3 they do not. 

 

Ex: Map the shaded area in Fig.(9) in the s-plane into corresponding poles in 

the z plane. In Fig.(8), the lines of constant n  are labeled 

              
TTTT
 ,,

10
3

,
5

,   

indicating the value of n  that corresponds to each curve. As noted, the curves 

end at the angles 

              

  

By combining the curves of constant   and constant n  we can locate points 

in the z plane with any desired combination of damping ratio and natural 

frequency.  

  
 
 
 
 
 
 
 
 
 

Figure (9)  Desired pole locations in s-plane 

 
  In Fig.(9), poles locations in the s plane with damping rations between 

0.6 and 0.9 and natural frequencies between T10 and T103 are in the shaded 

area. The corresponding poles in the z plane are shown in Fig.(10).  

Notes:  
  The curves of constant   do not depend on T 



 9

T10


T10
7

T5
2

T10
3

T5


T5
3 T2



T5
4

T10
9

T


  The curves of constant n  depends on T, and then, on the sampling rate. 

For instance, for a sampling rate of 10 Hz, the poles in the shaded region 

will have natural frequencies between 0.5 and 1.5 Hz, or one tenth and three 

tenths of the maximum frequency that can be sampled without aliasing, 

namely, 5 Hz.  On the other hand, if the sampling rate is 100 Hz poles in 

this same region will have natural frequencies between 5 and 15 Hz.  

 

 

 
 
 
 
 
 
 
 
 
 
                                               
 

Figure (10)  Desired pole locations in z-plane 
 
The primary strip:  

Suppose we map the primary strip of the s plane into the z plane. We 

begin by mapping the points of a vertical line 

             jbas   

where 0a  is fixed. Under the mapping  Tsez  , a point on this line maps to  

              TbjaTTjba eeez   )(  

The term is Tae is a real number that can be thought of as a scaling 

factor for the unit phasor Tbje . If TbT   , and a  is fixed, with 

0a , then the mapping of this portion of the vertical line in the s plane to the 

z plane is a circle with radius 1 Tae  as shown in Fig.(11).  If  0a , the line 

segment maps to a circle with radius greater than one, as shown in the figure. It 

should be noted that  

                  TbT             
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







T

T

T2

T3

T2

T3

T4

T5

T4

T5







T
b 


T
b 


0b

The area confined between TbT    is called the primary strip. One 

can easily see from Fig.(11) that the width of the primary strip is T2 .  The 

other strips of the same width as that of primary strip are called the secondary 

strips.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure (11)  Mapping of the Primary strip into z-plane 
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Routh-Hurwitz Criterion to Discrete-Data System 
 

Since the stability boundary in the z-plane is unit circle 1z , then to 

apply this criterion, it is necessary to transform the unit circle of the z-plane to 

the vertical imaginary axis of the   plane. This is accomplished by the 

transformation 

              
1
1




z
z  

Solving for z gives 

                         
1
1






z                                                                            (1) 

This will transform the interior of the unit circle onto the left half of the 

 -plane. When the characteristic equation is expressed in terms of  , then the 

Routh-Hurwitz criterion can be applied in the same manner as for the 

continuous system.  

  

Ex1: For a sampling time period 4/1T  s, determine the value of K such that 

the system shown in Fig.(1) becomes unstable. That is, roots of the 

characteristic equation lie on the unit circle of the z –plane (i.e., the imaginary 

axis of the   plane. 

 

 

 

 
                                         Figure (1) Sampled-data system 

For T=1/4, the corresponding z-transform of 
)4(

)(



ss
KsG  is  

                    
)368.0()1(

158.0)(



zz

zKzG  

The characteristic equation becomes  

0)(1  zG   0
)368.0()1(

158.01 



zz

zK   0158.0)368.0()1(  zKzz  
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Using 
1
1






z  to transform from the z plane to the   plane. The 

characteristic equation becomes 
 
   
 
 
The Routh array for the numerator is  
 
                               K158.0          )158.0736.2( K        0  
                               264.1                          0  
                       )158.0736.2( K                0   
 
Thus, this system is unstable for  
 
    

 

If, in the preceding example, the sampling rate is increased from 4 

samples per seconds (T=1/4) to 10 samples per second (T=1/10), then the 

system would be unstable for 42K . In general, making the sampling time 

shorter tends to make the system behave more like the corresponding 

continuous system.  

.increasedisratesamplingtheasimprovedisStability  
 
Ex2: If a zero-order hold is included as shown in Fig.(2), find the value of K 

such that the system becomes unstable using Routh-Hurwitz criterion. (Use 

T=0.25 second).  

 

 

 

                                          
Figure (2) Sampled-data system with a zero-order hold 

 
For 25.0T , )(zG  is 
                         

                             
)368.0()1(16
)717.0(368.0)(




zz
zKzG  

The corresponding characteristic equation for this sampled-data system is  
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                          0)(1  zG    

  
          

 

Replacing z  by )1()1(    so that Routh's criterion may be applied gives 

          0)0065.0736.2()033.0264.1(0395.0 2  KKK   

The Routh array is  
   
                  K0395.0          )0065.0736.2( K        0  
                      )033.0264.1( K                0  
                      )0065.0736.2( K              0   
 
Thus, the system becomes unstable for  

                                     

 

Without the zero-order hold, this system becomes unstable for                  . Thus 

one can conclude that 

 

               .includedisholdorderzerothewhenimprovedisStability   
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Jury's Test 
 

Jury's test is a stability test which has some advantages over the 

Routh's test for continuous-data system. In general, given the polynomial in 

z, 

0....)( 01
2

2
1

1  
 azazazazazF n

n
n

n                                  (1) 

where 0a , 1a ,…, na  are real coefficients. Assuming that na is positive, or that 

it can be made positive by changing the signs of all coefficients, the 

following table is made: 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the elements of the (2k+2)th row (k=0,1,2,...) consists of 

the coefficients of the (2k+1)th row are written in the reverse order. The 

elements in the table are defined as 

             
kn

kn0
k aa

aa
b  ,        

k1n

k1n0
k bb

bb
c



 ,       
k2n

k2n0
k cc

cc
d



  

            ,…
03

30
0 pp

pp
q  ,          

23

10
2 pp

pp
q      

The necessary and sufficient conditions for the polynomial F(z) to have no 

roots on and outside the unit circle in the z-plane are: 
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For a second-order system, n=2, Jury's tabulation contains only one row. 

Therefore, the requirements listed in Eq.(2) are reduced to  

                   F(1) > 0,      F(-1) <0    and     n0 aa   

As in the Routh-Hurwitz criterion which is used for stability testing of linear 

continuous-data, occasionally the first element of a row or a complete row 

of the tabulation may be zero before the tabulation is scheduled to terminate. 

These cases are referred as singular cases. In Jury's tabulation a singular 

case is signified by either having the first and the last elements of a row be 

zero, or having a complete row of zeros.  

 

The Singular Cases:   

 When some or all of the elements of a row in the Jury's tabulation are 

zero, the tabulation ends prematurely. This situation is referred to as the 

singular case. The singular case can be eliminated by expanding and 

contracting the unit circle infinitesimally, which is equivalent to moving the 

roots off the unit circle. The transformation for this purpose is  

                          zz )1(                                                                        (3) 

where   is a very small real number. When   is a positive number in 

Eq.(3), the radius of the unit circle is expanded to 1 , and when  is 

negative, the radius of the unit circle is reduced to 1 . This is equivalent 
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to moving the roots slightly. The difference between the number of roots 

found inside ( or outside) the unit circle when the unit circle is expanded or 

contracted by   is the number of roots on the circle.  

           The transformation in Eq.(3) is actually ver easy to apply, since  

                 nn zn )1()1(                                                                     (4) 

This means that the coefficient of nz  term is multiplied by )1( n . 

 

Example1:   

If the characteristic equation of a system is 

025.0zz)z(F 2   

The first two conditions of Jury's test in Eq.(2) lead to  

                          and   

Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements 

for stability. Next, we tabulate the coefficients of  F(z) according to Jury's 

test; we have 

 

 

  

 

Since 2n-3=1, Jury's tabulation consists of only one row. The result is 

                          

 

and thus the system is stable, and all roots are inside the unit circle. 

 

Example 2:   

Consider the equation 

               08.0z3z3.3z)z(F 23   

which has roots at z=-0.5, -0.8, and -2. 
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From Jury's test, F(1)=8.1 and F(-1)=0.1. For odd n, since F(-1) is not 

negative, F(z) has at least one root outside the unit circle. 

 

Example 3:   

For the following characteristic equation  

0)K0204.05026.0()K025.048.1(zz2    

Find the range of K for stability. 

The first two conditions of Jury's test in Eq.(2) lead to 

F(1)=  

 

F(-1)=  

 

Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements 

for stability. Next, we tabulate the coefficients of F(z) according to Jury's 

test; we have 

 

 

 

 

Since 2n-3=1, Jury's tabulation consists of only one row. The result is  

0a   =  

 

Since K > 0, then the range of stability is                and for  

 

HW: For the following block diagrams, use Routh-Hurwitz criterion and 

Jury's test to find the range of K for stable system. (T=0.25 sec) 
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Root Locus in the z-plane 
 
 As with the continuous systems, the root locus of a discrete system is a plot of the 
locus of the roots of the characteristic equation 
                             0)(1  zGH  

in the z-plane as a function of the open-loop gain constant K. The closed-loop system will 
remain stable providing the loci remain within the unit circle.  

  

Root Locus Construction Rules: 

 These are similar to those given in continuous systems. 

  Starting points ( 0K ). The root loci start at the open-loop poles.  

  Termination points ( K ). The root loci terminate at the open-loop zeros when they 
exist, otherwise at  . 

  Number of distinct root loci (branches): This is equal to the order of the characteristic 
equations (or the number of poles of open loop transfer function). 

  Symmetry of root loci: The root loci are symmetric about the real axis. 

  Root locus locations on the real axis: A point on the real axis is part of the loci if the sum of 
the open-loop poles and zeros to the right of the point concerned is odd.  

  Break away (in) points. The points at which a locus breaks away from (or break in) the real 

axis can be found by letting K as a function of z, taking the derivative of dzdK and then 

setting the derivative equal to zero. 

  Unit circle crossover: This can be obtained by determining the value of K for marginal 
stability using Jury test or Routh-Hurwitz criterion.  

