Tikrit University

The College of Petroleum Processes Engineering

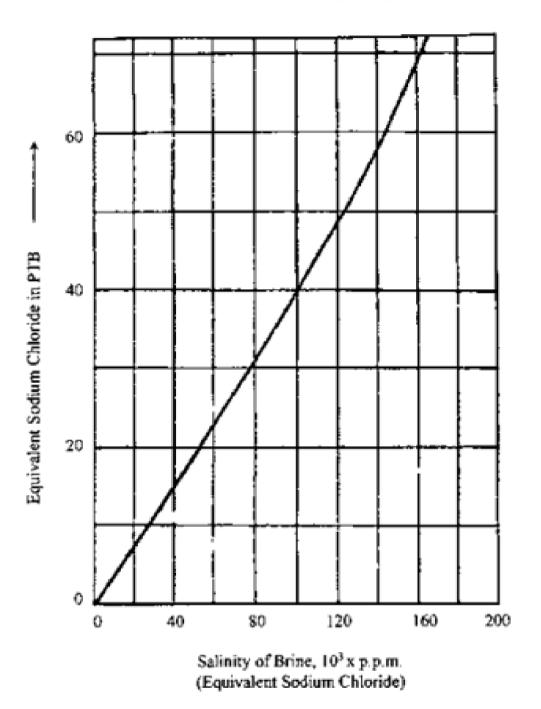
Petroleum Systems Control Engineering

Department

Petroleum Refining Processes

Fourth Class

Lecture 6


Asst. Teacher: Sundus H. Yousif

Petroleum & GasRefining Engineering

4thStage

Ex1: Find the PTB of a crude oil having 10%. by volume remnant water if it's concentration is estimated to be 40,000 ppm at 25 c. Solution. OUsing (figure 1), the PTB of ande ail having remnant water with 40 × 103 PPm Salinity is found to be 14 PTB. For Crude oil Containing 10 %. remnant Water obtained from figure Sallo be multiplied by 100; therefor, the given crude Confains 1400 PTB. 05 = 1400 PTB

Asst. Teacher: Sundus Hussein Yousif

Figure 1: Salt content of crude oil (PTB) as a function of salinity of its remnant water 0.1% (1/1000) by volume remnant water.

Petroleum & GasRefining Engineering

4th Stage

2 Basis of wet oil = 1000 bbl B:5 & W. (remnant water = 10%) Saline Water concentration = 40,000 ppm. 40,000 ppm = 4% Chantity of water in oil = (1000) * 100 = (00661) (5.6 ft/b) (@ 300 ppm X7. 5 300 5 0.03%. (2) 4000 PPM 4000 PPM 4000 50.4% = 560 ft3 1661 = 5.6 A3 by using (Table I) 3) 5 ppm = 0.0005.1. ab t= 25° and 4%. GAC. is 1.0253 g/cm3 = 63.3787 16/A3 the density of water mass of water = (560 ft3) (63.3787) 16/ ft3 = 35,828 lb The quantity of Salt found in this mass of Water (35828) (40000) = 143316. : the Salt Contant is 1433 PTB in 1000 bbl. or (35828) * 41. = 1433 PTB,

Asst. Teacher: Sundus Hussein Yousif

%	0°C	10°C	25°C	40°C	60°C	80°C	100°C
1	1.00747	1.00707	1.00409	0.99908	0.9900	0.9785	0.9651
2	1.01509	1.01442	1.01112	1.00593	0.9967	0.9852	0.9719
4	1.03038	1.02920	1.02530	1.01977	1.0103	0.9988	0.9855
8	1.06121	1.05907	1.05412	1.04798	1.0381	1.0264	1.0134
12	1.09244	1.08946	1.08365	1.07699	1.0667	1.0549	1.0420
16	1.12419	1.12056	1.11401	1.10688	1.0962	1.0842	1.0713
20	1.15663	1.15254	1.14533	1.13774	1.1268	1.1146	1.1017
24	1.18999	1.18557	1.17776	1.16971	1.1584	1.1463	1.1331
26	1.20709	1.20254	1.19443	1.18614	1.1747	1.1626	1.1492

Table Densities of Aqueous Inorganic Solutions [Sodium Chloride (NaCl)]

4th Stage

Ex2: find the flow rate of water (m3/day) which may be used to desalt crude oil 300000 661 /day (API = 36) ? Solve 300000 bbl , API = 36 Washing Water = 7% 300000 x 7 = 21 000 bol / day 21000 blol * 159 L = 333 9000 Liday Jay * 1661 16d = 159 L 3339000 L * Im3 = 3339 ms

Asst. Teacher: Sundus Hussein Yousif

petroleum Refining Processes

API of Crude oil	Washing wate %	Temp (C)	
Light crude oil > 40	4 %	40 C	
Medium 30-40	7%	50 C	
Heavy < 30	10%	60 C	