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 CHAPTER 

 3 
 INVERSION BY PARTIAL FRACTIONS 

  Our study of the application of Laplace transforms to linear differential equations 
with constant coefficients has enabled us to rapidly establish the Laplace trans-

form of the solution. We now wish to develop methods for inverting the transforms 
to obtain the solution in the time domain. In the first part of this chapter we give a 
series of examples that illustrate the partial fraction technique. After a generalization of 
these techniques, we proceed to a discussion of the qualitative information that can be 
obtained from the transform of the solution without inverting it. 

 The equations to be solved are all of the general form 

    
a

d x

dt
a

d x

dt
a

dx

dt
a x rn

n

n n

n

n� � � � ��

�

�1

1

1 1 0. (. . tt)
   

The unknown function of time is  x ( t ), and  a   n  ,  a   n   �  1 , . . . ,  a  1 ,  a  0  are constants. The 
given function  r ( t ) is called the  forcing function.  In addition, for all problems of inter-
est in control system analysis, the initial conditions are given. In other words, values 
of  x,   dx / dt,  . . . ,   d   n   � 1   x / dt   n   � 1  are specified at time 0. The problem is to determine  x ( t ) 
for all  t   �  0.  

   3.1 PARTIAL FRACTIONS 

  In the series of examples that follow, the technique of partial fraction inversion for solu-
tion of this class of differential equations is presented. 
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 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 33

  Example 3.1.   Solve 

    

dx

dt
x

x

� �

�

1

0 0( )     

 Application of the Laplace transform yields 

    
sx s x s

s
( ) ( )� �

1

   

 

or
    

x s
s s

( )
( )

�
�

1

1   

The theory of partial fractions enables us to write this as 

    
x s

s s

A

s

B

s
( )

( )
�

�
� �

�

1

1 1   
(3.1)

  

where  A  and  B  are constants. Hence, from Table 2.1, it follows that 

    x t A Be t( ) � � �   (3.2)  

Therefore, if  A  and  B  were known, we would have the solution. The conditions on 
 A  and  B  are that they must be chosen to make  Eq. (3.1)  an identity in  s.  

 To determine  A,  multiply both sides of  Eq. (3.1)  by  s.  

    
1

1 1s
A

Bs

s�
� �

� 
  (3.3)  

Since this must hold for all  s,  it must hold for  s   �  0. Putting  s   �  0 in  Eq. (3.3)  
yields 

    A � 1   

To find  B,  multiply both sides of  Eq. (3.1)  by  s   �  1. 

    

1
1

s

A

s
s B� � �( )

 
  (3.4)  

Since this must hold for all  s,  it must hold for  s   �   � 1. This yields 

    B � �1   

This procedure for determining the coefficients is called the  Heaviside expansion.  
There is an easy way to visualize the Heaviside procedure and quickly determine 
the coefficients of the partial fraction expansion ( A  and  B  in this case). Consider-
ing  Eq. (3.1) , we can determine  A,  the numerator of the 1/ s  factor, by ignoring (or 
“covering up”) this term in the denominator of  x ( s ) and letting all the remaining 
 s ’s equal the value of  s  that makes the “covered up” term equal to zero. The other 
coefficients are found in a similar manner. 
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34 PART 1 MODELING FOR PROCESS DYNAMICS

 For example, to solve for  A,  we “cover up” the  s  factor and let all the other 
 s  values equal 0. 

    

A
s s

�
�

�
1

1
1

0

( )�
    

 Similarly for  B,  we cover up the  s   �  1 term and let the other  s  values equal  
� 1, so 

    

B
s s

�
�

�
�

� �

�

1

1

1

1
1

1
� ( )

    

 Cross-multiplication (as well as the quick visualization method) works for dis-
tinct roots (non-repeated factors in the denominator) and in a limited way for 
repeated roots. We will discuss the case of repeated roots shortly. 