 
1. Root Locus without Zero Order Hold 
                                  
Ex: Sketch the root locus for the diagram shown in Fig.(1)  
 
 
 
 
 
 
                                          Figure (1) Sample-data system 
 
The z-transform for the output )(zC  is  

                 )(
)(1

)()( zR
zG

zGzC


  
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The z-transformed characteristic equation is 
 
                 0)(1  zG   
The partial fraction expansion for G(s) is 
 

 










4
11

4
)(

ss
KsG  

The corresponding z transform is  
 

           
))(1(

)1(
414

)( 4

4

4 T

T

T ezz
ezK

ez
z

z
zKzG 



 





















  

For T=0.25 sec.  

              

  Open-loop poles and zeros: 

                    Poles: 1z  and 368.0z  

                       Zeros:   0z  

  Number of branches: Number of branches equals No. of poles=2. 

  Root locus locations on the real axis: The root locus on the real axis lies between poles 
( 1z  and 368.0z ) and to the left of zero (z=0).  

  Break away and in points:  

The characteristic equation is 

            0
)368.0)(1(

158.01)(1 



zz

zKzG    

or                

Then           0
)(

)368.0368.1()368.12(
158.0
1

2

2











z
zzzz

dz
dK  

or                       
                
 
To find the value of K at break away and in points, we use the magnitude condition: 

The gain K at breakaway point: 
 

                   
606.0158.0

)368.0)(1(






zz
zzK

606.0|158.0|
)368.0()1(









 


zz
zz
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The gain K at break in point: 
 

                    
606.0158.0

)368.0)(1(






zz
zzK  

     
                         
 
  Crossing points of z-plane imaginary axis: 
 

In general jbaz  , and when the root locus crosses the imaginary axis of the 

z-plane, then the real part becomes zero, or jbz  . Substitute this value in the 

characteristic equation one can obtain: 

       0158.0368.0368.12  zKzz  
       0)(158.0368.0)(368.1)( 2  jbKjbjb  
or  
           0158.0368.0368.12  Kbjbjb  
           0)158.0368.1()368.0(

ImRe

2 
  

aginaryal

Kbbjb  

Two equations will be obtained: 

            0368.02  b   and 0158.0368.1  bKb  

From the first equation one can obtain the point of interception of root locus with the 
imaginary axis  

              0368.02  b      606.0b  606.0jz   

Substitute the value of b at the second equation, the value of gain K at the imaginary 
axis becomes 
  0158.0368.1  bKb    0606.0158.0606.0368.1  K  658.8K  

Alternatively, one can use the magnitude condition to find the value of K at 
imaginary axis crossing points: (use either 606.0jz   or 606.0jz  )  

   
606.0158.0

)368.0)(1(

jzz
zzK






606.0|158.0|
)368.0()1(

jzz
zz









 
  

      






 


|606.0158.0|
)368.0606.0()1606.0(

j
jj  
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

658.8K

979.0K



337.16K

337.16K

606.0jz 

606.0jz 
658.8K

6065.0z

6065.0z

1z
0K

1z

0z
K

  K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K 
as the root locus crosses the unit circle into the unstable region is 

                                           316.17K   

  Unit circle crossover: Inserting 3.17K  into the characteristic equation                                       

0
)368.0)(1(

158.01)(1 



zz

zKzG  0
)368.0)(1(

158.0316.171 



zz

z  

  368.0367.12  zz    The roots are 1z  
 
  Angle of asymptotes 

                       
zp

n




180)12(           n=0,1,2,3 

where p=number of poles and z is the number of zeros. Thus   becomes 
                         180  

The real axis interception of the asymptotes is  

                        368.1
12

0368.010 0 









 

zp

zz
p z

zp

x  

The complete root-locus plot may now be constructed as shown in the following figure 
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Ex2: for the diagram shown in Fig.(2),  
  
  Sketch the root locus for T=1/4 sec.  
  Plot the response of the system to a unit step function and for K=4.  
 
 
 
 
 
 
 
                                          Figure (2) Sample-data system 
 
For T=1/4, one can show that )(zG has the form  

           
)368.0)(1(16
)717.0(368.0)(





zz
zKzG    

The z-transform closed-loop tranfer function  

              
)(1

)(
)(
)(

zG
zG

zR
zC


  

          
The characteristic equation of the above transfer function is 
 
                 0)(1  zG   
or  
                 0)01649.0368.0()368.1023.0(2  KzKz  
 
  Open-loop poles and zeros: 

                    Poles:  
                       Zeros:    
Number of branches: Number of branches equals No. of poles=2. 

  Root locus locations on the real axis: The root locus on the real axis lies between poles 
( 1z  and 368.0z ) and to the left of zero ( 717.0z ).  

  Break away and in points:  

The characteristic equation is 

            0
)368.0)(1(16

)717.0(368.01)(1 



zz

zKzG    

or                
Then          

             0
)717.0(

)368.0368.1()368.12)(717.0()478.43( 2

2






z

zzzz
dz
dK  
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or                       

           0)368.0368.1()980.0066.02( 2  zzzz  0348.1434.12  zz             

Then  
              
To find the value of K at break away and in points, we use the magnitude condition: 
The gain K at breakaway point: 

 

     
647.0)717.0(

)368.0)(1()478.43(





zz
zzK

647.0
|)717.0(|

)368.0()1(
478.43















zz
zz

 

        139.3
|717.0647.0|

368.0647.01647.0
478.43 











  

 
The gain K at break in point: 
 

       
081.2)717.0(

)368.0)(1(478.43





zz
zzK

081.2|717.0|
)368.0()1(

478.43















zz
zz  

     

          511.240
|717.0081.2|

368.0081.21081.2
478.43 











  

 
  Crossing points of z-plane imaginary axis: 
 

In general jbaz  , and when the root locus crosses the imaginary axis of the 

z-plane, then the real part becomes zero, or jbz  . Substitute this value in the 

characteristic equation one can obtain: 

        0)01649.0368.0()368.1023.0()( 2  KjbKjb  
        
or  
 
 
 
Two equations will be obtained: 

     0)01649.0368.0( 2  bK   and   0)368.1023.0( Kb  

From the second equation one can determine the value of gain at the point of root- 
locus interception with the imaginary axis  
             0)368.1023.0( Kb   478.59K  
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Substitute the value of K into the first equation, the value of z at the imaginary axis 
becomes 

      0)01649.0368.0( 2  bK            

Then, 161.1jz   at the imaginary axis of the z-plane.   

 

  K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K 
as the root locus crosses the unit circle into unstable region is 

                                           3.38K   

  Unit circle crossover: Inserting 3.38K  into the characteristic equation   

      0)3.3801649.0368.0()368.13.38023.0(2  zz  

or 

        0999.04871.02  zz   9693.02435.0 jz   (crossing points)                             

  Angle of asymptotes 

                       
zp

n




180)12(           n=0,1,2,3 

where p=number of poles and z is the number of zeros. Thus   becomes 
                         180  
The real axis interception of the asymptotes is  

                         
 
The complete root-locus plot may now be constructed as shown in the figure below. Let 
it now be desired to determine the response of this system to a unit step function for the 
case in which K=4. It follows that 

                     
367.0368.1

)171.0(092.0
)368.0)(1(16
)717.0(368.0)( 2 








zz

z
zz
zKzG  

The z-transform closed-loop tranfer function  

               
)717.0(092.0)368.0368.1(

)171.0(092.0
)(1

)(
)(
)(

2 






zzz

z
zG

zG
zR
zC  

                

 
Thus, 

                C(z) - 1.276 1z C(z) + 0.434 2z  C(z)= 0.092 1z R(z) + 0.066  2z R(z) 
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

3.38K



3.38K

161.1jz 

161.1jz 

1z368.0z717.0z

511.240K

647.0z
139.3K

0K0KK

478.59K

478.59K

9693.02435.0 jz 

9693.02435.0 jz 

081.2z

 
The corresponding recursive time difference equation is given by  
 

 
The substitution of c(nT)=r(nT)=0 for n<0 and r(nT)=1 for K  0 yields the following values for 
c(nT) at the sampling instants: 
c(0)=0 
c(T) =  
c(2T) = c( 
c(3T)=c 
 
 

 
 
 
 
  
 
 

 
 
 
 
  
 
 
 

Figure (3) Root-locus plot for )717.0(023.0)368.0)(1(  zKzz .  
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Design of Digital Control Systems with the Deadbeat Response 
 
The design objectives of control systems can be classified as follows: 

   A large number of control systems are designed with the objective that the 
responses of the systems should reach respective desired values as quickly as 
possible. This class of control systems is called minimum-time control systems, or 
time-optimal control systems.  

   With reference to the previous design methods, one of the design objectives is to 
have a small maximum overshoot and a fast rise time in the step response.  

In reality, the design principles discussed in the preceding sections involve the 
extension of the design experience acquired in the design of continuous-data control 
systems; e.g., phase-lag and phase-lead controllers, and the PID controllers.  

However, since the digital controller has a great deal of flexibility in its 

configuration, one should be able to come up with independent methods not relying 
completely on the principles of design of continuous-data control system. We were 
perhaps amazed by what the PID controller could accomplish in the improvement on 
the system response for the digital control system, but can we do better?. 

The answer is that in digital control system we may design the digital 
compensator )(zGc  to obtain a response (output) with a finite settling time. The output 

response )(kTc  which reaches the desired steady-state value in a finite number of 

sampling intervals is called a deadbeat response. 

 
Ex1: The block diagram of a digital control system, shown in Fig.(1), is revisited. Again, 

the controlled process is represented by the transfer function 

              
)2)(1(

10)(



ss

sGp   

Try to find a controller with the objective to cancel all poles and the zeros of the process 
and then add a pole at 1z .   
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)(tc)(sGc
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)(zGc
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Figure (1) A digital control system with a digital controller. 

The open-loop pulse transfer function of the uncompensated system is 

           )1()( 1 zzGG pzoh  Z 







 )2()1(

10
sss )819.0()905.0(

)904.0(0453.0



zz

z  

The pulse transfer function of the suggested digital controller be  
 

            
)904.0()1(0453.0

)819.0()905.0(


zz

zzGc  

The open-loop transfer function of the compensated system now simply becomes 
 

            
1

1)()(



z

zGGzG pzohc  

The corresponding closed-loop transfer function is  

            
zzR

zC 1
)(
)(   

Thus, for a unit step input, the output transform is  

            


  321

1
1)( zzz

z
zC  

The following points have to be highlighted: 

   The output response )(kTc  reaches the desired steady-state value in one 
sampling period and stays at that value thereafter.  

