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Decimal numbers   

Introduction 

A decimal number is a way of representing numbers using a base-10 

system. The decimal system is the standard system for denoting integer and 

non-integer numbers. It is also referred to as the base-10 numeral system 

because it is based on 10 different digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. 

 

Explanation 

Each digit in a decimal number has a place value. The place value of each 

digit depends on its position relative to the decimal point. Positions to the 

left of the decimal point represent whole numbers, and each place value is 

10 times the place value to its right. Positions to the right of the decimal 

point represent fractional parts of a whole, and each place value is 1/10th 

the place value to its left. 

 

For example, in the number 123.45: 

- The digit 1 is in the hundreds place and represents 100. 

- The digit 2 is in the tens place and represents 20. 

- The digit 3 is in the ones place and represents 3. 

- The digit 4 is in the tenths place and represents 0.4. 

- The digit 5 is in the hundredths place and represents 0.05. 

 

So, 123.45 can be expressed as: 

123.45 = 100 + 20 + 3 + 0.4 + 0.0 

 



Examples 

1. Whole Numbers:  

   456 : Here, 4 is in the hundreds place, 5 is in the tens place, and 6 is in 

the ones place.  

456 = 400 + 50 + 6 

    

2. Fractional Numbers:  

   78.9 : Here, 7 is in the tens place, 8 is in the ones place, and 9 is in the 

tenths place.  

78.9 = 70 + 8 + 0.9 

 

3. Mixed Numbers:  

   - 3.141: Here, 3 is in the ones place, 1 is in the tenths place, 4 is in the 

hundredths place, and 1 is in the thousandths place.  

3.141 = 3 + 0.1 + 0.04 + 0.001 

 

Binary Numbers 

Introduction 

Binary numbers are the foundation of digital technology and computing. 

The binary number system, also known as base-2, uses only two digits: 0 

and 1. Each digit in a binary number is called a bit. The simplicity of the 

binary system makes it ideal for use in computers and digital systems, 

which rely on two states (on and off) to process data. 

 

Explanation 

Each position in a binary number represents a power of 2, starting from 20 

on the right. The value of the binary number is the sum of these powers of 

2 for the positions where there is a 1. 

. . . . 25 24 23 22 21 20. 2-1 2-2 2-3 2-4 2-5. . . . 



For example, in the binary number 1011: 

- The rightmost bit (1) is in the 20 place and represents 1. 

- The next bit to the left (1) is in the 21 place and represents 2. 

- The next bit (0) is in the 22 place and represents 0 (because it's 0). 

- The leftmost bit (1) is in the 23 place and represents 8. 

 

So, 1011 in binary can be expressed as: 

10112= 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20  

10112 = 8 + 0 + 2 + 1 = 1110 

 

Examples 

1. Binary to Decimal Conversion: 

   - Binary 1101: 

     11012= 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 

     11012= 8 + 4 + 0 + 1 = 1310 

2. Decimal to Binary Conversion: 

   - Decimal 9: 

To convert 9 to binary, find the highest power of 2 less than or equal to 9.  

The highest power is 23 = 8. 

     9 - 8 = 1 

The binary equivalent of 9 is: 10012 

    

H.W 

1. Convert the binary number 1010 to decimal. 

2. Convert the decimal number 14 to binary. 

 



Decimal to Binary Conversion 

 

Introduction 

Converting decimal numbers to binary is a fundamental skill in digital 

technology and computer science. The binary system uses only two digits, 

0 and 1, and it is based on powers of 2. This system is used internally by 

almost all modern computers and digital systems because it aligns well 

with the on/off state of electronic circuits. 

 

Explanation 

To convert a decimal number to binary, you repeatedly divide the number 

by 2 and record the remainder. The binary number is formed by reading 

the remainders from bottom to top (from the last division to the first). 

 

Steps for Conversion: 

1. Divide the decimal number by 2. 

2. Record the remainder (0 or 1). 

3. Update the decimal number to the quotient obtained from the division. 

4. Repeat steps 1-3 until the quotient is 0. 

5. The binary number is the sequence of remainders read in reverse (from 

the last remainder to the first). 

 

Example 

Let's convert the decimal number 23 to binary. 

1. Divide 23 by 2, quotient = 11, remainder = 1. 

2. Divide 11 by 2, quotient = 5, remainder = 1. 

3. Divide 5 by 2, quotient = 2, remainder = 1. 

4. Divide 2 by 2, quotient = 1, remainder = 0. 



5. Divide 1 by 2, quotient = 0, remainder = 1. 

 

Now, read the remainders from bottom to top: 10111. 

So, 23 in decimal is 10111 in binary: (2310 = 101112) 

 

Example 

Convert the decimal number 45 to binary. 

1. Divide 45 by 2, quotient = 22, remainder = 1. 

2. Divide 22 by 2, quotient = 11, remainder = 0. 

3. Divide 11 by 2, quotient = 5, remainder = 1. 

4. Divide 5 by 2, quotient = 2, remainder = 1. 

5. Divide 2 by 2, quotient = 1, remainder = 0. 

6. Divide 1 by 2, quotient = 0, remainder = 1. 

Reading the remainders from bottom to top: 101101. 

So, 45 in decimal is 101101 in binary: (4510 = 1011012) 

 

Example: convert 1210 to a binary number using the division method 

 



Example: convert (a) 1910 and (b) 4510 to a binary number using the 

division method 

 

Example: convert 0.312510 to a binary number 

 

Example: Find the result of (a) 110 / 11 and (b) 110 / 10  

 



Summary 

Converting decimal numbers to binary involves dividing the number by 2 

repeatedly and recording the remainders. The binary representation is 

obtained by reading the remainders in reverse order. This method helps in 

understanding how computers process and store data, making it a crucial 

skill in digital technology and computer science. 

 

H.W 

1. Convert the decimal number 10 to binary. 

2. Convert the decimal number 37 to binary. 

3. Convert the decimal number 100 to binary. 

 

Binary to Decimal Conversion 

 

Introduction 

Converting binary numbers to decimal is essential for understanding how 

computers interpret binary data. The binary number system (base-2) uses 

only two digits: 0 and 1. Each position in a binary number represents a 

power of 2, starting from 20 on the right.  

 

Explanation 

To convert a binary number to a decimal number, you need to sum the 

products of each binary digit (bit) and its corresponding power of 2. 

 

Steps for Conversion: 

1. Write down the binary number. 

2. Starting from the right, assign each digit a power of 2, beginning with 

20. 

3. Multiply each binary digit by its corresponding power of 2. 



4. Sum all the products to get the decimal number. 

Example 

Let's convert the binary number 1101 to decimal. 

1. Write down the binary number: 1101. 

2. Assign powers of 2 to each digit, starting from the right: 

   1 * 23, 1 * 22, 0 * 21, 1 * 20 

3. Calculate each term: 

   1 * 2^3 = 8 

   1 * 2^2 = 4 

   0 * 2^1 = 0 

   1 * 2^0 = 1 

4. Sum the results: 

   8 + 4 + 0 + 1 = 13 

So, 1101 in binary is 13 in decimal: (11012 = 1310) 

 

Example 

Convert the binary number 10110 to decimal. 