 Now that we’ve found  A  and  B,  we have 

    

x s
s s s s

( )
( )

�
�

� �
�

1

1

1 1

1
 

  (3.5)  

and therefore, 

    x t e t( ) � � �1   (3.6)   

  Equation (3.5)  may be checked by putting the right side over a common denomi-
nator, and  Eq. (3.6)  by substitution into the original differential equation and ini-
tial condition.  

  Example 3.2.   Chemical mixing scenario revisited.   In Chap. 2 we solved the 
chemical mixing scenario problem to the point where we had obtained the trans-
formed solution to the material and energy balances. The transformed solutions, 
 Eqs. (2.10)  and  (2.11) , are repeated in this example for convenience. 

    
C s

s s s
a ( )

( )
�

�
�

�

2

5 1

15

5 1 
   (2.10)

    

 We can now invert this expression for the concentration in the tank to the time 
domain. 

 Considering the first term on the left-hand side, we can separate it into par-
tial fractions by using the same method that was employed in  Example 3.1 . 

    

2

5 1

2 22
5

1
5

1
5

1
5s s s s

A

s

B

s s s( )�
�

�
� �

�
� �

�

�( )
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 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 35

  Equation (2.10)  may now be written as 

    

C s
s s s s s s s s

a ( )
( )

�
�

�
�

� �
�

�
�

� �
�

2

5 1

15

5 1

2 2 3 2 1
1
5

1
5

11
5

    

 We can now readily invert this expression to the time domain 

    
C t ea

t( ) /� � �2 5
    

 This is the same solution that we previously obtained by separation and integra-
tion of the original mass balance differential equation in the time domain, which 
is plotted in Fig. 2–3. 

 Similarly, we can obtain the time domain solution for the temperature in the 
mixing vessel by inverting  Eq. (2.11) . 

    
T s

s

s s s s
( )

( )

( )
�

�

�
�

�
�

�

70 5 80

5 1

70

5 1

400

5 1

/

 
   (2.11)    

 Separating the right-hand side by using partial fractions, we get 

    

T s
s s s s s s

( )
( )

�
�

�
�

� �
�

�
�

�
�

70

5 1

400

5 1

70 70 80 7
1
5

1
5

00 10

70 10

1
5

5

s s

T t e t

�
�

� � �( ) /

    

 This is the same solution that we previously obtained by separation and integra-
tion of the original energy balance differential equation in the time domain which 
is plotted in Fig. 2–7.  

  Example 3.3.   Solve 

    

d x

dt

d x

dt

dx

dt
x e

x x

t
3

3

2

2
22 2 4

0 1 0 0

� � � � �

� �( ) ( )′ ′′xx ( )0 1� �
    

 Taking the Laplace transform of both sides yields 

    
s x s s s x s s sx s x3 2 21 2 1 2( ) ( ) ( ) (� � � � � � �    [ ] ss

s s
) � �

�

4 1

2    

 Solving algebraically for  x ( s ), we find 

    
x s

s s s

s s s s s
( )

( )( )
�

� � �

� � � �

4 2

3 2
6 9 8

2 2 2 
  (3.7)
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36 PART 1 MODELING FOR PROCESS DYNAMICS

 The cubic in the denominator may be factored, and  x ( s ) is expanded in partial 
fractions. 

    
x s

s s s

s s s s s

A

s

B

s
( )

( )( )( )( )
�

� � �

� � � �
� �

4 26 9 8

2 1 2 1 ��
�

�
�

�
�

�2 1 2 1

C

s

D

s

E

s   
  (3.8)   

 To find  A,  multiply both sides of  Eq. (3.8)  by  s  and then set  s   �  0; the result is 

    
A = �

� �
� �

8

2 1 2 1
2

( )( )( )( )    

 The other constants are determined in the same way. The procedure and results 
are summarized in the following table.    