  In reality, however, it must be kept in mind that the true judgement on the 
performance should be based on the behavior of )(tc . In general, although )(kTc  
may exhibit little or no overshoot, the actual response )(tc  may have oscillations 
between the sampling instants.   

   For the present system, since the sampling period sec1.0T  is much smaller 
than the time constants of the controlled process, it is expected that )(kTc  gives a 
fairly accurate description )(tc .  

   Thus, it is expected that the digital controller will produce a unit-step response that 
reaches its steady-state value of 0.1 sec, and there should be little or no ripple in 
between the sampling instants. 

   This type of response is referred to deadbeat response.  
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)(zGc)(zR )z(E )(zC)(zG

However, the design based on the deadbeat response still has the following 
limitations and criteria: 

   The deadbeat response is obtainable only under the ideal condition that the 
cancellation of poles and zeros as required by the design is exact. In practice, the 

uncertainty of the poles and zeros of the controlled process, due to the 
approximations required in the modeling of the process, and the restrictions in the 
realization of the controller transfer function by a digital computer or processor, 
would make a deadbeat response almost impossible to achieve exactly.  

  The system must have zero steady-state error at the sampling instants for the 
specified reference input signal. 

  The response time defined as the time required to reach the steady state should be 
a minimum.  

  The digital controller )(sGc  must be physically realizable.  

 
 The closed-loop pulse transfer function of the digital-controlled system shown in 
Fig.(1) is  

              
)()(1

)()()(
)(
)(

zGzG
zGzGzM

zR
zC

c

c


                                                                    (1) 

 
 
 

 
Figure (2) Rotational Dynamics of a Satellite (Pure inertia) 

Solving for )(zGc  from Eq.(1), we have  

             
)(1

)(
)(

1)(
zM

zM
zG

zGc 
                                                                                 (2) 

Steady-state error 
The z-transform of the error signal is written  
             )()()( zCzRzE                                                                                           

                        
)()(1

)()(1)(
zGzG

zRzMzR
c

                                                     (3)                
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Let the z-transform of the input be described by the function 

                   Nz
zAzR

)1(
)()( 1

                                                                                           (4)    

where N  is a positive integer, and )(zA  is a polynomial in 1z  with no zeros at 1z . 

For example, for a unit-step function input, 1)( zA  and 1N ; for a unit-ramp 

function input,  1)( TzzA  and 2N , etc. In general, )(zR  of Eq.(4) represents 

inputs of type 1Nt . For zero steady-state error, 

            )()1(lim)(lim 1

1
zEzkTe

zk





    

                            0
)1(

)](1[)()1(lim 1
1

1



 




N

z z
zMzAz                                                (5)                                                     

Since the polynomial )(zA  does not contain any zeros at 1z , it is necessary 

condition for the steady-state error to be zero is that )(1 zM  must contain the factor 
Nz )1( 1 . Thus, )(1 zM  should have the form 

             )()1()(1 1 zFzzM N                                                                             (6)                                                     

where )(zF  is a polynomial of 1z   

            fzzzzF   211)(                                                                        (7) 

where f  denote the largest order of  )(zF , which is selected to achieve the 

realizability of the controller )(zGc . Solving for )(zM  in the Eq.(6) one can have 

              N

NN

z
zFzzzM )()1()(                                                                      (8) 

Since )(zF  is a polynomial in 1z , it has only poles at 0z . Therefore, Eq.(8) clearly 

indicates that the characteristic equation of the system with zero steady-state error is of 
the form  

                0pz                                                                                                     (9)                                 
where p  is a positive integer N . 

 Substitution of Eq.(5) into Eq.(3), the z-transform of the error is written as  
           )()()( zFzAzE                                                                                              (10)                                                            

Since )(zA  and )(zF  are both polynomial of 1z , )(zE  in Eq.(9) will have a finite 

number of terms in terms in its power-series expansion in inverse powers of z . Thus, 
when the characteristic equation of a digital control system is of the form of Eq.(9), that 
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







)11(

is, when the characteristic equation roots are all at 0z , the error signal will go to zero 
in finite number of sampling periods.  

 
Physical realizability considerations 
 Equation (8) indicates that the design of a digital control system with the 
deadbeat response for a given input requires first the selection of the function )(zF . 

Once )(zM  is determined, the transfer function of the digital controller is obtained from 

Eq.(2). However, the physical realizability requirement on )(zGc  and the fact that 

)(zG  is transfer function of a physical process put constrains on the closed-loop 

transfer function )(zM . In general, let )(zG  and )(zM  be expressed by the following 

series expansions: 

                2
2

1
1)( nnn

o zgzgzgzG          0n                                      

                2
2

1
1)( kkk

o zmzmzmzM       0k  

Substituting the last two equations in Eq.(2), one can have  

)1)((
)(

)( 2
2

1
1

2
2

1
1

2
2

1
1








 



kkk
o

nnn
o

kkk
o

c zmzmzmzgzgzg
zmzmzm

zG       

             )2(
2

)1(
1

)( nknknk
o zdzdzd                                               (12)                                                            

 

  Thus, for )(zGc  to be physically realizable, nk  ; i.e., the lowest power of the 

series expansion of )(zM  in inverse powers of z  must be at least as large as that 

of )(zG . Once the minimum requirement on )(zM  is established, for a specific 

input, )(zF  must be chosen according to Eq.(6) to satisfy this requirement.  

The relations between the basic form of )(zM  and the type of input for a deadbeat 

response are determined from Eq.(8) and tabulated in Table (1). 
Table (1)  

Input function 
 

N 
 

M(z)  M(z) with F(z)=1  

Step input )(tu  1 )()1(1 1 zFz   1z  
Ramp input t )(tu  2 )()1(1 21 zFz   212   zz  

Ramp input 2t )(tu  3  )()1(1 31 zFz    321 33   zzz  
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 In fact, there does not seem to be any objection to selecting 1)( zF  for all 

types of input. Thus, the results in Table (1) indicate that  

   When the input is a step function input, the minimum time for the error to go to zero 
is one sampling period.  

   For a ramp input, it takes two sample periods for the error to be reduced to zero.  
   The minimum number of sampling periods for the error, due to a parabolic input, to 

diminish is three. 
 
 Another difficulty is revealed by referring to Eq.(2), when )(zM  any one of the 

forms given in Table (1). Since the highest power term in )(zM  is 1z , 

])(1[)( zMzM   will always have one more pole than zero. Then in order that )(zGc  

is physically realizable transfer function, )(zG  must have at most one more pole than 

zero. Of course, )(zG  can not have more zeros than poles. For example, for a step 

input, 1)(  zzM , Eq.(2) gives  

              
1

1
)(

1)(



zzG

zGc  

Thus, the condition on )(zG  given above is arrived at. The conclusion is that when 

)(zG  has more than one pole than zeros, )(zF  can not be simply 1. 

 

Ex2: Using the above analysis, repeat the design of the digital controller in the previous 

example to give deadbeat response in one sampling interval to unit step input. 
 Using Eq.(2), the controller transfer function can be written as 

           
)(1

)(
)(

1)(
zM

zM
zG

zGc 


)(1
)(

)819.0()905.0(
)904.0(0453.0

1
zM

zM

zz
z 












    

One can see that he transfer function )(zG  has one more pole than zero. Thus, for the 

digital controller )(zGc  to be a physically realizable transfer function, then, one can 

choose )(zM  to be 1z  and )(zF  to be unity. The controller transfer function 

becomes 

                      
)904.0()1(0453.0

)819.0()905.0(


zz

zzGc  
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s
e Ts1 )(kTc

2
1
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)(tc)(zGc

)(zG

)(zE )(zU
)(zR

Ex3: Consider that the controlled process of the digital control system shown in Fig.(2) 

is described by 

                      
1

1)( 2 


zz
zG  

A digital controller is to be designed so that a deadbeat response is obtained when the 
unit input is a unit step input.  
 Since the transfer function )(zG  has two more poles than zeros, we can not 

choose )(zM  to be 1z , since it will lead to a physically unrealizable )(zGc . Let us try 
2)(  zzM . Then,  

                2

21

2

2

2

21

1
1

1
1

)(1
)(

)(
1)( 























z
zz

z
z

z
zz

zM
zM

zG
zGc   

which is a physically realizable transfer function. In this case, the function )(zF  is 

given by Eq.(6) 

            Nz
zMzF
)1(
)(1)( 1

 1
1

11

1

2

1 1
)1(

)1)(1(
)1(
)1(

)1(
)(1 









 







 z

z
zz

z
z

z
zM                                                                        

 

Ex4: Consider the digital controlled system of a simple satellite rotational dynamics 

shown in Fig.(3). The figure shows pure inertia plant driven by zero-order hold. 
 

 
 
 

 
Figure (3) Rotational Dynamics of a Satellite (Pure inertia) 

The overall transfer function by  

          )1()( 1 zzG  Z  





s
sG )(         )1()( 1 zzG  Z  





3
1
s

   

or 

          








 



21

112

)1(2
)1(

2
)(

z
zzTzG  
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z
1

)(zC)(zR

Letting sec1.0T , then 

         








 



21

11

)1(2
)1(

200
1)(

z
zzzG  

Applying Eq.(2), one can get  

         









 



1

1

1)(
1)(

z
z

zG
zGc 1

1

11

21

1)1(
)1(200












z
z

zz
z  

and upon simplification, the above expression becomes 

          
)(
)(

1
)1(200)( 1

1

zE
zU

z
zzGc 


 



 

Substitute the expression of the above controller into the overall pulse transfer function 
)(zM , one can obtain the following one delay closed loop pulse transfer function 

            
)()(1

)()(
)(
)()(

zGzG
zGzG

zR
zCzM

c

c




z
1   

The block diagram representing the above pulse transfer function is shown in Fig.(4).  
 