1. Write down the binary number: 10110. 

2. Assign powers of 2 to each digit: 

   1 * 24, 0 * 23, 1 * 22, 1 * 21, 0 * 20 

3. Calculate each term: 

   1 * 24 = 16 

   0 * 23 = 0 

   1 * 22 = 4 

   1 * 21 = 2 

   0 * 20 = 0 



4. Sum the results: 

   16 + 0 + 4 + 2 + 0 = 22 

So, 10110 in binary is 22 in decimal: (101102 = 2210) 

 

Summary 

Converting binary numbers to decimal involves multiplying each binary 

digit by its corresponding power of 2 and then summing the results. This 

process helps in understanding how binary data is interpreted and 

manipulated in digital systems. 

 

H.W 

1. Convert the binary number 1001 to decimal. 

2. Convert the binary number 11101 to decimal. 

3. Convert the binary number 100110 to decimal. 

 

Binary Arithmetic 

 

Introduction 

Binary arithmetic is essential in digital electronics and computer systems. 

It involves performing arithmetic operations like addition, subtraction, 

multiplication, and division using binary numbers (base-2). Since binary 

arithmetic is fundamental to how computers operate, understanding these 

operations is crucial for anyone studying digital technology or computer 

science. 

 

Binary Addition 

Binary addition is similar to decimal addition but follows simpler rules 

because there are only two digits involved: 0 and 1. 

 



Rules for Binary Addition: 

1. 0 + 0 = 0 

2. 0 + 1 = 1 

3. 1 + 0 = 1 

4. 1 + 1 = 10 (which means 0 with a carry of 1) 

 

Example: 

Add 1011 and 1101. 

 

    1011 

 + 1101 

    ------ 

  11000 

 

Steps: 

1. Start from the rightmost bit: 1 + 1 = 10 (write 0, carry 1). 

2. Next bits: 1 + 0 + 1 (carry) = 10 (write 0, carry 1). 

3. Next bits: 0 + 1 + 1 (carry) = 10 (write 0, carry 1). 

4. Leftmost bits: 1 + 1 (carry) = 10 (write 0, carry 1). 

5. Finally, write down the remaining carry: 1. 

Result: 11000. 

 

 

 

 

 



Binary Subtraction 

Binary subtraction uses borrowing, similar to decimal subtraction. 

 

Rules for Binary Subtraction: 

1. 0 - 0 = 0 

2. 1 - 0 = 1 

3. 1 - 1 = 0 

4. 0 - 1 = 1 (with a borrow from the next higher bit) 

 

Example: 

Subtract 1001 from 1101. 

    1101 

  - 1001 

    ------ 

    0100 

 

Steps: 

1. Start from the rightmost bit: 1 - 1 = 0. 

2. Next bits: 0 - 0 = 0. 

3. Next bits: 1 - 0 = 1. 

4. Leftmost bits: 1 - 1 = 0. 

Result: 0100. 

 

Binary Multiplication 

Binary multiplication is similar to decimal multiplication but simpler 

because it only involves multiplying by 0 or 1. 

 



Rules for Binary Multiplication: 

1. 0 * 0 = 0 

2. 0 * 1 = 0 

3. 1 * 0 = 0 

4. 1 * 1 = 1 

 

Example: 

Multiply 101 by 11. 

    101 

  x  11 

   ------ 

    101               (101 * 1) 

 + 1010              (101 * 1 shifted one position to the left) 

  ------ 

   1111 

 

Steps: 

1. Multiply 101 by 1: 101. 

2. Multiply 101 by 1 (shifted one position to the left): 1010. 

3. Add the results: 101 + 1010 = 1111. 

Result: 1111. 

 

 

 

 

 



Binary Division 

Binary division is similar to decimal division but uses binary subtraction. 

 

Example: 

Divide 1101 by 11. 

 

Steps: 

1. Divide the leftmost bits of 1101 by 11: 11 goes into 11 once (1), 

remainder 0. 

2. Bring down the next bit: 0. 

3. Divide: 11 goes into 00 zero times (0), remainder 0. 

4. Bring down the next bit: 1. 

5. Divide: 11 goes into 01 zero times (0), remainder 1. 

6. Bring down the next bit: 0. 

7. Divide: 11 goes into 10 zero times (0), remainder 10. 

8. Subtract 10 - 11: borrow from 0. 

9. Repeat until no more bits remain. 

 

Result: 1101 ÷ 11 = 100 with remainder 1. 

 

Summary 

Binary arithmetic involves addition, subtraction, multiplication, and 

division using binary numbers. Understanding these operations is essential 

for working with digital systems and computers. 

 

 

 



1's and 2's Complements of Binary Numbers 

 

Introduction 

1's and 2's complements are methods used to represent negative numbers 

in binary systems. They are essential for performing binary arithmetic, 

particularly subtraction and representation of signed numbers. 

 

1's Complement 

The 1's complement of a binary number is found by inverting all the bits in 

the number, changing 0s to 1s and 1s to 0s. 

Steps to Find 1's Complement: 

- Invert each bit of the binary number. 

 

Example: 

Find the 1's complement of 101010. 

Original:             101010 

1's Complement: 010101 

 

2's Complement 

The 2's complement of a binary number is found by adding 1 to the 1's 

complement of the number. This method is widely used in computers to 

represent signed numbers because it simplifies the design of arithmetic 

circuits. 

 

Steps to Find 2's Complement: 

1. Find the 1's complement of the binary number. 

2. Add 1 to the least significant bit (LSB) of the 1's complement. 

 



Example: 

Find the 2's complement of 101010. 

1. First, find the 1's complement: 

Original:             101010 

1's Complement: 010101 

 

2. Add 1 to the 1's complement: 

    010101 

  +          1 

     -------- 

    010110 

So, the 2's complement of 101010 is 010110. 

 

Summary 

1's complement is obtained by inverting all bits of a binary number, while 

2's complement is found by adding 1 to the 1's complement. These methods 

are crucial for representing negative numbers and performing binary 

arithmetic operations. 

 

H.W 

1. Find the 1's complement of 110011. 

2. Find the 2's complement of 110011. 

3. Find the 1's complement of 1001. 

4. Find the 2's complement of 1001. 

 

 

 



Hexadecimal Numbers 

 

Introduction 

The hexadecimal number system, also known as base-16, uses sixteen 

distinct symbols: 0-9 to represent values zero to nine, and A-F to represent 

values ten to fifteen. Hexadecimal is widely used in computing and digital 

electronics because it provides a more human-friendly way to represent 

binary-coded values. 

 

Explanation 

Each digit in a hexadecimal number represents a power of 16, starting from 

160 on the right. For example, in the hexadecimal number 2F3: 

- 3 is in the 160 place and represents 3. 

- F is in the 161 place and represents 15 × 16 = 240. 

- 2 is in the 162 place and represents 2 × 256 = 512. 

 . . . .163 162161160. 16-1 16-216-316-4 . . . . 