 

To determine Multiply Eq. (3.8) by and set s to Result

B s � 2 2 B � 1
12

C s � 1 �1 C � 11
3

D s � 2 �2 D � �17
12

E s � 1 1 E = 2
3

 Accordingly, the solution to the problem is 

    
x t e e e et t t t( ) � � � � � �� �2 1

12
2 11

3
17
12

2 2
3     

 A comparison between this method and the classical method, as applied to  
Example 3.2 , may be profitable. In the classical method for solution of differential equa-
tions, we first write down the characteristic function of the homogeneous equation: 

    s s s3 22 2 0� � � �    

 This must be factored, as was also required in the Laplace transform method, to obtain 
the roots  � 1,  � 2, and  � 1. Thus, the complementary solution is 

    x t C e C e C ec
t t t( ) � � �� �

1 2
2

3    

 Furthermore, by inspection of the forcing function, we know that the particular solution 
has the form 

    x t A Bep
t( ) � � 2

    

 The constants  A  and  B  are determined by substitution into the differential equation and, 
as expected, are found to be  � 2 and     1

12 ,    respectively. Then 

x t e C e C e C et t t t( ) � � � � � �� �2 1
12

2
1 2

2
3
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 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 37

     and constants  C  1 ,  C  2 , and  C  3  are determined by the three initial conditions. The Laplace 
transform method has systematized the evaluation of these constants, avoiding the solu-
tion of three simultaneous equations. Four points are worth noting:

    1.  In both methods, one must find the roots of the characteristic equation. The roots 
give rise to terms in the solution  whose form is independent of the forcing function.  
These terms make up the  complementary solution.   

   2.  The forcing function gives rise to terms in the solution  whose form depends on 
the form of the forcing function and is independent of the left side of the equation.  
These terms comprise the  particular solution.   

   3.  The only interaction between these sets of terms, i.e., between the right side and left 
side of the differential equation, occurs in the evaluation of the constants involved.  

   4.  The only effect of the initial conditions is in the evaluation of the constants. This is 
so because the initial conditions affect only the numerator of  x ( s ), as may be seen 
from the solution of this example.    

 In the three examples we have discussed, the denominator of  x ( s ) factored into 
real factors only. In the next example, we consider the complications that arise when 
the denominator of  x ( s ) has complex factors. 

Using MATLAB for Symbolic Processing—Partial Fractions

Remember that we have previously declared some variables symbolic (a, k, x, y, z, t, and s). MATLAB 
does not have a built-in function for performing partial fractions. However, we can force MATLAB 
to do the work for us by taking advantage of two other MATLAB functions, diff and int. We have 
MATLAB integrate x(s), which it does internally by using partial fractions, and then immediately 
differentiate the resulting expression. The result will be the partial fraction expansion of x(s).

Let’s have MATLAB find the partial fraction expansion represented by Eq. (3.8).

x=(s^4–6*s^2+9*s–8)/s/(s–2)/(s+1)/(s+2)/(s–1)

x=

(s^4–6*s^2+9*s–8)/s/(s–2)/(s+1)/(s+2)/(s–1)

diff(int(x))

ans=

–2/s+1/12/(s–2)+11/3/(s+1)–17/12/(s+2)+2/3/(s–1)

pretty(ans)

-2 / s + 1 / 12
1

s - 2
+ 11 / 3

1

s + 1
-
17

12

1

s ++ 2
+ 2 / 3

1

s - 1

Thus, MATLAB arrives at the same result as we did by hand.
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38 PART 1 MODELING FOR PROCESS DYNAMICS

  Example 3.4.   Inversion of a transform that has complex roots in the 
denominator.   Solve 

    

d x

dt

dx

dt
x

x x

2

2 2 2 2

0 0 0 0

� � �

� �( ) ( )′    

 Application of the Laplace transform yields 

    

x s
s s s

( ) �
� �

2

2 22( )
    

 The quadratic term in the denominator may be factored by use of the quadratic 
formula. The roots are found to be  � 1  �   j  and  � 1  �   j.  If we use these complex 

Using MATLAB for Symbolic Processing—Solving ODEs

MATLAB can symbolically solve ODEs. It uses the DSOLVE command for this purpose. We 
illustrate the use of this command with Example 3.2.