 

Figure (4) Simple delay element 

Cross-multiplication of the controller transfer function )(zGc , one can get the difference 

equation for the control algorithm  
           )()()(200)( TkTuTkTekTekTu   

This algorithm has to be programmed into the digital controller. Figure (5) shows the 

unit step input response and control effort for both continuous and sampled forms. It is 
clear from the figure that the output reaches steady-state value (with zero error) in one 
sample time. 

There are several possible problems which commonly occur in finite settling time 
(deadbeat) response of the studied example: 

   The first is that in order to get 1-step settling time there is an excessive overshoot 
and sustained oscillation present in the continuous-time response.  
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)(kTc

t

)(tu

t

   The second is that very high control efforts are required and these efforts could 
cause saturation problems at the output of the digital-to-analogue (D/A) converter 
or at best require high-power elements to generate the continuous-time control 
effort )(tu . 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure (5) Response of inertial system and control effort for minimum prototype(deadbeat) controller 

Ex5: Let us consider the settling of the temperature control of the thermal system to 

ramp input. The pulse transfer function of plant and zero order hold for a sampling 
interval sec25.0T  is  

          
)528.0()925.0(

)816.0(025.0)(



zz

zzG  

we would like to have this system follow the sampled ramp input which is  
           )(4)( kTkTr    
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)(1 tT

(sec)t

25.0T

)(1 tT

If we apply the expression (6) for N=2, one can get a discrete controller transfer function 
of  

           
)(
)(

816.0632.0184.1
)503.0486.296.32(40)( 4321

4321

zE
zU

zzzz
zzzzzGc 


 



 

which yields a difference equation for the control algorithm: 

   )3(816.0)2(632.0)(184.1)( TkTuTkTuTkTukTu   
                    )3(503.0)2(486.2)(96.3)(240 TkTeTkTeTkTekTe   
 
The result of this type of algorithm for a ramp refernce input is illustrated in Fig.(6).  

 
 
 
 
 

 
 
 
 
 
 

Figure (6) Response of thermal system deadbeat controller to ramp input 

The forgoing examples have illustrated the algorithm for generation of minimal 
prototype systems which settle to polynomial-type input functions in one step than the 
order of the polynomial input. There are, however, some problems associated with such 
control algorithms: 

   They require excessively high control efforts )(tu . 

    As result of these high control efforts, continuous-time plants will tend to oscillate 

violently between sampling intervals.  
These two problems make minimal prototype (deadbeat) systems not nearly so 
desirable and one might think that they are just of academic interest.  
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)(te )(* te )(tc
)(sG

)(sH

)(tr

)(tb

 Steady State Error 
 

An important characteristic of a control system is its ability to follow, or track, certain 
inputs with a minimum of error. The control system designer attempts to minimize the system 
error to certain anticipated inputs. In this section the effects of the system transfer 
characteristics on the steady-state system errors are considered.  
 Consider the system of Fig.(1). The signal )(te  is defined as the error; that is,  

                                   )()()( tbtrte    

 
 
 
 

Figure (1) A digital control system 
 
Since it is difficult to describe )(te  in a digital control system, the sampled error )(* te  or the 
error at the sampling instants )(kTe  is usually used. Thus, the steady-state error at the 
sampling instants is defined as  
                                   )(lim)(lim ** tekTeE

tk
ss


  

Using the z-transform, the final value theorem leads to 
                                                                                      (1) 
For the system shown in Fig.(1), the z-transform of the error signal is written  

                                   
)(1

)()(
zGH

zRzE


   

Substituting the last equation into Eq.(1), we have 
                                                                               (2) 
This expression shows that the steady state error depends on the reference input )(zR , as 

well as the loop transfer function )(zGH . In the following, three basic types of input signals will 

be considered: step function, ramp function and parabolic function. 

 

  Steady State Error due to a Step Function input: 

Let the reference input to the system of Fig.(1) be a step function of magnitude h . The z-
transform of )(tr  is  

                
1

)(



z

zhzR   

Substituting the last equation into Eq.(2), we have    
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                                                                                                              (3) 
Let the step-error constant be defined as 

                  )(lim
1

zGHK
zp


  

Then Eq.(3) becomes  

                       
p

ss K
hE



1

*  

Thus, for the steady-state error due to a step function input to be zero, the step-error constant 

pK  must be infinite. This implies that the transfer function )(zGH must have at least one pole 

at z=1.   
 

  Steady State Error due to a Ramp Function input: 

For a ramp function, thtr )( , the z-transform of )(tr  is 

                                 2)1(
)(




z
zThzR  

Substitute the previous equation into Eq.(2), we have  
                                                                 (4) 
Let the ramp-error constant be defined as 

                                   )()1(lim1
1

zGHz
T

K
zv 


                                                                   (5) 

then, Eq.(4) becomes 

                                 
v

ss K
hE *                                                                                                (6) 

The ramp-error constant vK is meaningful only when the input to the system is a ramp function. 

Again, Eq.(6) is valid only if the function after the limit sign in Eq.(2) does not have any poles on 

or outside the unit circle 1z . This means that the closed-loop digital control system must at 

least be asymptotically stable.   

 Equation (6) shows that in order for *
ssE  due to a ramp function input be zero, vK must 

equal infinity. From Eq.(5) we see that this is equivalent to the requirement of )()1( zGHz   

having at least one pole at z=1,  or )(zGH  having two poles at z=1.  

 
   Steady State Error due to a Parabolic Function input: 
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 For a parabolic function, 
2

)(
2thtr  , the z-transform of )(tr  is 

                                 3

2

)1(2
)1()(





z

zzThzR  

From Eq.(2), the steady-state error at the sampling instants is written as 

                              
 )(1)1(

)1(lim
2 21

2
*

zGHz
zhTE

z
ss







                                                        

or  
                                                                                                       (7) 
Now, let the parabolic-error constant be defined as 

                          ])()1([lim1 2
12 zGHz

T
K

za 


                                                                  (8) 

Then, Eq.(7) becomes 

                            
a

ss K
hE *                                                                                                       (9) 

In a similar manner we must point out that the parabolic-error constant is associated only with 
the parabolic function input, and should not be used with any of the other types of inputs.  

 
Effects of Sampling on the Steady-State Error: 
If the open-loop transfer function of Fig.(1) is of the following form: 

                  
)1()1)(1(
)1()1)(1()()(

21 sTsTsTs
sTsTsTKsHsG

n
j

mba






                                                     (10) 

where the T's are nonzero real or complex constants, the type of the system is equal to j. The 
error constants for the continuous-data system are defined as 
 
Step-error constant:     )()(lim

0
sHsGK

sp


   

Ramp-error constant:  )()(lim
0

sHsGsK
sv


  

Parabolic-error constant:  )()(lim 2
0

sHsGsK
sa


  

 
According to the above equations, one can easily conclude that, for instance, a type-0 

system will have a constant steady-state error due to a step function input, and infinite error 
due to all higher-order inputs. A type-1 system (j=1) will have a zero steady-state error due to a 
step-function input, a constant error due to a ramp function input, and infinite error due to all 
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higher-order inputs. Table (1) summarizes the relationships between the system type, and the 
error constants for the continuous-data systems.    

Table (1) 
Type of System pK  vK  aK  

0 K 0 0 
1   K 0 
2     K 

 

We will evaluate the error constants of digital control system shown in Fig.(1) for the cases of 
j=0,1 and 2 as follows: 
 

  Type 0 (j=0) 
In this type j=0 and  Eq.(10) becomes  

  
)1()1)(1(

)1()1)(1()()(
21 sTsTsT

sTsTsTKsHsG
n

mba






  

where we assume that the open loop transfer function has more pole than zeros. The z 
transform of )()( sHsG  is 

                                                                    (11) 
Performing partial fraction expansion to the function inside the bracket in the last equation, we 
have  

           

















)1()1()1(
)(

1

2

1

1
sT

K
sT

K
sT

KZzGH
n

n   

                         
 
                          polesnonzerowithTerms  

It is important to note that the terms due to the nonzero poles do not contain the term )1( z in 

the denominator. Thus, the step-error constant is 
 

                        tconspolesnonzerowithtermszGHK
zzp tanlim)(lim

11



 

Substituting Eq.(11) into the ramp-error constant of Eq.(8), we get  

 polesnonzerowithtermsz
T

zGHz
T

K
zzv )1(lim1)()1(lim1

11



 

           0tan)1(lim(lim)1(lim
111





 





 




tcons
T

zpolesnonzerowithterms
T

z
zzz
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Similarly, 
 

 polesnonzerowithtermsz
T

zGHz
T

K
zza

2
12

2
12 )1(lim1)()1(lim1




 

           0tan)1(limlim)1(lim 2

2

112

2

1












 












 



tcons

T
zpolesnonzerowithterms

T
z

zzz
 

 

  Type 1 (j=1) 
In this type j=1 and Eq.(10) becomes  

)1()1)(1(
)1()1)(1()()(

21 sTsTsTs
sTsTsTKsHsG

n

mba






  

The z transform of )()( sHsG  is 

                                                                    (12) 
Performing partial fraction expansion to the function inside the bracket in the last equation, we 

have 

                 






  polesnonzerothetodueterms

s
KZzGH )(   

                 






 


 polesnonzerothetodueterms

z
KzzGH

1
)(   

 
Thus, the step-error constant is 

          



 





valuepolesnonzerothetodueterms

z
zKzGHK

zzp 1
lim)(lim

11
 

Substituting Eq.(12) into the ramp-error constant of Eq.(8), we get  
 

       



 





polesnonzerothetodueterms

z
zKz

T
zGHz

T
K

zzv 1
)1(lim1)()1(lim1

11
 

             
T
Kpolesnonzerothetodueterms

T
z

T
Kz

z




 




)()1(lim
1

 

 
Similarly, 
 
 
 

      0)()1()1(lim 2

2

21












 






polesnonzerothetodueterms

T
zzK

T
zzK

z
 

 
  Type 2 (j=2)  

For a type-1 system  j=1, Eq.(11) becomes 



 6

















)1()1)(1(
)1()1)(1()(

21
2 sTsTsTs

sTsTsTKZzHG
n

mba


                                                              (13) 

        






  polesnonzerothetodueterms

s
K

s
KZzGH 1
2)(  

 
Then, the step-error constant is  

      
















polesnonzerothetodueterms

z
zK

z
zTKzGHK

zz
p 1)1(

lim)(lim 1
211

 

 
The ramp-error constant is   


















polesnonzerothetodueterms

z
zK

z
TzKz

T
zGHz

T
K

zz
v 1)1(

)1(lim1)()1(lim1 1
211

  

       
 
 
The parabolic-error constant  


















polesnonzerothetodueterms

z
zK

z
TzKz

T
zGHz

T
K

zz
a 1)1(

)1(lim1)()1(lim1 1
2

2
12

2
12

      
T
K

T
Kpolesnonzerothetodueterms

T
z

T
zzK

T
zK

z




 











 






00)()1()1(lim 2

2

2
1

1
 

 
 

One can summarize the above in the following Table 
Table (1) 

Type of System pK  vK  aK  

0 constant 0 0 
1   TK /  0 
2     TK /  

               

TperiodsamplingtheondependallKandKthatseemwouldIt av  

 
Ex1: Calculate the steady-state errors for the system of Fig(1), in which the open-loop transfer 
function is given as  

             

















 




)1(
1)(

ss
K

s
esG

Ts
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)(sc
)(sG

)(sR
)(sD

Thus  

             






























)1(
1)1(

)1(
1)( 22 ss

Z
z

zK
ss
eZKzG

Ts
 

                      
                      
 
 
Since )(zG has one pole at z=1, the steady state error to unit step is zero, and to ramp input is 

K/1 provided that the system is stable. 