So, 2F3 in hexadecimal can be expressed as: 

2F316= 2 * 162 + F * 161 + 3 * 160 

2F316= 2 * 256 + 15 * 16 + 3 

2F316= 512 + 240 + 3 = 75510 

 

Binary to Hexadecimal Conversion 

 

Introduction 

Converting binary numbers to hexadecimal is a straightforward process 

because both are positional number systems, and one hexadecimal digit 

represents exactly four binary digits (bits). This makes it easy to group 

binary digits into sets of four and convert them directly to hexadecimal. 

 



Explanation 

To convert a binary number to a hexadecimal number: 

1. Group the binary digits into sets of four, starting from the right. Add 

leading zeros if necessary to complete the last group. 

2. Convert each group of four binary digits to its corresponding 

hexadecimal digit. 

 

Example 

Convert the binary number 101110101011 to hexadecimal. 

 

1. Group the binary digits into sets of four, starting from the right: 

   1011 , 1010 , 1011 

2. Convert each group to its hexadecimal equivalent: 

   (1011) (binary) = B (hexadecimal) 

   (1010) (binary) = A (hexadecimal) 

   (1011) (binary) = B (hexadecimal) 

 

So, 101110101011 in binary is BAB in hexadecimal:  

(1011101010112= BAB16) 

 

Example 

Convert the binary number 110010111011 to hexadecimal. 

 

1. Group the binary digits into sets of four, starting from the right: 

   1100 , 1011 , 1011 

2. Convert each group to its hexadecimal equivalent: 

   (1100) (binary) = C (hexadecimal) 



   (1011) (binary) = B (hexadecimal) 

   (1011) (binary) = B (hexadecimal) 

 

So, 110010111011 in binary is CBB in hexadecimal: 

1100101110112= CBB16 

 

Summary 

Converting binary numbers to hexadecimal involves grouping the binary 

digits into sets of four and then converting each group to its corresponding 

hexadecimal digit. This method is efficient and aligns well with the binary 

representation used in digital systems. 

 

H.W 

1. Convert the binary number 110110101 to hexadecimal. 

2. Convert the binary number 101010101010 to hexadecimal. 

3. Convert the binary number 11110000 to hexadecimal. 

4. Convert the binary number 100111000011 to hexadecimal. 

 

Hexadecimal to Binary Conversion 

 

Introduction 

Converting hexadecimal numbers to binary is straightforward because each 

hexadecimal digit directly maps to a 4-bit binary sequence. This 

conversion is useful in computing, where hexadecimal notation is often 

used to simplify the representation of binary data. 

 

Explanation 

To convert a hexadecimal number to binary: 



1. Replace each hexadecimal digit with its 4-bit binary equivalent. 

2. Concatenate all the binary sequences to get the final binary number. 

 

Hexadecimal to Binary Mapping 

Here is a quick reference for converting each hexadecimal digit to binary: 

 

- 0 = 0000 

- 1 = 0001 

- 2 = 0010 

- 3 = 0011 

- 4 = 0100 

- 5 = 0101 

- 6 = 0110 

- 7 = 0111 

- 8 = 1000 

- 9 = 1001 

- A = 1010 

- B = 1011 

- C = 1100 

- D = 1101 

- E = 1110 

- F = 1111 

 

Example 

Convert the hexadecimal number 2F3 to binary. 

1. Convert each hexadecimal digit to binary: 



   - 2 = 0010 

   - F = 1111 

   - 3 = 0011 

 

2. Concatenate the binary sequences: 

   2F316= 0010 , 1111 , 00112 

  

So, 2F3 in hexadecimal is 001011110011 in binary. 

 

Example 

Convert the hexadecimal number A9C to binary. 

1. Convert each hexadecimal digit to binary: 

   - A = 1010 

   - 9 = 1001 

   - C = 1100 

 

2. Concatenate the binary sequences: 

  A9C16 = 1010 , 1001 , 11002 

So, A9C in hexadecimal is 101010011100 in binary. 

Summary 

Converting hexadecimal numbers to binary involves mapping each 

hexadecimal digit to its 4-bit binary equivalent and concatenating these 

binary sequences. This process simplifies working with binary data and is 

essential for various applications in computing. 

 

 

 



H.W 

1. Convert the hexadecimal number 7F to binary. 

2. Convert the hexadecimal number 1A3 to binary. 

3. Convert the hexadecimal number 3D4 to binary. 

4. Convert the hexadecimal number B2 to binary. 

 

Hexadecimal to Decimal Conversion 

 

Introduction 

Hexadecimal (base-16) numbers are often used in computing to represent 

binary data in a more compact form. To convert hexadecimal numbers to 

decimal (base-10), you need to understand the positional value of each digit 

in the hexadecimal system. 

 

Explanation 

Each digit in a hexadecimal number represents a power of 16. The 

rightmost digit represents 160, the next represents 161, then 162, and so on. 

 

Steps for Conversion: 

1. Write down the hexadecimal number. 

2. Assign each digit a power of 16, starting from 16^0 on the right. 

3. Convert each hexadecimal digit to its decimal equivalent. 

4. Multiply each decimal value by its corresponding power of 16. 

5. Sum all the results to get the final decimal value. 

 

Example 

Convert the hexadecimal number 1A3 to decimal. 



1. Write down the hexadecimal number: 1A3. 

2. Assign powers of 16: 

   1 * 162 + A * 161 + 3 * 160 

3. Convert each hexadecimal digit to decimal: 

   (1 = 1) 

   (A = 10) 

   (3 = 3) 

4. Calculate each term: 

  1 * 162 = 1 * 256 = 256 

  A * 161 = 10 * 16 = 160 

  3 * 160 = 3 * 1 = 3 

5. Sum the results: 

  256 + 160 + 3 = 419 

 

So, 1A3 in hexadecimal is 419 in decimal: 1A316= 41910 

 

Example 

Convert the hexadecimal number 4F2 to decimal. 

1. Write down the hexadecimal number: 4F2. 

2. Assign powers of 16: 

   4 * 162 + F * 161 + 2 * 160 

3. Convert each hexadecimal digit to decimal: 

   (4 = 4) 

   (F = 15) 

   (2 = 2) 

4. Calculate each term: 



   4 * 162 = 4 * 256 = 1024 

   F * 161 = 15 * 16 = 240 

   2 * 160 = 2 * 1 = 2 

5. Sum the results: 

   1024 + 240 + 2 = 1266 

 

So, 4F2 in hexadecimal is 1266 in decimal: 4F216 = 126610 

 

Summary 

To convert hexadecimal numbers to decimal, each digit in the hexadecimal 

number is multiplied by its corresponding power of 16, and the results are 

summed. This process provides a clear understanding of the decimal value 

of a hexadecimal number. 

 

H.W 

1. Convert the hexadecimal number 3E7 to decimal. 

2. Convert the hexadecimal number B4 to decimal. 

3. Convert the hexadecimal number 7A9 to decimal. 

4. Convert the hexadecimal number 2F5 to decimal. 

 

Decimal to Hexadecimal Conversion 

 

Introduction 

Converting decimal (base-10) numbers to hexadecimal (base-16) is useful 

in computing and digital electronics for compactly representing large 

binary values. The process involves dividing the decimal number by 16 

and recording the remainders, which are then converted to hexadecimal 

digits. 



 

Steps for Conversion 

1. **Divide the decimal number by 16** and record the quotient and 

remainder. 