The problem consisted of

 

d x

dt

d x

dt

dx

dt
x e

x x

t
3

3

2

2
22 2 4

0 1 0 0

� � � � �

� �( ) ( )′ ′′xx ( )0 1� � 

The DSOLVE command is straighforward for solving this equation.

dsolve('D3x+2*D2x–Dx–2*x=4+exp(2*t)','x(0)=1','Dx(0)=0','D2x(0)=–1')

ans=

–1/12*exp(2*t)*(24*exp(–2*t)–1)+2/3*exp(t)–17/12*exp(–2*t)+11/3*exp(–t)

expand(ans) This command multiplies out the expression to make it easier to compare with our 
original answer.

ans=

–2+1/12*exp(t)̂ 2+2/3*exp(t)–17/12/exp(t)̂ 2+11/3/exp(t)

which is the same result we obtained by hand: x t e e e et t t t( ) � � � � � �� �2 1
12

2 11
3

17
12

2 2
3

We can verify this result with MATLAB by inverting the partial fraction expansion we obtained 
with MATLAB previously.

ilaplace(–2/s+1/12/(s–2)+11/3/(s+1)–17/12/(s+2)+2/3/(s–1))

ans=

–2+1/12*exp(2*t)+11/3*exp(–t)–17/12*exp(–2*t)+2/3*exp(t)

The result is the same!
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 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 39

roots in the partial fraction expansion, the algebra can get quite tedious. We pres-
ent a method to obtain the partial fraction expansion for the case of complex 
roots, without resorting to the use of complex algebra. 

  Avoiding the use of complex algebra with a quadratic term.   If we choose not 
to factor the quadratic term, we can use an alternate form of the partial fraction 
expansion. 

    
x s

s s s

A

s

Bs C

s s
( )

( )
�

� �
� �

�

� �

2

2 2 2 22 2
    

 Note that the second term of the expansion has the unfactored quadratic in the 
denominator. The numerator of each term in the expansion is a polynomial in 
 s  of one less degree than the denominator, hence the  Bs   �   C  in the numerator 
(a first-order numerator with a second-order denominator). As before, we can 
determine  A.  

    
A �

� �
�

2

0 2 0 2
1

( )    

 So we now have 

    
x s

s s s s

Bs C

s s
( )

( )
�

� �
� �

�

� �

2

2 2

1

2 22 2
    

 Clearing the denominator on the left-hand side, we obtain 

    2 2 22 2� � � � �s s Bs Cs    

 Collecting like terms, we get 

    ( ) ( )B s C s� � � � �1 2 2 22
    

 We now match coefficients of like terms on the left and right sides of the equation. 

    

s B B

s C C

2 1 0 1

2 0 2

:

:

� � � �

� � � �    

 Thus, 

    
x s

s

s

s s
( ) � �

�

� �

1 2

2 22
 

  (3.9)   

 To invert the second term, we complete the square in the denominator to get a 
familiar transform. Remember that for a perfect square, the quadratic must have 
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40 PART 1 MODELING FOR PROCESS DYNAMICS

the form  s  2   �   a   s   �  ( a   /2) 2   �  ( s   �   a   /2) 2 , where the constant is one-half the mid-
dle coefficient squared. The second term on the right-hand side becomes 

    

s

s s

s

s s

s

s

�

� �
�

�

� � � �
�

�

� �

2

2 2

2

2 1 2 1

2

1 12 2 2( ) ( )    

 where we’ve added and subtracted one-half the middle coefficent squared, 
(2/2) 2   �  1, so the denominator remains unchanged. The transform of the solution 
is now 

    
x s

s

s

s
( )

( )
� �

�

� �

1 2

1 12 
  (3.10)

   

 One last modification of the second term is required before inversion. A term of 
this type will lead to a sine term and a cosine term in the solution. From Table 2.1, 
we see that 

    
L e kt

k

s a k
at� �

� �
sin( )

( )
{ } 2 2 

  (3.11a)   

    
L e kt

s a

s a k
at� �

�

� �
cos( )