 
Ex2: Consider the system of Fig.(1), where 1)( sH  and  

                             T

T

ez
ezG 







1)(   

Suppose that the design specification for this system requires that the steady state error to a 
unit ramp input be less that 0.01. Thus, it is necessary that the open-loop transfer function have 
a pole at z=1. Since the plant does not contain a pole at z=1, a digital compensator of the form  

                              p
i K

z
zKzD 



1

)(  

 
 
will be added to produce the resultant system shown in figure below.  
 
 
 
 
The compensator, called a PI or proportional-plus-integral compensator, is of a form commonly 
used to reduce steady-state errors. Employing the expressions above for )(zD  and )(zG , we 

see that 

                         
T
K

ez
e

z
KzKK

T
K i

T

T
ppi

z
v 



























 





1
)1(

)(
lim1

1
   

Thus iK  must equal )100( T  for the required steady-state error, provided that the system is 

stable. The latter point is needed an important consideration since the error analysis is 

meaningful unless the stability is guaranteed.  
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)(te
)(tc

)(tr
2

1
sJZOH

rK

T

pK
s
1

HW1: If a zero-order hold is included immediately after the sampler in the digital control system 
of Figure (1), then 

  Follow the same above argument, show that the step, ramp and parabolic error constants 
are the same as given in Table (1) for continuous system.  

  Do these error constants depend on the sampling period T? Why? 
 
HW2: For the simplified digital control system in the figure shown below, find the step, ramp 
and parabolic error constants. Express the results in terms of the system parameters.  
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State Variable of Discrete Systems 
 
 In general, the analysis and design of linear systems may be carried out by one 
of the two major approaches:  

  One approach relies on the use of Laplace and z-transforms, transfer functions, 
block diagrams or signal flows. 

  The other method, which is synonymous with modern control theory, is the state 
variable technique. The fact is that a great majority of modern design techniques 
are based on the state variable formulation and modeling of the system. 

 In a broad sense, the state variable representation has the following 
advantages, at least in digital control system studies, over the conventional transfer 
function method. 

  The state variable formulation is natural and convenient for computer solutions. 
  The state variable approach allows a unified representation of digital systems with 

various types of sampling schemes. 
  The state variable method allows a unified representation of single and multiple 

variable systems. 
  The state variable method can be applied to certain types of nonlinear and time-

varying systems.  
 
 In the state variable formulation a continuous-data system is represented by a 
set of first-order differential equations, called state equations. For a digital with all 
discrete-data components, the state equations are first-order difference equations.     
 
State Equations of Continuous-Data System: 
 Consider that a continuous-data system with m  inputs and r  outputs as shown 
in Fig.(1) is characterized by the following set of n  first-order differential equations, 
called state equations 

         t),t(u),t(u),t(u),t(x,),t(x),t(xf
dt

)t(xd
m21n21i

i     )n,,2,1i(       (1) 

where )t(x,),t(x),t(x n21   are the state variables, )t(u,),t(u),t(u m21   are the 

input variables, and if  denotes the ith functional relationship. In general, if  can be 

linear or nonlinear.  
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n21 x,,x,x 

)t(u1
)t(u2

)t(um


)t(y1
)t(y2

)t(y r

 The  r  outputs of the system are related to the state variables and the inputs 
through the output equations which are of the form,  

   )t(yk  t),t(u),t(u),t(u),t(x,),t(x),t(xh m21n21k     )r,,2,1k(           (2) 

Similar remarks can be made for kh  as for if .  
 
   
 
 

Figure (1) A linear system with m  inputs, r  outputs and n  state variables 
 
It is customary to write the dynamic equations in vector-matrix form: 

State equation:           
dt
d x )t(  f [ x )t( u, )t( t, ]                                                         (3)                   

Output equation:         y )t(  h [ x )t( u, )t( t, ]                                                             (4)                                 

where  x )t(  is 1n  column matrix, and is called the state vector, that is  

                     x )t(





















)t(x

)t(x
)t(x

n

2

1


                                                                                        (5) 

The input matrix, u )t( , is 1m  column matrix, and  

                     u )t(





















)t(u

)t(u
)t(u

m

2

1


                                                                                      (6)                                    

The output vector, y )t( , is defined as  

                     y )t(





















)t(y

)t(y
)t(y

r

2

1


                                                                                           (7)                                    

which is a 1r .  
 If the system is linear but has time-varying elements, the dynamic equations 
Eq.s (3) and (4) are written as 
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A

 xx CB

D

yu

                x )t(  A )t( x )t(  B )t( u )t(                                                                 (8)                                        
                y )t( C )t( x )t(  D )t( u )t(                                                                    (9)                                        

where A )t(  is nn   square matrix, B )t(  is mn , C )t(  is nr  and D )t(  is 

mr . All the elements of these coefficient matrices are considered to be continuous 
functions of time t .   

 If the system is linear and time-invariant, Eq.s (8) and (9) are of the form  
                x  A x )t(  B u )t(                                                                                (10)                                
                y xC )t(  D u )t(                                                                                (11)                                         

The matrices A , B , C  and D  now all contain constant elements. The block diagram 
representing Eq.s (10) and (11) is shown in Fig.(2) 
 
 
 
 
 
 
 
 

Figure (2) Block diagram for continuous-time state variable system 
 
Ex1: Consider the inertial plant which is described by the transfer function 

                  2s
1

)s(U
)s(Y)s(G     

The equivalent differential equation is  
                 )t(uy   

Now define the two required state variables as  
                 yx1   

and  
                 12 xyx    

so the differential equations governing the system are  
                 21 xx   
                 )t(ux 2   
or in matrix form,  
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          )t(u
1
0

x
x

00
10

x
x

2

1

2

1





































 

and the measurement (output) equation is  

            









2

1
x
x

01)t(y  

Often the process of selection of system state variables in physical problems is not 
straightforward. 

Solution of the State Equation 
 

1. Homogeneous Equation: 
 Let us consider first the homogeneous form of Eq.(10), where u 0)t(  , or 

               x  A x )t(                                                                                                  (12)  

Taking the Laplace transform of this equation to yield 
              s X )s( x )0( A X )(s                                                                            (13)      

Rearranging gives  
             s I A X )s(  x )0(  

and solving for X )s( , one can get 

             X )s(  s I  1A x )0(  
                         )s( x )0(                                                                                        (14)     
 
where  )s(   s I  1A  is called the "state transition matrix".  Let us now invert the 

Laplace transform of Eq.(14) to yield  

                   x )t(  L 1 { s I  1A  } x )0(  
                        L 1 {  )s(  } x )0(                                                                             
or  
             x )t(  )t( x )0(                                                                                         (15)                                      

where  )t(  is given by        

              )t( L 1 { s I  1A  }   L 1  )s(                                             (16)                                      

2. Nonhomogeneous Equation: 
Now let us consider the forced system, where u 0)t(  , then  

 x  A x )t(  B u )t(                                                                                    (17)                                      
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Let us, as before, take the Laplace transform to yield  
           s X )s( x )0( A X )(s  B u )s(                                                              

or  
           s X )s( A X )(s  x )0(  B u )s(                                                                    

and now solving for the s-domain solution X )s( , 

          X )s(   s I  1A x )0(   s I  1A B u )s(                                            (18)                                                                                        

Inverting the Laplace transform, one can get 

         x )t(  L 1 {  s I  1A  } x )0(   L 1  {  s I  1A  B u )s(  }  
or            
         x )t(  L 1 {  )s(  } x )0(   L 1  { )s(  B u )s(  }                                            (19)                                         

  The first term of Eq.(19) is the same as given for the homogeneous problem, and 
can be rewritten in terms of state transition matrix and the state initial condition as: 
 )t( x )0( .  

  The second term is the product of two s-domain matrices  )s(  and u )s( . It is 

well-known that the inverse of two functions in s-domains is equal to convolution of 
their corresponding time-domain functions, i.e.; if )s(F1  and )s(F2  are two 

functions in s-domain, then the following relationship is satisfied: 

                                           L 1 { )s(F1 )s(F2  }   d)(f)t(f 2

t

0

1                               (20)                                                                                        

Now letting )s(F1  s I  1A )s(  and )s(F2 u )s( , the second term in Eq.(19) 

can be written as follows: 

                       L 1 { )s(  B u )s( }  
t

0

 )t(  B u  d)(                           (21)                                                                                        

and Eq.(19) becomes  

                              x )t(  )t( x )0(  
t

0

 )t(  B u  d)(                            (22)                                                                                        

In the above discussion the solution has been considered at some time t , given initial 
conditions at time 0t  . Now let us write the expression for an arbitrary starting time 

ot , or  
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A

 xx CB kyku yu

              x )t(  )tt( o x )t( o  
t

t 0

 )t(  B u  d)(                                      (23) 

State Variable of Discrete-time System 
 Let us now consider the system shown in Fig.(3) where a continuous-time plant 
is driven by a zero-order hold and the output is sampled.    

 
 
 
 

Figure (3) Continuous plant driven by a zero-order with sampled output.  
 