2. **Repeat the division** for the quotient until it is zero, recording each 

remainder. 

3. **Convert each remainder** to its hexadecimal equivalent. 

4. **Write the remainders in reverse order** (from the last division to the 

first) to get the hexadecimal number. 

 

Example 

Convert the decimal number 2023 to hexadecimal. 

 

1. **Divide 2023 by 16**: 

   - Quotient: 126 

   - Remainder: 7 

   - Hexadecimal equivalent of remainder: 7 

 

2. **Divide 126 by 16**: 

   - Quotient: 7 

   - Remainder: 14 

   - Hexadecimal equivalent of remainder: E (14 in hexadecimal) 

 

3. **Divide 7 by 16**: 

   - Quotient: 0 

   - Remainder: 7 

   - Hexadecimal equivalent of remainder: 7 



 

4. **Combine the remainders** in reverse order: 

   - Hexadecimal number: 7E7 

 

So, 2023 in decimal is 7E7 in hexadecimal: 202310 = 7E716 

 

Example 

Convert the decimal number 255 to hexadecimal. 

 

1. **Divide 255 by 16**: 

   - Quotient: 15 

   - Remainder: 15 

   - Hexadecimal equivalent of remainder: F 

 

2. **Divide 15 by 16**: 

   - Quotient: 0 

   - Remainder: 15 

   - Hexadecimal equivalent of remainder: F 

 

3. **Combine the remainders** in reverse order: 

   - Hexadecimal number: FF 

So, 255 in decimal is FF in hexadecimal: 25510 = FF16 

 

 

 

 



Example: Convert the decimal number 650 to hexadecimal by repeated 

division by 16. 

 

 

Summary 

To convert decimal numbers to hexadecimal, repeatedly divide the number 

by 16, record the remainders, and convert them to hexadecimal digits. The 

hexadecimal number is obtained by arranging the remainders in reverse 

order. 

H.W 

1. Convert the decimal number 4095 to hexadecimal. 

2. Convert the decimal number 1234 to hexadecimal. 

3. Convert the decimal number 845 to hexadecimal. 

4. Convert the decimal number 500 to hexadecimal. 

 

H.W 

1. Convert the hexadecimal number 4D2 to decimal. 

2. Convert the decimal number 523 to hexadecimal. 

3. Convert the binary number 101101111 to hexadecimal. 

4. Convert the hexadecimal number 9C to binary. 

 

 



Hexadecimal Arithmetic 

Hexadecimal arithmetic involves performing basic arithmetic operations 

(addition, subtraction, multiplication, and division) using hexadecimal 

(base-16) numbers. It follows the same principles as decimal arithmetic but 

operates with base-16 digits (0-9 and A-F). 

 

1. Hexadecimal Addition 

 

**Steps for Addition**: 

1. Align the hexadecimal numbers by their least significant digit. 

2. Add each pair of digits, taking into account any carry from the previous 

digit. 

3. Convert the sum to hexadecimal, if necessary, and handle carries. 

 

Example: Add `2F` and `1A`. 

1. Align the numbers: 

     2F 

 + 1A 

 

2. Add from right to left: 

 

  F (1510) + A (1010) = 2510 , which is `19` in hexadecimal. Write down `9` 

and carry `1`. 

   2 (210) + 1 (110) + 1 (carry) = 410, which is `4` in hexadecimal. 

 

   So, 2F + 1A = 49. 

 

 



Example: 

 

 

 

 2. Hexadecimal Subtraction 

 

**Steps for Subtraction**: 

1. Align the hexadecimal numbers by their least significant digit. 

2. Subtract each pair of digits, borrowing from the next higher digit if 

needed. 

3. Convert the result to hexadecimal and handle any necessary borrowing. 

 

Example: Subtract `1A` from `2F`. 

1. Align the numbers: 

     2F 

  - 1A 

 

2. Subtract from right to left: 



 

   F (1510) - A (1010) = 510, which is `5` in hexadecimal. 

   2 (210) - 1 (110) = 110, which is `1` in hexadecimal. 

 

   So, `2F - 1A = 15`. 

Example: 

 

 

3. Hexadecimal Multiplication 

 

**Steps for Multiplication**: 

1. Multiply each digit of the first number by each digit of the second 

number, just like decimal multiplication. 

2. Add the partial products, taking care to align them according to their 

place values. 

3. Convert the result to hexadecimal. 

 

 



Example: Multiply `A` by `3`. 

 

1. Convert hexadecimal to decimal: 

   - `A` = 10 in decimal. 

   - `3` = 3 in decimal. 

 

2. Multiply in decimal: 

   10 * 3 = 30. 

 

3. Convert the result to hexadecimal: 

   3010 = 1E16. 

 

   So, `A × 3 = 1E`. 

 

4. Hexadecimal Division 

 

**Steps for Division**: 

1. Divide the hexadecimal number by another hexadecimal number using 

long division. 

2. Convert the result and remainder to hexadecimal. 

 

Example: Divide `4E` by `3` 

1. Convert hexadecimal to decimal: 

   - `4E` = 78 in decimal. 

   - `3` = 3 in decimal. 

 

2. Divide in decimal: 



   78 / 3 = 26, remainder `0`. 

 

3. Convert the result to hexadecimal: 

   `26` in decimal is `1A` in hexadecimal. 

 

   So, `4E ÷ 3 = 1A`. 

 

Summary 

Hexadecimal arithmetic involves operations similar to decimal arithmetic 

but with base-16 digits. Understanding the conversion between 

hexadecimal and decimal is crucial for performing these operations. 

Practice with various examples will help solidify your understanding of 

hexadecimal arithmetic. 

 

H.W 

1. Add `7B` and `C4`. 

2. Subtract `5D` from `9A`. 

3. Multiply `B` by `4`. 

4. Divide `A6` by `6`. 

 

Subtracting Hexadecimal Numbers Using 2's Complement 

 

To subtract hexadecimal numbers using 2's complement, follow these 

steps: 

1. **Convert the numbers to binary**. 

2. **Find the 2's complement** of the subtrahend (the number being 

subtracted). 



3. **Add the minuend (the number from which another number is 

subtracted)** and the 2's complement of the subtrahend. 

4. **Handle any overflow** (carry beyond the most significant bit) if 

necessary. 

5. **Convert the result back to hexadecimal**. 