( )
{ } 2 2 

  (3.11b)   

 Note that everywhere  s  appears in these forms, it appears as the quantity  s   �   a.  
Thus, comparing these transforms with  Eq. (3.10) , we see that we need an  s   �  1 
term in the numerator, to go with the  s   �  1 in the denominator. So we regroup as 

    
x s

s

s

s s

s

s
( )

( )

( ) ( ) (
� �

� �

� �
� �

�

� �
�

1 1 1

1 1

1 1

1 1

1
2 2 2 2 ss � �1 12 2)    

 We can easily invert these terms to obtain the solution to the differential equation. 

    x t e t tt( ) ( )� � ��1 cos sin    

 We now summarize the steps in this method for inverting quadratic terms with 
complex roots while avoiding the use of complex algebra. 

   Step 1.  Form the partial expansion term for the quadratic with a first-order term 
in  s  in the numerator.  

  Step 2.  Determine the numerators of the other terms in the expansion, using the 
Heaviside expansion.  

  Step 3.  Cross-multiply the equation for  x ( s ) by the denominator of  x(s),  and 
equate coefficients of like terms to determine the constants in the numer-
ator of the quadratic term.  

  Step 4.  Complete the square for the quadratic term.  
  Step 5.  Regroup the terms in the numerator, such that if the quadratic is now 

( s   �   a ) 2 , everywhere else that  s  appears, it appears as  s   �   a.   
  Step 6.  Invert the resulting two terms to a sine and a cosine term (probably mul-

tiplied by an exponential).   
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 In the next example, an exceptional case is considered; the denominator of  x ( s ) has 
 repeated roots.  The procedure in this case will vary slightly from that of the previous 
cases.   

  Example 3.5.   Inversion of a transform with repeated roots .  Solve 

    

d x

dt

d x

dt

dx

dt
x

x x x

3

3

2

2
3 3

1

0 0 0 0

� � � �

� � �( ) ( ) ( )′ ′′    

 Application of the Laplace transform yields 

    

x s
s s s s

( ) �
� � �

1

3 3 13 2( )
    

 Factoring and expanding in partial fractions, we find 

    
x s

s s

A

s

B

s

C

s

D

s
( )

( ) ( ) ( )
�

�
� �

�
�

�
�

�

1

1 1 1 13 3 2 
  (3.12)   

 As in the previous cases, to determine  A,  multiply both sides by  s  and then set  s  
to zero. This yields 

    A � 1    

 Multiplication of both sides of  Eq. (3.12)  by ( s   �  1) 3  results in 

    
1 1

1 1
3

2

s

A s

s
B C s D s�

�
� � � � �

( )
( ) ( )

 
  (3.13)   

 Setting  s   �   � 1 in  Eq. (3.13)  gives 

    B � �1    

 Having found  A  and  B,  we introduce these values into  Eq. (3.12)  and place the 
right side of the equation over a common denominator; the result is 

    

1

1

1 1 1

13

3 2

3s s

s s Cs s Ds s

s s( )

( ) ( ) ( )

( )�
�

� � � � � �

� 
  (3.14)   

 Expanding the numerator of the right side gives 

    

1

1

1 3 2 2 1

13

3 2

s s

D s C D s C D s

s s( )

( ) ( ) ( )

(�
�

� � � � � � � �

� ))3 
  (3.15)   

 We now equate the numerators on each side to get 

    1 1 3 2 2 13 2� � � � � � � � �( ) ( ) ( )D s C D s C D s    
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42 PART 1 MODELING FOR PROCESS DYNAMICS

 Equating the coefficients of like powers of  s  gives 

    

1 0

3 2 0

2 0

� �

� � �

� � �

D

C D

C D    

 Solving these equations gives  C   �   � 1 and  D   �   � 1. 
 The final result is then 

    
x s

s s s s
( )

( ) ( )
� �

�
�

�
�

�

1 1

1

1

1

1

13 2
   (3.16)   

 By referring to Table 2.1, this can be inverted to 

    

x t e
t

tt( ) � � � ��1
2

1
2





   (3.17)   

 The reader should verify that  Eq. (3.16)  placed over a common denominator 
results in the original form 

    
x s

s s
( )

( )
�

�

1

1 3
   

and that  Eq. (3.17)  satisfies the differential equation and initial conditions.  