If the output relation is given by 
             y )t( xC )(t            0D                                                                    (24)                                                                    

then the same relation must hold at the sample instants              
            y )kT( xC )kT(                                                                                   (25)  

so it sufficient to find the states at the sampling instants. Consider the case where 
)TkT(t   and kTt o  , and note that the operation of zero-order hold is to create a 

vector u )kT(  according to the relation  

                     u )t( u )kT(          )TkT(tkT   

so from relation (22), one can get  

        x )TkT(    )T( x )kT( 



TkT

kT

 )TkT(  B u )kT( d                     (26) 

Since the vector u )kT(  is constant between sampling instants, it is, therefore, not a 

function of   and may be extracted from the integral to the right as follows: 

        x )TkT(    )T( x )kT(  { 
TkT

kT

 )TkT(  d B } u )kT(                (27)  

Let us simplify the integral of the second term by letting  )TkT( , then 

 dd , and the lower limit on   becomes T   T)kTTkT(   and the upper 

limit becomes zero  0)TkT(TkT(  . Then 
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F

xx CG yu 1z

       
TkT

kT

 )TkT(  d  
0

T

  d)(                                                          (28)                          

or reversing the limits, one can write Eq.(27) as  

      x )TkT(    )T( x )kT(  {
T

0

  d)( B } u )kT(                                   (29)                          

Now define the following constant matrices for constant T , or  

        F   )T(   L 1 {  s I  1A  }
Tt 

                                                                  (30)                          

and  

        G  {
T

0

  d)( B}                                                                                      (31)                          

so expression (29) becomes a simple matrix-vector difference equation: 
        x )TkT(   F x )kT(  G u )kT(                                                                 (32)                          

using the shorthand notation such that x )kT(  x )k(  and u )kT(  u )k( , Eq.(32) 

becomes  
       x )1k(   F x )k(  G u )k(                                                                                  (33)                          

with an output equation  
       y )k( xC )k(                                                                                                            (34)  

Expressions (33) and (34) represent the discrete-time state variable of the continuous 
plant driven by a zero-order hold and followed by an output sampler. A block diagram 
for this discrete-time system is shown in Fig.(4).  
 

 
 
 

Figure (4) Block diagram for discrete-time state variable system  
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Ex2: For the system of Example (1), find the discrete state representation if this system 

is driven by a zero-order hold and followed by an output sampler.  
 First find the state transition matrix  )t(  using the following relation: 

             )t( L 1 { s I  1A   } 

                                L 1  
1

s0
1s 








 
 

                     L 1  












s10
s1s1 2

  

or  

             )t(  







10
t1

 

so the matrix F  can be give as,  

           F   )T(  







10
T1

 

Now let us calculate the G  matrix  

          G  { 
T

0

  d)( B}  

                {
T

0







 
10

1
d 








1
0 }   












0
22

0

T
 








1
0

 

and evaluating at the limits yields 

          G  








T0
2TT 2









1
0

 








T
2T2

 

Then the discrete state-space representation for this system is now 
         

          










)1k(x
)1k(x

2

1








10
T1









)k(x
)k(x

2

1









T
2T2

)k(u  

 
with an output relation 
 

            









)k(x
)k(x

01)k(y
2

1  
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Ex3: For the following continuous-time state space system, 

          )t(u
5.0

0
)t(x
)t(x

75.05.0
22

)t(x
)t(x

2

1

2

1








































 

 
Find the discrete-time state space representation. 
The matrix s I A  is  

        s I A 











75.0s5.0

22s
 

and the inverse matrix is  

        s I  1A 














2s5.0
275.0s

5.0s75.2s
1

2  

making the indicated partial fraction expansions after noting that the denominator roots 
are at 1975.0s   and 554.2s   gives 

        s I  1A 





































554.2s
235.0

1957.0s
765.0

554.2s
2125.0

1957.0s
2125.0

554.2s
85.0

1957.0s
85.0

554.2s
765.0

1957.0s
235.0

 

Inversion of Laplace transforms yields the state transition matrix  )t( : 

        )t( 
























t554.2t1957.0t554.2t1957.0

t554.2t1957.0t554.2t1957.0

e235.0e765.0e2125.0e2125.0

e85.0e85.0e765.0e235.0
 

If this matrix is evaluated at sec25.0Tt  , one can obtain 

          )T(  F  







853.00901.0
361.0627.0

  

Now the matrix G  can be obtained as follows: 

         G  {
T

0

  d)( B } 5.0 
T

0 























554.21957.0

554.21957.0

e235.0e765.0

)e85.0e85.0
d  

and performing the integration and evaluating at the limits yields 
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         G 
























)1e(046.0)1e(95.1

)1e(166.0)1e(17.2

T554.2T1957.0

T554.2T1957.0

 

and evaluating at sec25.0T   yields  

          G  







1150.0
0251.0

  

The discrete-time state equations for this system are then 

          










)1k(x
)1k(x

2

1








853.00901.0
361.0627.0









)k(x
)k(x

2

1








1150.0
0251.0

)k(u  

 
The Matrix Exponential Series Approach: 
 We have seen that the state transition matrix could be evaluated by Laplace 
transforms as in expression (16). One may verify by differentiation that the solution to  
            x A x                                                                                                           (35) 
can be written as  

            x )t(  tAe x )0(                                                                                            (36) 

     


 differentiation Eq.(36) gives  x  A tAe x )0( xA  which proves Eq.(35)



   

where the exponential matrix is defined by 

           tAe  I A t 2
!2

1 A 2t 3
!3

1 A 3t                                                           (37) 

It is clear from comparison of relations (15) and (36) that tAe  is also the state transition 
matrix  )t( , or  

            )t( tAe                                                                                                                (38) 
 
Since the F  matrix in the discrete system representation is  )T( , then from Eq.(37) 
one can get 
 

              F 





0

!
i

ii

i
TA                                                                                                      (39) 
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and the substitution of series expression of Eq.(37) into the integral relation (31) for the  

G  matrix after integration gives, term by term,  

                  G  {
T

0

  d)( B} {
T

0

Ae d B } 

                        
T

0

{ I A  2
!2

1 A 2 3
!3

1 A 3  } d B  

            { I   A
!2

2 2A
!3

3
 }

0
T

  B  

            { I T  A
!2

T2
2A

!3
T3

 }  B  

                        





0i

B
i

TA ii

)!1(

1




                                                                                    (40) 

If we are given a continuous-time plant in the form of A  and B  matrices and we are 
able to select a sampling interval T , then we may computerize the evaluation of 
truncated versions of relations (39) and (40) to give the discrete-time representation of 
the system. The matrix C  is the same as that in the continuous-time representation. 
 
Ex4: Given the inertial system  of Example (1) with A  and G  

        









00
10

A    









1
0

B  

Find the F  and G  matrices by the method o matrix exponential series. First calculate 

the powers of the A  matrix  

        2A 

















00
10

00
10











00
00

 

Similarly all higher-order powers of A  are zero. The F  matrix is given exactly by two 
terms of the series: 

       IF   A T 









10
T1

 

Similarly G  is given by  
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      G  T B 
2
1 2T BA














T
2T2

 

 This was a very fortunate case, in that higher powers of the A  matrix were 
zero. This is a seldom case in a real problem, and one will need to truncate the series 
and assume that enough terms are retained to give reasonable approximation of the 

closed form of the series.    
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Solved Examples 
 

Ex1: Find the inverse z transform of  

                     
)5.0)(1(

1)(



zz

zY        

Then the partial fraction expansion is  

               
)5.0()1()5.0)(1(

1






 z

zC
z

zBA
zz

 

The constant A is needed because each of the partial expansion terms has a z in the 
numerator. If 0A , when we do the inverse transformation we will have a term )(1 nTuA . This 

is not a problem, however, since )(1 nTu  is a well-defined function. 

One can find A by setting z=0, yielding   
                   
 
 
We see that if )(zY  had a multiplicative factor 1, kzk , in the numerator, then the constant 

term would be zero. There are a number of ways to find B and C. One way is to put the partial 
fraction expansion over a common denominator to obtain. 

           
 
Equating coefficients in the numerators on both sides of the equation yields the three linear 
equations  

      0 CBA  ,  05.05.1  CBA ,   and    15.0 A  

The last equation verifies that 2A . The remaining two equations then become  
        2 CB  ,    35.0  CB  

yielding 2B  and 4C . It is worth noting at this point that if A is not included in the partial 

fraction expansion, then, placing the terms over a common denominator yields 
            
 
when we try to equate the numerator on both sides of the equation, we end up with 

            zCBzCB )5.0()(1 2   

which does not work. Without A we have no constant term to equate to 1. 
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Alternative solution: 
One can write the transfer function as  

)5.0)(1(
1)()(




zzzz
zYzY

5.01 





z
C

z
B

z
A  

We now proceed just as we would for a continuous system. Thus, 
              
 

          2
)5.0)(1(

1
)()1(

1
1 
















z
z zzz

zzYzB  

           
 
 
Then, 

         
5.0

4
1

22)(






zzzz

zY ,    and     

Applying the inverse z-transform to both side of this last equation then yields the same result as 

before, namely,  
             
 
The point 5.0z  corresponds to the point  

             
 
in the s-plane. Thus, we could write the solution as 
                 
 

where   
T
5.0

ln   

If we know T, then we can evaluate  .    

Ex2: Find the inverse z transform of  

          
)2.06.0)(2.06.0)(1(

2.0)(
jzjzz

zzY


  

The multiplicative factor z  in the numerator means there will be no constant term in the partial 
fraction expansion, which can be written as  

           
)2.06.0()2.06.0()1(

)(
jz

C
jz

B
z

A
z
zY








  

The evaluation now proceeds just as it would for a Laplace transform: 
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The evaluation of B  proceeds in the same way: 
 
              
                                                                       =  
             03.212.1 jeC            

Then the inverse z-transform 
              
 
where the damped frequency 
 

             25.1
6.0
2.0tan 1 





   

 
we can obtain )(nTy  as follows 
 
               
 
with  

               
T

22 6.02.0ln 
 , 

TT
25.1


  

 
 
Ex3: Solve the following difference equation: 
             )()(6)(5)2( 1 nTunTyTnTyTnTy   

with y(0)=1 and y(T)=0 and )(1 nTu is the discrete impulse function.  