 

Example: Subtract `5A` from `B4` 

1. **Convert to Binary**: 

   - `B4` in hexadecimal = `1011 0100` in binary 

   - `5A` in hexadecimal = `0101 1010` in binary 

2. **Find the 2's Complement** of `5A`: 

   - **Invert the bits** of `0101 1010`: `1010 0101` 

   - **Add 1**: `1010 0101` + `0000 0001` = `1010 0110` 

3. **Add `B4` and the 2's complement of `5A`**: 

   - `1011 0100` (B4)   

   + `1010 0110` (2's complement of 5A) 

   ----------- 

     `0101 0010` (Result, binary) 

4. **Convert the Result to Hexadecimal**: 

   - `0101 0010` = `52` in hexadecimal 

Result: `B4 - 5A = 52` 

 

Example: Subtract `3C` from `8F` 

1. **Convert to Binary**: 

   - `8F` in hexadecimal = `1000 1111` in binary 

   - `3C` in hexadecimal = `0011 1100` in binary 

 



2. **Find the 2's Complement** of `3C`: 

   - **Invert the bits** of `0011 1100`: `1100 0011` 

   - **Add 1**: `1100 0011` + `0000 0001` = `1100 0100` 

3. **Add `8F` and the 2's complement of `3C`**: 

   - `1000 1111` (8F) 

  + `1100 0100` (2's complement of 3C) 

        ----------- 

     `0101 0011` (Result, binary) 

4. **Convert the Result to Hexadecimal**: 

   - `0101 0011` = `53` in hexadecimal 

 

  Result: `8F - 3C = 53` 

 

Example: Subtract `1D` from `7A` 

1. **Convert to Binary**: 

   - `7A` in hexadecimal = `0111 1010` in binary 

   - `1D` in hexadecimal = `0001 1101` in binary 

2. **Find the 2's Complement** of `1D`: 

   - **Invert the bits** of `0001 1101`: `1110 0010` 

   - **Add 1**: `1110 0010` + `0000 0001` = `1110 0011` 

3. **Add `7A` and the 2's complement of `1D`**: 

   - `0111 1010` (7A) 

  + `1110 0011` (2's complement of 1D) 

        ----------- 

    `0110 0001` (Result, binary) 

 



4. **Convert the Result to Hexadecimal**: 

   - `0110 0001` = `61` in hexadecimal 

  Result: `7A - 1D = 61` 

 

Summary 

To subtract hexadecimal numbers using 2's complement: 

1. Convert the numbers to binary. 

2. Find the 2's complement of the subtrahend. 

3. Add the minuend and the 2's complement of the subtrahend. 

4. Convert the result back to hexadecimal. 

 

Octal Numbers 

 

Introduction 

Octal (base-8) numbers are another positional number system, similar to 

decimal (base-10) and hexadecimal (base-16). In the octal system, each 

digit represents a power of 8. Octal numbers are less commonly used today 

but are still relevant in computing, particularly in programming and digital 

systems. 

 

Digits in Octal System 

Octal numbers use digits from 0 to 7. Each digit in an octal number 

represents a power of 8: 

(80) = 1 

(81) = 8 

(82) = 64 

(83) = 512 

. . . . 82 81 80. 8-1 8-2 8-3 . . . . 



Example 

Let's take the octal number `375`. 

1. **Write down the octal number**: 375. 

2. **Assign powers of 8**: 

   3 * 82  

   7 * 81 

   5 * 80  

 

3. **Convert each digit**: 

   3 * 64 = 192 

   7 * 8 = 56 

   5 * 1 = 5 

 

4. **Add the results**: 

   192 + 56 + 5 = 253 

So, the decimal equivalent of octal `375` is `253`. 

 

Converting Octal to Decimal 

To convert an octal number to decimal: 

1. Write down the octal number. 

2. Assign powers of 8 to each digit, starting from the right. 

3. Multiply each digit by its corresponding power of 8. 

4. Sum the results to get the decimal number. 

 

 

 



Example 

Convert octal `427` to decimal. 

1. **Write down the octal number**: 427. 

2. **Assign powers of 8**: 

   4 * 82  

   2 * 81  

   7 * 80 

 

3. **Convert each digit**: 

   4 * 64 = 256 

   2 * 8 = 16 

   7 * 1 = 7 

4. **Add the results**: 

   256 + 16 + 7 = 279 

So, the decimal equivalent of octal `427` is `279`. 

 

Converting Decimal to Octal 

 

To convert a decimal number to octal: 

1. Divide the decimal number by 8. 

2. Record the remainder. 

3. Divide the quotient by 8, recording the new remainder. 

4. Repeat until the quotient is zero. 

5. The octal number is the remainders read from bottom to top. 

 

 



Example 

Convert decimal `125` to octal. 

1. **Divide 125 by 8**: 

   - Quotient: 15 

   - Remainder: 5 

2. **Divide 15 by 8**: 

   - Quotient: 1 

   - Remainder: 7 

3. **Divide 1 by 8**: 

   - Quotient: 0 

   - Remainder: 1 

4. **Combine the remainders** in reverse order: 

   - Octal number: 175 

So, the octal equivalent of decimal `125` is `175`. 

 

Example: Convert the decimal number 359 to the octal number 

 

Summary 

Understanding octal numbers involves converting between octal and 

decimal systems. The key is to be comfortable with the base-8 

representation and to practice converting between octal and decimal to 

reinforce the concepts. 



H.W 

1. Convert the octal number `536` to decimal. 

2. Convert the decimal number `345` to octal. 

3. Convert the octal number `752` to decimal. 

4. Convert the decimal number `64` to octal. 

 

Octal to Binary Conversion 

Converting octal (base-8) numbers to binary (base-2) is straightforward 

because each octal digit corresponds to exactly three binary digits. Here's 

how you can do the conversion: 

1. **Write down the octal number.** 

2. **Convert each octal digit to its 3-bit binary equivalent.** 

3. **Combine the binary groups.** 

 

Conversion Table 

Here’s a quick reference table for converting octal digits to binary: 

 

|       Octal     |      Binary      | 

----------------------------------------- 

| 0                 | 000                | 

| 1                 | 001                | 

| 2                 | 010                | 

| 3                 | 011                | 

| 4                 | 100                | 

| 5                 | 101                | 

| 6                 | 110                | 

| 7                 | 111                | 



Example: Convert Octal `157` to Binary 

1. **Write down the octal number**: `157`. 

2. **Convert each digit**: 

   - `1` in octal = `001` in binary 

   - `5` in octal = `101` in binary 

   - `7` in octal = `111` in binary 

3. **Combine the binary groups**: 

   - `1` = `001` 

   - `5` = `101` 

   - `7` = `111` 

   Binary Equivalent: `001 101 111` 

   Result: `157` in octal = `001101111` in binary. 

 

Example: Convert Octal `374` to Binary 

1. **Write down the octal number**: `374`. 

2. **Convert each digit**: 

   - `3` in octal = `011` in binary 

   - `7` in octal = `111` in binary 

   - `4` in octal = `100` in binary 

3. **Combine the binary groups**: 

   - `3` = `011` 

   - `7` = `111` 

   - `4` = `100` 

  Binary Equivalent: `011 111 100` 

   Result: `374` in octal = `011111100` in binary. 

  



Example:  

 

 

 

Summary 

To convert an octal number to binary: 

1. Convert each octal digit to its 3-bit binary equivalent using the 

conversion table. 

2. Combine all the binary groups together. 

 

Binary to Octal Conversion 

 

To convert binary (base-2) numbers to octal (base-8), follow these steps: 

1. **Group the binary digits into sets of three**, starting from the right. If 

necessary, pad the leftmost group with zeros to make a complete set of 

three. 

2. **Convert each group of three binary digits** to its octal equivalent 

using a conversion table. 

3. **Combine the octal digits** to form the final octal number. 