 The result of  Example 3.5  may be generalized. The appearance of the factor 
( s   �   a )  n   in the denominator of  x ( s ) leads to  n  terms in the partial fraction expansion 

    

C

s a

C

s a

C

s an n
n1 2

1( )
,

( )
, . ,

� � ��
. .

    

 The constant  C  1  can be determined as usual by multiplying the expansion by ( s   �   a )  n   
and setting  s   �   �  a.  The other constants are determined by the method shown in  
Example 3.5 . These terms, according to Table 2.1, lead to the following expression as 
the inverse transform: 

    

C

n
t

C

n
t C t Cn n

n n
1 1 2 2

1
1 2( )! ( )!

.
�

�
�

� � �� �
�

. .




e at�

 
  (3.18)   

 It is interesting to recall that in the classical method for solving these equations, one 
treats repeated roots of the characteristic equation by postulating the form of  Eq. (3.18)  
and selecting the constants to fit the initial conditions.   
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point back down to its original value. We’ ve introduced a square wave “pulse” that we 
can construct from two unit steps.    

  3A.8  GENERAL DISCUSSION OF PARTIAL 
FRACTIONS ON A QUADRATIC TERM 

  In Chap. 3 we discussed how to express a quadratic term in the denominator of a frac-
tion using partial fractions without resorting to complex algebra if we had complex 
roots. For completeness, we present the method using complex algebra. 

 Consider the general expression involving a quadratic term 

    
x s

F s

s s
( )

( )
�

� �2 a b 
  (3A.3)  

where  F ( s ) is some function of  s  (say, 1/ s ). Expanding the terms on the right side gives 

    
x s F s

Bs C

s s
( ) ( )� �

�

� �
1 2 a b 

  (3A.4)
  

where  F  1 ( s ) represents other terms in the partial fraction expansion. First solve for  B  
and  C  algebraically by placing the right side over a common denominator and equating 
the coefficients of like powers of  s.  The next step is to express the quadratic term in 
the form 

    
s s s a k2 2 2� � � � �a b ( )

    
 The terms  a  and  k  can be found by solving for the roots of  s  2   �   a   s   �   b   �  0 by the 
quadratic formula to give  s  1   �   �  a   �   jk  and  s  2   �   �  a   �   jk.  The quadratic term can now 
be written 

    
s s s s s s s a jk s a jk s a2

1 2� � � � � � � � � � � �a b ( )( ) ( )( ) ( )22 2� k
    

 Equation (3A.4) now becomes 

    
x s F s

Bs C

s a k
( ) ( )

( )
� �

�

� �
1 2 2 

  (3A.5)   

 The numerator of the quadratic term is written to correspond to the transform pairs 
given by  Eqs. (3.11 a )  and  (3.11 b ) . 

    
Bs C B s a

C B a

k
k B s a

C aB

k
k� � � �

�
� � �

�/



 ( )

    
 Equation (3A.5) becomes 

    
x s F s B

s a

s a k

C aB

k

k

s a k
( ) ( )

( ) ( )
� �

�

� �
�

�

� �
1 2 2 2 2
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 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 59

 Applying the transform pairs of  Eqs. (3.11 a )  and  (3.11 b )  to the quadratic terms on the 
right gives 

    
x t F t Be kt

C aB

k
e kat at( ) ( )� � �

�� �
1 cos sin



 tt

 
  (3A.6)  

where  F  1  ( t ) is the result of inverting  F  1  ( s );  B  and  C  are coefficients of polynomial 
 Bs   �   C  in numerator of quadratic term; and  a  and  k  correspond to the roots of the qua-
dratic, roots  �   �  a   �   kj.  Let’s use this generalized approach to solve a problem that 
we’re already familiar with,  Example 3.4 . 