Applying the z-transform to both sides:  

             )()(6)0()(5)]()0()([ 1
22 zuzYzyzzYTyzyzzYz    

which can be arranged as 

           
65

)(
65

)]0(5)([)0()( 2
1

2

2








zz
zu

zz
zyTyyzzY   

substituting the initial conditions and since 1)(1 zu  then yields 

           
65
15

65
1

65
5

)( 2

2

22

2













zz
zz

zzzz
zzzY  

we can now find )(zY  by partial fraction expansion. That is, 
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and  
 
 
 
 
 
 
Finally, 
              

 
and  
            
 
We have to solve the expression  

          ae T   
for   using a=2 and a=3. That is, 

             and    
yielding  
            
 
 
Ex4: Find the partial fraction expansion and invert the resulting transform of the following z 
transform function: 

              
)1)(8.0)(6.0(

)(
2





zzz

zzzF  

The expansion will be of the form 

               20
)4.0)(2.0(

6.1
6.0)1)(8.0(

1
1 








zzz

zA  

             45
)2.0)(2.0(

8.1
8.0)1)(6.0(

1
2 








zzz

zA  

and       25
)2.0)(4.0(

2
1)8.0)(6.0(

1
3 





zzz

zA   

so upon inversion of the transform, 
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Ex5: Find the inverse of the following function using the method of partial fraction expansion: 

             
)8.0)(64.013.1(

)( 2

2





zzz

zzzF                                                                              (a) 

The chosen form will be  

           
)8.0()64.013.1(

)( 2

2









z
zC

zz
zBzAzF                                                                           (b) 

First find the coefficient C 

          78.4
376.0
8.1

64.0)8.0(13.164.0
18.0





C  

 
Now find a common denominator in (b) and equate the numerator of (a) and (b) to yield the 
following: 
            
Equating the coefficients of like powers of z yields 
 

78.40:3  Az  
 
 
Solving these equations for A and B yields: 
 

78.4A  
576.2B  

 
Then the resulting z-domain function is  

        
8.0

78.4
)(

8.0
78.4

64.013.1
578.278.4

)( 12

2











z

zzF
z

z
zz

zzzF                                                      (c)                                     

since  
          
 
 
          
Comparing this with the first term of (c), one can obtain  
 
           64.02  Te  ,       8.0 Te   
Then  
           13.1)cos(2  Te T   
so  
           706.0)(cos T  

which implies that 786.0T ; then 

           707.0)786.0(sin)(sin T  
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Then )(1 zF can be written as  

           
64.013.1

5656.0
565.0

)7.2576.2(
64.013.1

)565.0(78.4)( 22

2

1 








zz
z

zz
zzzF  

Inverting the resulting transforms, no forgetting to add on the last term, yields a time domain 
sequence of  
             
 
 
Ex6: Consider the homogeneous first-order difference equation 
             0)(8.0)(  nTxTnTx  

with initial value 1)0( x . Now take the z transform to yield 

              0)(8.0)0()(  zXxzzXz  

Solving for )(zX  yields 

              18.01
1

8.0
)( 





zz

zzX  

which implies that the solution is  

                ,2,1,08.0)(  nnx n  

 
Ex7: Consider the same example as before with initial condition 1)0( x  and an 

nonhomogeneuous term on the right side, or 
             1)(8.0)(  nTxTnTx  

Taking the z transform yields  

  
1

)(8.0)0()(



z

zzXxzzXz  

Solving for )(zX  yields 

     




















8.018.0
2

)8.0)(1(8.0
2)(

z
B

z
Az

z
z

zz
z

z
zzX  

Solving for A and B yields  
       
 
       
      
So the z-domain solution  
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

r

      
8.0

5
1

5
8.0

2)(









z

z
z

z
z

zzX  

and the total solution is  

       ,2,1,05)8.0(3)(  nnx n  

We can check that the initial value is needed satisfied, and by substitution into the difference 
equation we see that it is identically satisfied 
 
Ex8: Given a complex pole location in the z-plane as shown in figure below, find the damping 

ratio  , the natural frequency n , and the time constant  .  

 
 
 
 
 

The z-plane poles occur at sTez  .The complex poles in s-plane appear in conjugates and 

have the following form 

                2
2,1 1   nn js  

Then, substitute the above expression for s into sTez  , we have 
                
                 Tj nnez )1( 2 

21)(   nn jT eez    eree TjT nn
21)(  

Hence  
                     Tner )(   
or 
                    )(ln rTn                                                                                                     (1) 
 
Also,  
                       Tn

21                                                                                                  (2) 
 
Taking the ratio of Eq.(1) and (2), we obtain 
 
                        



 )ln(

1 2

r



 

 
Soving this equation for    

                          
22 )(ln

)ln(









r

r  

We find n by substituting the last equation into Eq.(1) 
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)4(
40
sss

e Ts1ER
sT 02.0

C

 
                   22 )(ln1

  r
Tn  

The time constant,  , of the pole is then given by  

                    
)ln(

1
r
T

n





   

 
Ex9: For the closed-loop sampled-data system, find 
 
  Closed loop pulse transfer function 
  The damping ratio, the natural frequency and the time constant. 
  The damping ratio, the natural frequency and the time constant for the closed-loop 

analogue system (with sampler and data hold removed). 
  Comment the change in the above parameters with different systems.  
 
 
 
 
 
 
 
 

            














 




















404
411

)404(
)1(40)( 22 ss

s
s

Z
z

z
sss
eZzG

Ts
 

                     




















 

 2222 6)2(
6

3
1

6)2(
211

ss
s

s
Z

z
z  

 
With )(zG in this form, we can obtain the z-transform from the tables. 
 
  
 
 
with sT 02.0 , we evaluate the terms in )(zG , 
 
                     907760.1)12.0cos(2 04.0 e   

                     038339.0)12.0(sin
3
1 04.0 e  

                       923116.008.0 e  
Therefore, 

         
























 


92312.090776.1

91554.0
1

1)( 2

2

zz
zz

z
z

z
zzG  

                  
92312.090776.1

00758.000778.0
2 




zz
z  

 
The closed loop transfer function is then 
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9307.090.1

00758.000778.0
)(
)(

2 



zz

z
zR
zC  

 
Thus, the pole locations are 
                175.0

2,1 965.0168.095.0 jejz   
Hence, 
                 
                
                
 
 
The closed-loop transfer function of the analogue can be expressed as  
                  22 )72.8()2(

40
)(
)(




ssR
sC  

 
Comparing the above to the standard second order transfer function 
               

    22

2

2)(
)(

nn

n
sssR

sC





  

Then,  
                 sec/72.8 radn   
Since  
                 42 n  
Then                
                229.02


n

  

and the system time constant  

                s
n

5.01



  

  
Thus the frequency sradn /72.8  is excited by the system input. This frequency 

has a period of n /2 , or 0.72 s. Hence this frequency is sampled 36 times per cycle (T=0.02 

s), which results in a very good description of the signal. Also, the time constant of the poles of 
the closed-loop transfer function, given by n/1  is 0.5 s. Thus, we are sampling 25 times per 

time constant. A rule of thumb often given for selecting sample rates is that a rate of at least 
five times per time constant is a good choice. Hence for this system, we would expect very little 
degradation in system response because of the sampling.      
 
Ex10: Is the equation  
          )2(2.0)(9.0)( TnTuTnTunTu   

Stable? 
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Taking the z transform of both side of the above equation   

             )(2.0)(9.0)( 21 zUzzUzzU    

Multiplying both side by 2z , we have 

            
2.09.0

1)( 2 


zz
zU   

The characteristic equation is  

             02.09.02  zz  

and the characteristic roots are 5.0z  and 5.0z . Since both these roots are inside the unit 

circle, the equation is stable.  
 
Ex11: Try to represent the PID (proportional, integral and derivative controller) in a discrete 
form: 
Continuous time PID controller can be written as             

            )()()()(1)()()( 221

0

tututudtte
K

teKteKtu
t

i
dp    

where pK , dK  and IK are the proportional, derivative and integral gains respectively.  

letting nTt   
            )()()()( 321 nTunTunTunTu   

where  
            )()(1 nTeKnTu p ,  

             
T

TnTenTeKnTeKnTu pp
)()()()(2


   

and                      
                  
          
 
 
Using backward approximation, the last integral of )(3 nTu can be written as 

              







 TnTe

K
TnTunTu

i
)(1)()( 33  

 
Taking the z transform of )(1 nTu , )(2 nTu  and )(3 nTu , we will get 
 
                )()(1 zeKzu p  

                
T

zezzeKzu d
)()()(

1

2


      

and   
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                 Tze
K

zuzzu
i

)(1)()( 3
1

3     )(
1

1)(3 ze
z
zT

K
zu

i









  

 
Then,     

                )(
1

1)()()()( ze
z
zT

KTz
zezezKzeKzu

i
dp 












  

                )()()()12()()1()()1( 22 zez
K
Tzezz

T
KzezzKzuzz

i

d
p   

Dividing both sides by 2z  
               
 
 
The corresponding time sequence 
 

    )()2()(2)()()()()( nTe
K
TTnTeTnTenTe

T
KTnTenTeKTnTunTu

i

d
p   

or  
    
 
 
Ex12: Find the transfer function )()( zUzY  associated with the simultaneous difference 

equations 
                      
               )()()(2)( nTunTxnTyTnTy   

               )(3)()( nTunTyTnTx   

Taking the z transform of these equations while ignoring )0(x  and )0(y , we get the linear z-

domain equations 
              )()()()2( zUzXzYz   

                 )(3)()( zUzXzzY   

Now using Cramer's rule to solve for the output variable we get 

z
z

zzU
zU

zY

1
12

)(3
1)(

)(




  

or carrying out the multiplication and combining like terms 
 

                 
12

3
)(
)(

2 



zz

z
zU
zY  
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



















Hz4

Hz6
T

T

T2

T3

Hz4

Hz6

T2

T3




Ex13: Suppose we try to sample a 6-Hz sinwave and the sampling rate sf  is 10 Hz, so that 

sfT 1 =0.1 s. Then the sine function has poles at )2(6 jez  . Consider the mapping of the 

poles as the frequency increases from 0 to 6 Hz. The paths followed as the frequency 
increases are shown in Fig.(1).  