 

Example: Convert Binary `110101` to Octal 

1. **Group the binary digits into sets of three**: 

   - Binary: `110101` 

   - Grouping: `110 101` 



2. **Convert each group**: 

   - `110` in binary = `6` in octal 

   - `101` in binary = `5` in octal 

3. **Combine the octal digits**: 

 Octal Equivalent: `65  ̀

 

Example: Convert Binary `100110010` to Octal 

1. **Group the binary digits into sets of three**: 

   - Binary: `100110010` 

   - Grouping (from right): `100 110 010` 

2. **Convert each group**: 

   - `100` in binary = `4` in octal 

   - `110` in binary = `6` in octal 

   - `010` in binary = `2` in octal 

3. **Combine the octal digits**: 

   Octal Equivalent: `462  ̀

 

Example: Convert Binary `101010101` to Octal 

1. **Group the binary digits into sets of three**: 

   - Binary: `101010101` 

   - Grouping (from right): `101 010 101` 

2. **Convert each group**: 

 

   - `101` in binary = `5` in octal 

   - `010` in binary = `2` in octal 

   - `101` in binary = `5` in octal 



3. **Combine the octal digits**: 

 Octal Equivalent: `525  ̀

 

Example: 

 

 

Summary 

To convert a binary number to octal: 

1. Group the binary digits into sets of three from the right. Add leading 

zeros if needed. 

2. Convert each set of three binary digits to its octal equivalent using the 

conversion table. 

3. Combine the results to get the final octal number. 

 

Binary-Coded Decimal (BCD) 

 

Introduction 

Binary-Coded Decimal (BCD) is a binary encoding scheme for decimal 

numbers in which each decimal digit is represented by a fixed number of 

binary digits (usually four). BCD is used in digital systems where it is 

essential to represent decimal digits precisely, such as in digital watches, 

calculators, and certain computer systems. 

 



How BCD Works 

In BCD, each decimal digit is individually encoded into its 4-bit binary 

equivalent. For example: 

- Decimal `0` is represented as `0000` in BCD. 

- Decimal `1` is represented as `0001` in BCD. 

- Decimal `9` is represented as `1001` in BCD. 

 

Example: 

Convert the decimal number `259` to BCD. 

 

1. **Break down the number into its individual decimal digits**: `2`, `5`, 

`9`. 

2. **Convert each digit to its 4-bit binary equivalent**: 

   - Decimal `2` = `0010` 

   - Decimal `5` = `0101` 

   - Decimal `9` = `1001` 

3. **Combine the results**: 

   - BCD representation of `259` = `0010 0101 1001` 

So, `259` in decimal is `0010 0101 1001` in BCD. 

 

BCD Addition 

When adding BCD numbers, you follow the same rules as binary addition 

but need to correct the result if it exceeds the BCD range (`0000` to `1001` 

for `0` to `9`).  

 

 

 



Example: Add `25` and `37` in BCD. 

1. **Convert decimal numbers to BCD**: 

   - `25` in BCD: `0010 0101` 

   - `37` in BCD: `0011 0111` 

2. **Add the BCD numbers**: 

   - Align the numbers and add: 

       0010 0101 

    + 0011 0111 

         ----------- 

      01101 1100 

3. **Adjust the result** if needed: 

   - Binary addition gives `0110 11100`. 

   - Since `0110` (6 in decimal) is valid but `11100` (28 in decimal) exceeds 

`1001`, adjust with a correction: 

     - Add `0001 0000` (6 in BCD) to correct it, so we get: 

       0110 11100 

      + 0001 0000 

          ----------- 

         0111 0000 

 

  Result: `0111 0000` (BCD representation of 62). 

 

4. **Convert to decimal to verify**: 

   - `0111` = `7` 

   - `0000` = `0` 

   - Decimal result: `62`. 

 



BCD Subtraction 

BCD subtraction involves similar steps to binary subtraction but also 

corrects the result if necessary. 

 

Example: Subtract `17` from `24` in BCD. 

1. **Convert decimal numbers to BCD**: 

   - `24` in BCD: `0010 0100` 

   - `17` in BCD: `0001 0111` 

2. **Subtract the BCD numbers**: 

   - Align the numbers and subtract: 

       0010 0100 

     - 0001 0111 

        ----------- 

       0000 1111 

 

3. **Convert to decimal to verify**: 

   - `0000` = `0` 

   - `1111` = `9` 

   Result: `7`. 

 

Extended BCD and Packed BCD 

- **Packed BCD**: Each byte (8 bits) contains two BCD digits (4 bits 

each). For example, `259` would be represented as `0010 0101 1001` in 

three separate bytes. 

 

 

 



Example: 

 

   

- **Unpacked BCD**: Each byte (8 bits) contains only one BCD digit. For 

example, `259` would be represented as `0010 0000 0101 0000 1001 

0000`. 

 

Example:  

 

Summary 

BCD is a method of encoding decimal numbers where each digit is 

represented by its binary equivalent. It is useful in systems that require 

precise decimal representation and can be handled through specific 

arithmetic operations. 

H.W 

1. Convert the decimal number `482` to BCD. 

2. Add the BCD numbers `413` and `289`. 

3. Subtract the BCD number `174` from `256`. 

4. Convert the BCD number `0100 1001` to decimal. 



BCD (Binary-Coded Decimal) Addition 

 

Binary-Coded Decimal (BCD) is a binary-encoded representation of 

integer values that uses a 4-bit nibble to represent each digit of a decimal 

number. When performing BCD addition, if the result of adding two BCD 

digits exceeds 9 (i.e., `1001` in binary), you need to adjust the result to 

ensure it remains a valid BCD representation. 

Steps for BCD Addition 

1. **Add the BCD digits** as you would normally add binary numbers. 

2. **Check if the result exceeds 9** (i.e., check if it is greater than `1001` 

in binary). 

3. **Correct the result** by adding `6` (binary `0110`) to the result if it 

exceeds `9`. This correction adjusts the result to fit within the BCD range. 

 

Example: Adding Two BCD Numbers 

Let's add `7` and `5` in BCD: 

1. **Convert to BCD**: 

   - `7` in BCD = `0111` 

   - `5` in BCD = `0101` 

2. **Add the BCD digits**: 

   0111 (7) 

+ 0101 (5) 

  -------- 

  1100 

 

3. **Check the result**: 

   - The result `1100` in binary is `12` in decimal, which is greater than `9`. 

4. **Adjust the result**: 



   - Add `6` (binary `0110`) to the result to correct it. 

   1100 (Original result) 

+ 0110 (Adjustment for BCD) 

 -------- 

  0010  (Corrected result) 

  Carry = 1 

5. **Include the carry**: 

   - Since there is a carry, add `0001` to the next higher digit (if there were 

one). 

Final Result: `0001 0010`. 

BCD Result: `12`. 

 

Example: Adding Two BCD Numbers with Correction 

Add `9` and `8` in BCD: 

1. **Convert to BCD**: 

   - `9` in BCD = `1001` 

   - `8` in BCD = `1000` 

2. **Add the BCD digits**: 

   1001 (9) 

+ 1000 (8) 

 -------- 

  2001 

 

3. **Check the result**: 

   - The result `2001` in binary is `17` in decimal, which is greater than `9`. 

4. **Adjust the result**: 

   - Since the result `0001` exceeds `9`, add `6` (binary `0110`) to adjust. 