 Recall from  Eq. (3.9)  that 

    
x s

A

s

Bs C

s s s

s

s s
( ) � �

�

� �
� �

� �

� �2 22 2

1 2

2 2    
 The roots of the quadratic in the denominator are 

    
Roots �

� � �
� � �

2 4 8

2
1 j

    
 Summarizing the constants required for  Eq. (3A.6) , we have   

A B C a k F1(s)
1 �1 �2 1 1 1/s

   Substituting these quantities into  Eq. (3A.6) , we obtain the solution 

    
x t e t e t et t( ) ( )

( )( )
� � � �

� � �
� �� �1 1

2 1 1

1
1cos sin �� �t t t( )cos sin

  
 which is the same as our previous result. 

 We now apply this method to another example. 

  Example 3A.9 .  Solve 

    

x s
s s s

A

s

Bs C

s s
( ) �

� �
� �

�

� �

1

2 5 2 52 2( )
    

 Applying the quadratic equation to the quadratic term gives 

    
Roots �

� �
� �

2 4 20

2
1 2 j

    
 Thus, we find that  a   �   � 1 and  k   �  2. Solving for  A, B,  and  C  gives     A � 1

5 ,   

B � � 1
5 , and     C � 2

5 .   Introducing these values into the expression for  x ( s ) and 

applying  Eq. (3A.6)  give 

    
x t e t e tt t( ) � � �1

5
1
5

1
102 2cos sin
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        3A.9  USING COMPLEX ALGEBRA 
FOR A QUADRATIC TERM 

  Reworking  Example 3.4  using the complex roots of the quadratic, we can arrive at the 
partial fraction expansion 

    
x s

s s j s j

A

s

B

s j

C

s j
( )

( )( )
�

� � � �
� �

� �
�

� �

2

1 1 1 1 
  (3A.7)

  

where  A, B,  and  C  are constants to be evaluated, so that this relation is an identity in 
 s.  The presence of complex factors does not alter the Heaviside procedure at all. How-
ever, the computations are more tedious. 

 To obtain  A,  multiply  Eq. (3A.7)  by  s  and set  s   �  0: 

    
A

j j
�

� �
�

2

1 1
1

( )( )    
 To obtain  B,  multiply  Eq. (3A.7)  by  s   �  1  �   j  and set  s   �   � 1  �   j:  

    
B

j j

j
�

� � �
�

� �2

1 2

1

2( )( )    
 To obtain  C,  multiply  Eq. (3A.7)  by  s   �  1  �   j  and set  s   �   � 1  �   j:  

    
C

j j

j
�

� �
�

� �2

1 2

1

2( )( )    
 Therefore, 

    
x s

s

j

s j

j

s j
( ) � �

� �

� �
�

� �

� �

1 1

2

1

1

1

2

1

1    
 This is the desired result. To invert  x ( s ), we may now use the fact that 1/( s   �   a ) is the 
transform of  e   �  t  . The fact that  a  is complex does not invalidate this result, as can be 
seen by returning to the derivation of the transform of  e   �  at  . The result is 

    
x t

j
e

j
ej t j t( ) ( ) ( )� �

� �
�

� �� � � �1
1

2

1

2
1 1

    
 By using the identity 

    
e e bt j bta jb t at( ) ( )� � �cos sin

 
  this can be converted to 

    x t e t tt( ) ( )� � ��1 cos sin    
 The details of this conversion are recommended as an exercise for the reader. 

 A more general discussion of this case will promote understanding. It was seen in 
 Example 3.4  that the complex conjugate roots of the denominator of  x ( s ) gave rise to a 
pair of complex terms in the partial fraction expansion. The constants in these terms,  B  
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and  C,  proved to be complex conjugates ( � 1  �   j )/2 and ( � 1  �   j )/2. When these terms 
were combined through a trigonometric identity, it was found that the complex terms 
canceled, leaving a real result for  x ( t ). Of course, it is necessary that  x ( t ) be real, since 
the original differential equation and initial conditions are real. 