Note that at a frequency of 5 Hz, the two paths meets at z=-1. The pole migrating to 6 
Hz then continues on, ending up at point that corresponds to -4 Hz. The pole migrating to -6 
Hz, does the same thing, ending up at a point on the unit circle that corresponds to 4 Hz. Thus, 
the 6 Hz sin wave will appear to be a 4 Hz sine wave.  

Note that as the poles continue to migrate toward 10 Hz ( sradT /2 ) and -10 Hz 

( sradT /2 ) the aliased frequency will continue to decrease.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex14: Find the poles of )(* sX and )(zX  of )(cos)( ttx  .  

The starred transformation )(* sX  is  

           
))((

))cos(()cos()(
0

*
TjsTTjsT

sTsT

n

nTs

eeee
TeeenTsX 

 










  

Recalling that )(* sX  is periodic in s we note that )(* sX will have poles at 

Tnjjs  2 , ,2,1n . Thus, )(* sX  has a countably infinite number of poles 

repeated at intervals of T2 .  
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













T

T

T2

T3

T2

T3






T4

T5

T4

T5

The corresponding Z transform is  
         
 

The poles of )(zX , and the related poles of )(* sX , are shown in figure below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex15: Find the poles of )(* sX and )(zX  of atetx )( .  The Laplace transform of this 

function is  

               
as

sX



1)(   

The starred transformation is  

             aTsT

sT
nTs

n

anT

ee
eeesX 











0

* )(  

Recalling that )(* sX  is periodic in s we note that )(* sX will have poles at 

Tnjas 2 , ,2,1n . Thus, )(* sX  has a countably infinite number of poles, one 

of which is the pole of )(sX  and copies of this pole, repeated at intervals of T2 . We can 

see from the figure below that the pole of the Laplace transform will lie in a strip of width 

T2 centered on the real axis of the s plane. This strip is called the primary strip. This pole is 

then repeated in the secondary strips above and below the primary strip.  
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







T

T

T2

T3

T2

T3



T4

T5

T4

T5







)(2 sG

)(sH

)(*
2 sE

T

)(2 sE
)(1 sG

)(1 sE

T

)(*
1 sE

)(sR )(sC

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  All poles of )(* sX map to the same location in the z plane, as shown in the figure. As it is 

known that every pole of )(sX  generates an infinite number of poles in )(* sX .  
  The mapping of Tnjas 2 , ,2,1n  of )(* sX into z plane, using Tsez  , 

leads to single point at jTa eez   , where 0 .  
 
 
Ex16: Find the pulse transfer function of the following block diagram: 
 
 
 
 
 
 
 
 
 
The system equations are 
            
             )()()()( *

221 sEsGsRsE                                                                                         
             )()()()()()( *

22
*
112 sEsHsGsEsGsE                                                                     

            )()()( *
22 sEsGsC                                                                                                        

Starring these equations gives  
 
             )()()()( *

2
*
2

**
1 sEsGsRsE                                                                                       (1) 
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)(2 sG
)(2 sE

)(1 sG
)(1 sE T )(*

1 sE
)(sR )(sC

             )()()()()( *
2

*
2

*
1

*
1

*
2 sEsHGsEsGsE                                                                        (2) 

            )()()( *
2

*
2

* sEsGsC                                                                                                      (3) 
 
Substitute Eq(1) into Eq.(2), and then solve for )(*

2 sE   
 
            )()()()()()()( *

2
*

2
*
2

*
2

**
1

*
2 sEsHGsEsGsRsGsE      

or  
           
 
From Eq.(3), the sampled output )(* sC  becomes 
 
             
 
Therefore, the pulse transfer function in z transform 
 

         
)()()(1

)()(
)(
)(

221

21

zHGzGzG
zGzG

zR
zC


  

 
Ex17: Find the pulse transfer function of the following block diagram: 
 
 
 
 
 
 
 
 
 
 
 
The system equations are 
 
          )()()(1 sCsRsE                                                                                                         (1) 
         )()()()( *

112 sCsEsGsE                                                                                              (2) 
         )()()()( 122 sEsEsGsC                                                                                              (3) 
 
Substitute Eq. (1) and (2) into (3), one can obtain 
 
          )()()()()()()( *

112 sCsRsCsEsGsGsC                           
        )()()()()()()()( 2

*
112 sCsRsCsGsEsGsGsC                                                      (4) 

and solve for )(sC  
 

        *
1

2

21

2 )(2
)()(

)(2
)()( E

sG
sGsG

sG
sRsC





                                                                                 (5) 
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Substitute Eq.(5) into Eq.(1) to obtain 
 

      












 )(
)(2
)()(

)(2
)()()()()( *

1
2

21

2
1 sE

sG
sGsG

sG
sRsRsCsRsE  

 

        )(
)(2
)()(

)(2
)()(1)( *

1
2

21

2

2
1 sE

sG
sGsG

sG
sRsGsE







                                                                 (6) 

 
Starring of Eq.(5) and Eq.(6), we obtain 
                 

              
*

*
1

2

21
*

2

*

)(2
)()(

)(2
)()( 




















 E
sG
sGsG

sG
sRsC  

 

             *
1*

2

*
21

*
2

*
*

)(2
)(

)(2
)()( E

sG
sGG

sG
sRsC





  

 

               *
*
1

2

21
*

2

2*
1 )(

)(2
)()(

)(2
)()(1)( 





















 sE

sG
sGsG

sG
sRsGsE       

 

               )(
)(2
)(

)(2
)()()( *

1*
2

*
21

*
2

*
2

*
*
1 sE

sG
sGG

sG
sRGsRsE







  

 
Solving for )(*

1 sE  
 

                
 )()(2

)()()(
*
21

*
2

*
2

*
*
1

sGGsG
sRGsRsE



  

 
Substitute the last equation into )(* sC  equation 
 

       
 

  


















)()(2

)()(
)(2
)(

)(2
)()(

*
21

*
2

*
2

*

*
2

*
21

*
2

*
*

sGGsG

sRGsR
sG

sGG
sG

sRsC  

 

       
 
   

















)(2)()(2

)()()(2)(2)(
)(

*
2

*
21

*
2

*
2

*
21

*
21

*
2

*
*

sGsGGsG

sRGsGGsGGsGsR
sC  

 
The corresponding z transform is  
 

        
 
   














)(2)()(2

)()()(2)(2)(
)(

2212

221212

zGzGGzG

zRGzGGzGGzGzR
zC  
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)(2 sG)(sD
)(sE

T

)(* sE
)(sR )(sC)(3 sG)(1 sG

Note that no pulse transfer function is possible for this system, since the input is fed 
into a continuous element in the system without first being sampled. 
  
Ex18: Find the pulse transfer function of the following block diagram: 
 
 
 
 
 
 
 
 
 
 
The system equations are 
 
       )()()()()()()( *

323 sEsGsGsDsRsGsC                                                                      (1) 
       )()()()( 1 sCsGsRsE                                                                                                  
       )()()()()()()()()( *

3231 sEsGsGsDsGsRsGsRsE                                                 (2) 
 
Starring of both Eq.(1) and (2)  
 
      )()()()( **

32
*
3

* sEsGGDsRGsC                                                                        (3)   
                  
                                         

                 )()()()()( **
32

*
3

*
1

* sEsGGDsGRsGRsE                                                        (4) 

Solving for )(* sE  

                  
)(1

)()()( *
32

*
3

*
1*

sGGD
sGRsGRsE




                                                                                     (5)                                          

Substitute the last equation into Eq.(3), we obtain 

                












)(1

)()()()()( *
32

*
3

*
1*

32
*
3

*

sGGD
sRGsRGsGGDsRGsC  

                
 
 

               












)(1

)()()()( *
32

*
1

*
32

*
3*

sGGD
sRGsGGDsRGsC  

 
in z transform  
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)(te
)(tr

T
)(tc

)(* te )(tU)(* tU

)2(
1
sss

e Ts1)(sR
sT 5.0

)(sC

               











)(1

)()()()(
32

1323

zGGD
zRGzGGDzRGzC  

 
Note that no transfer function may be derived for this system.  
 
Ex19: A digital control may be represented by the block diagram of figure below: 

  The open-loop pulse transfer function.  
  The closed-loop pulse transfer function. 
  The difference equation for the discrete time response. 
  Sketch the unit step response assuming zero initial conditions. 
  The steady-state value of the system output. 
 
 
 
 
 
 
 
 
 
 
 
The above digital control system may be redrawn as follows:  
 
 
 
 
 
 
 
 
   

            















 




)2(
11)(

sss
eKsG

Ts
 

given K=1 
 

               









 

)2(
11)( 2 ss

esG Ts  

Partial fraction expansion 
 
              
 
 
or  
             sBsAss  )2()2(1  
Equating coefficients gives  
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                25.0A  
                5.0B  
                25.0C  
 
Then, G(s) becomes 
 

                












 

)2(
25.05.025.01)( 2 sss

esG Ts  

or  

                 









 

)2(
121125.0)( 2 sss

esG Ts  

 
Taking z-transforms  

               















 



)()1(
2

1
)1(25.0)( 22

1
Tez

z
z

zT
z

zzzG  

Given T=0.5 seconds 
 

                























 


)368.0(

1
)1(
5.02

1
1125.0)( 2 zzz

z
z

zzG  

Hence 
                      
                   
 
which simplifies to give the open-loop transfer function  
 

                  












368.0368.1
066.0092.0)( 2 zz

zG  

 
  The close-loop pulse transfer function is  
 
                  
 
which simplifies to give the closed-loop pulse transfer function  
 

                












434.0276.1
066.0092.0

)(
)(

2 zz
z

zR
zC  

or  

             21

21

434.0276.11
066.0092.0

)(
)(









zz

zz
zR
zC    

  The last transfer function can be expressed as a difference equation 
 
              
 
 
  Using the final value theorem, one can obtain 
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)(nTc

nT

 

           














 




)(
)(
)(1lim)(

1
zR

zR
zC

z
zc

z
 

          
































 


 1434.0276.1

066.0092.01lim)( 2
1 z

z
zz

z
z

zc
z

 

 

           1
434.0276.11

066.0092.0)( 










c  

Hence there is no steady-state error.  
 
  The response in the following figure is constructed solely from the knowledge of the two 

previous sampled outputs and the two previously sampled inputs.  
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