 

   0001 (Lower nibble of the result) 

+ 0110 (Adjustment for BCD) 

 -------- 

  0111 (Corrected result for this nibble) 

  Carry = 1 

5. **Add the carry** to the next higher digit (which was `0` in this case). 

   - Add `1` to the higher nibble (which results in `0001` with no further 

adjustment needed). 

 Final Result: `0001 0111`, which corresponds to `17` in decimal. 

 

Example: 

 

 

 

 

 

 

 

 



 

Example: 

 

 

 

Summary 

1. **Perform BCD addition** as with binary numbers. 

2. **Check the result** for validity in BCD (i.e., if it exceeds `1001`). 

3. **Adjust the result** by adding `6` (binary `0110`) if necessary. 

4. **Include any carry** in the final result. 

 



Convert Gray Code to Binary 

 

 

 

 

Convert Binary to Gray Code 

 

 

Example: 

 

 

 

 

 



Logic Gates 

Logic gates are fundamental building blocks in digital circuits. They 

perform basic logical functions that are essential for digital circuit design. 

Each gate has a specific function and truth table that describes its behavior. 

 

Basic Logic Gates: 

1. **AND Gate** 

- Symbol:                         

 

- AND Gate Operation with Waveform Inputs: 

 

A diagram of input and output waveforms showing time relationships is 

called a timing diagram. 

 

 

 

 

 



Example: 

 

Example: 

 

 

 

2. **OR Gate** 

- Symbol: 

 
 



- OR Gate Operation with Waveform Inputs 

 

 
 

Example: 

 
 

Example: 

 



3. **NOT Gate (Inverter)** 

   - Symbol:   

 

Example: 

 

4. **NAND Gate** 

   - Symbol:   

 

Example: 

 



5. **NOR Gate** 

   - Symbol:   

 

Example: 

 

Example: 

 

 

 



6. **XOR Gate (Exclusive OR)** 

   - Symbol:   

 

 

 

-  Operation with Waveform Inputs: 
 

 

Example: 

 



7. **XNOR Gate (Exclusive NOR)** 

   - Symbol:   

 

 

Summary 

- **AND Gate**: True if both inputs are true. 

- **OR Gate**: True if at least one input is true. 

- **NOT Gate**: Inverts the input. 

- **NAND Gate**: True if not both inputs are true. 

- **NOR Gate**: True if neither input is true. 

- **XOR Gate**: True if exactly one input is true. 

- **XNOR Gate**: True if both inputs are the same. 

 

 

 



Example:  

 

 

 

 

Example:  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Implementation of Universal Logic Gates Function Using Only NAND 

 

 

 

 

 

 

 

 

 

 

 

 

 



Implementation of Universal Logic Gates Function Using Only NOR 

 

 

 

Boolean Algebra 

Boolean algebra is a branch of algebra that deals with boolean values (true 

and false), typically represented by 1 and 0. It is used to analyze and 

simplify digital circuits and logical expressions. Boolean algebra has 

several fundamental operations, laws, and properties. 

 



 

 

 

 



Simplification Using Boolean Algebra 

Boolean algebra simplification involves reducing complex Boolean 

expressions to their simplest form. This process is crucial in digital design 

to minimize the number of logic gates required, which leads to more 

efficient circuits. 

 

 

 

 

 



Example: 

 

Example: 

 

 

 

 



Example: 

 

Summary 

- Boolean algebra provides a set of rules for manipulating binary 

variables. 

- Fundamental operations include AND, OR, and NOT. 

- Laws of Boolean algebra help simplify expressions to reduce the 

number of operations. 

- Simplification involves applying these laws step-by-step to achieve a 

simpler form of the expression. 

 

Boolean Algebra Simplification Examples 

When simplifying complex Boolean expressions, we can use Boolean 

algebra laws systematically to reduce them to their simplest form. Here are 

a few detailed examples that demonstrate the step-by-step process of 

Boolean simplification. 

 



 

 

 



 

 

 

 

 

 



Example: Simplify the following Boolean expression: 

 

Example: Simplify the following Boolean expression: A.(A + B) 

 

Example: Simplify the following Boolean expression:  (A + B)(A + C) 

 



Example: Simplify the following Boolean expression: AB(BC + AC) 

 

 

 

Example: Simplify the following Boolean expression: 

(A + B + C)(A +B + C)(A + B + C) 

 



 

 

 

Sum of Products (SOP) 

The Sum of Products (SOP) is a canonical form used in Boolean algebra to 

represent Boolean expressions. In SOP form, the expression is written as a 

sum (OR operation) of several product terms (AND operations). Each 

product term is a conjunction of literals (variables or their complements). 

 

Example: 

 

 

Converting Non-Standard SOP to Standard SOP 

 

Example: 

 



 

 

 

Example: 

 

 



 

 

Example: 

 

 



Product of Sums (POS) in Boolean Algebra 

A Product of Sums (POS) expression is a form of Boolean algebra where 

the expression is a product (AND operation) of multiple sum (OR 

operation) terms. Each sum term (also known as a maxterm) includes all 

the variables of the function, either in complemented or uncomplemented 

form. 

Definition 

In a POS expression, each sum term represents a maxterm, and the overall 

expression is the AND of these maxterms. 

 

 

 



 

 

 

 



 

Example: 

 

 

Karnaugh Map (K-Map) 

A Karnaugh Map (K-Map) is a visual method used in Boolean algebra to 

simplify expressions and minimize the number of logical operations. It 

organizes truth table values into a grid format, making it easier to identify 

and eliminate redundant terms using grouping techniques. 

 

3 variables:  

 

 

 



We can take: 

 

Example: Simplify the following expression 

ABC+ABC+ABC+ABC 

 

Result: AC+AB 

 

 

 

 

 

 



Example: Simplify the following expression 

F=X1 X2 X3 +X1 X2 X3 +X1 X2 X3 +X1 X2 X3 +X1 X2 X3   

 

 

 

4 variables:  

 

 

 

 

 

 



We can take:  

  

 

Example: Simplify the following expression 

F= B0 B1 B2 B3 + B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 

+B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 

 



Result: F= B1 B2 +B1 B2 

 

Example: Simplify the following expression 

F= B0 B1 B2 B3 + B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 

+B0 B1 B2 B3 +B0 B1 B2 B3 +B0 B1 B2 B3 

 

Result: F= B0 B1 +B0 B1 

 

Flip-Flops 

Flip-flops are fundamental building blocks in digital electronics, primarily 

used for storing binary data and implementing sequential logic circuits. 

They are bistable devices, meaning they have two stable states and can be 

used to store a single bit of information. 

 

Types of Flip-Flops: 

1. SR Flip-Flop (Set-Reset Flip-Flop) 

2. D Flip-Flop (Data or Delay Flip-Flop) 

3. JK Flip-Flop 

4. T Flip-Flop (Toggle Flip-Flop) 

 

 



1. SR Flip-Flop 

 

2. D Flip-Flop 

 

 

 



3. JK Flip-Flop 

 

4. T Flip-Flop 

 



Applications of Flip-Flops 

1. Counters: Used to count occurrences of events. 

2. Shift Registers: Used for data storage and transfer. 

3. Memory Storage: Used in RAM and other memory devices. 

4. Data Synchronization: Helps in synchronizing data between different 

parts of a system. 

 

Counters 

A Counter is a device which stores (and sometimes displays) the number 

of times a particular event or process has occurred, often in relationship 

to a clock signal. Counters are used in digital electronics for counting 

purpose, they can count specific event happening in the circuit. For 

example, in UP counter a counter increases count for every rising edge of 

clock. Not only counting, a counter can follow the certain sequence based 

on our design like any random sequence 0,1,3,2… .They can also  be 

designed with the help of flip flops. They are used as frequency dividers 

where the frequency of given pulse waveform is divided. Counters are 

sequential circuit that count the number of pulses can be either in binary 

code or BCD form. The main properties of a counter are timing , 

sequencing , and counting. Counter  works in two modes : 

 

- Up counter  

- Down counter 

 

- Counters are broadly divided into two categories  

  

1. Asynchronous counter 

2. Synchronous counter 

 

1. Asynchronous Counter  

In asynchronous counter we don’t use universal clock, only first flip flop 

is driven by main clock and the clock input of rest of the following flip flop 

https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Counter_(digital)


is driven by output of previous flip flops. We can understand it by 

following diagram : 

 

It is evident from timing diagram that Q0 is changing as soon as the rising 

edge of clock pulse is encountered, Q1 is changing when rising edge of Q0 

is encountered (because Q0 is like clock pulse for second flip flop) and so 

on. In this way ripples are generated through Q0,Q1,Q2,Q3 hence it is also 

called RIPPLE counter and serial counter. A ripple counter is a cascaded 

arrangement of flip flops where the output of one flip flop drives the clock 

input of the following flip flop 

 

 



2. Synchronous Counter  

 

Unlike the asynchronous counter, synchronous counter has one global 

clock which drives each flip flop so output changes in parallel. The one 

advantage of synchronous counter over asynchronous counter is, it can 

operate on higher frequency than asynchronous counter as it does not 

have cumulative delay because of same clock is given to each flip flop. It 

is also called as parallel counter. 

 

 



From circuit diagram we see that Q0 bit gives response to each falling edge 

of clock while Q1 is dependent on Q0, Q2 is dependent on Q1 and Q0 , Q3 

is dependent on Q2,Q1 and Q0. 

 

Shift Registers 

Flip flops can be used to store a single bit of binary data (1 or 0). However, 

in order to store multiple bits of data, we need multiple flip-flops. N flip 

flops are to be connected in order to store n bits of data. A Register is a 

device that is used to store such information. It is a group of flip-flops 

connected in series used to store multiple bits of data. The information 

stored within these registers can be transferred with the help of shift 

registers.  

Shift Register is a group of flip flops used to store multiple bits of data. 

The bits stored in such registers can be made to move within the registers 

and in/out of the registers by applying clock pulses. An n-bit shift register 

can be formed by connecting n flip-flops where each flip-flop stores a 

single bit of data. The registers which will shift the bits to the left are 

called “Shift left registers”. The registers which will shift the bits to the 

right are called “Shift right registers”. Shift registers are basically of 

following types. 

 

Types of Shift Registers: 

• Serial In Serial Out shift register 

• Serial In parallel Out shift register 

• Parallel In Serial Out shift register 

• Parallel In parallel Out shift register 

• Bidirectional Shift Register 

• Universal Shift Register 

• Shift Register Counter 

 

Serial-In Serial-Out Shift Register (SISO) 

The shift register, which allows serial input (one bit after the other 

through a single data line) and produces a serial output is known as a 

https://www.geeksforgeeks.org/universal-shift-register-in-digital-logic/


Serial-In Serial-Out shift register. Since there is only one output, the data 

leaves the shift register one bit at a time in a serial pattern, thus the name 

Serial-In Serial-Out Shift Register. The logic circuit given below shows 

a serial-in serial-out shift register. The circuit consists of four D flip-

flops which are connected in a serial manner. All these flip-flops are 

synchronous with each other since the same clock signal is applied to each 

flip-flop. 

 

 
 

The above circuit is an example of a shift right register, taking the serial 

data input from the left side of the flip flop. The main use of a SISO is to 

act as a delay element. 

Serial-In Parallel-Out Shift Register (SIPO) 

The shift register, which allows serial input (one bit after the other 

through a single data line) and produces a parallel output is known as the 

Serial-In Parallel-Out shift register. The logic circuit given below shows 

a serial-in-parallel-out shift register. The circuit consists of four D flip-

flops which are connected. The clear (CLR) signal is connected in 

addition to the clock signal to all 4 flip flops in order to RESET them. 

The output of the first flip-flop is connected to the input of the next flip 

flop and so on. All these flip-flops are synchronous with each other since 

the same clock signal is applied to each flip-flop.  

 

https://www.geeksforgeeks.org/flip-flop-types-their-conversion-and-applications/
https://www.geeksforgeeks.org/flip-flop-types-their-conversion-and-applications/


 

The above circuit is an example of a shift right register, taking the serial 

data input from the left side of the flip-flop and producing a parallel 

output. They are used in communication lines where demultiplexing of a 

data line into several parallel lines is required because the main use of the 

SIPO register is to convert serial data into parallel data. 

Parallel-In Serial-Out Shift Register (PISO) 

The shift register, which allows parallel input (data is given separately to 

each flip flop and in a simultaneous manner) and produces a serial output 

is known as a Parallel-In Serial-Out shift register. The logic circuit given 

below shows a parallel-in-serial-out shift register. The circuit consists of 

four D flip-flops which are connected. The clock input is directly 

connected to all the flip-flops but the input data is connected individually 

to each flip-flop through a multiplexer at the input of every flip-flop. The 

output of the previous flip-flop and parallel data input are connected to 

the input of the MUX and the output of MUX is connected to the next 

flip-flop. All these flip-flops are synchronous with each other since the 

same clock signal is applied to each flip-flop.  
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A Parallel in Serial Out (PISO) shift register is used to convert parallel 

data to serial data. 

Parallel-In Parallel-Out Shift Register (PIPO) 

The shift register, which allows parallel input (data is given separately to 

each flip flop and in a simultaneous manner) and also produces a parallel 

output is known as Parallel-In parallel-Out shift register. The logic circuit 

given below shows a parallel-in-parallel-out shift register. The circuit 

consists of four D flip-flops which are connected. The clear (CLR) signal 

and clock signals are connected to all 4 flip-flops. In this type of register, 

there are no interconnections between the individual flip-flops since no 

serial shifting of the data is required. Data is given as input separately for 

each flip flop and in the same way, output is also collected individually 

from each flip flop.  



 

 

A Parallel in Parallel out (PIPO) shift register is used as a temporary 

storage device and like SISO Shift register it acts as a delay element. 

 

 

 

Summary 

- SR Flip-Flop: Simple set-reset latch, but has an invalid state. 

- D Flip-Flop: Stores the value of D on the rising edge of the clock. 

- JK Flip-Flop: Versatile flip-flop that can perform set, reset, and toggle 

operations. 

- T Flip-Flop: Simplified version of the JK flip-flop, primarily used for 

toggling. 
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