 This information may be utilized as follows: The general case of complex conju-
gate roots arises in the form 

    
x s

F s

s k jk s k jk
( )

( )
�

� � � �1 2 1 2( )( ) 
  (3A.8)  

where  F ( s ) is some real function of  s.  
 For instance, in  Example 3A.9  we had 

    
F s

s
k k( ) � � �

2
1 11 2

    
 Expanding  Eq. (3A.8)  in partial fractions gives 

    

F s

s k jk s k jk
F s

a jb

s k j

( )
( )

� � � �
� �

�

� �1 2 1 2
1

1 1

1( )( ) kk

a jb

s k jk2

2 2

1 2
�

�

� �





   

(3A.9)
  

where  a  1 ,  a  2 ,  b  1 , and  b  2  are the constants to be evaluated in the partial fraction expan-
sion and  F  1  ( s ) is a series of fractions arising from  F ( s ). 

 Again, in  Example 3A.9 , 

    
a a b b F s

s
1 2 1 2 1

1

2

1

2

1

2

1

2

1
� � � � � � � �( )

    
 Now, since the left side of  Eq. (3A.9)  is real for all real  s,  the right side must also be 
real for all real  s.  Since two complex numbers will add to form a real number if they are 
complex conjugates, the right side will be real  for all real s  if and only if the two terms 
are complex conjugates. Since the denominators of the terms are conjugates, this means 
that the numerators must also be conjugates, or 

    

a a

b b

2 1

2 1

�

� �    
 This is exactly the result obtained in the specific case of  Example 3.4 . With this infor-
mation,  Eq. (3A.9)  becomes 

    

F s

s k jk s k jk
F s

a jb

s k j

( )
( )

� � � �
� �

�

� �1 2 1 2
1

1 1

1( )( ) kk

a jb

s k jk2

1 1

1 2
�

�

� �





    (3A.10)   

 Hence, it has been established that terms in the inverse transform arising from the com-
plex conjugate roots may be written in the form 

    
a jb e a jb ek jk t k jk t

1 1 1 1
1 2 1 2� � �� � � �( ) ( )( ) ( )
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 Again, by using the identity 

    
e e C t j C tC jC t C t1 2 1 2 2

� � �( ) ( )cos sin
   

this reduces to 

    2 1 1 2 1 2e a k t b k tk t� �cos sin( )   (3A.11)   

 Let us now rework  Example 3A.9,  using  Eq. (3A.11) . We return to the point at 
which we arrived, by our usual techniques, with the conclusion that 

    
B

j
�

� �1

2    
 Comparison of  Eqs. (3A.7)  and  (3A.10)  and the result for  B  show that we have two 
possible ways to assign  a  1 ,  b  1 ,  k  1 , and  k  2  so that we match the form of  Eq. (3A.10) . 
They are 

    

a a

b b

1
1
2 1

1
2

1
1
2 1

1
2

� � � �

� � �
 

  or 

    

k k

k k

1 1

2 2

1 1

1 1

� �

� � �
    

 The first way corresponds to matching the term involving  B  with the first term of the 
conjugates of  Eq. (3A.10) , and the second to matching it with the second term.  In either 
case,  substitution of these constants into  Eq. (3A.11)  yields 

    � ��e t tt ( )cos sin 
  which is, as we have discovered, the correct term in  x ( t ). 

 What this means is that one can proceed directly from the evaluation of one of the 
partial fraction constants, in this case  B,  to the complete term in the inverse transform, 
in this case  �  e   �  t   (cos  t   �  sin  t ). It is not necessary to perform all the algebra, since it 
has been done in the general case to arrive at  Eq. (3A.11) . 

 Another example will serve to emphasize the application of this technique. 

  Example 3A.10 .  Solve 

    

d x

dt
x e x x

2

2
14 2 0 0 0� � � �� ( ) ( )′

    
 The Laplace transform method yields 

    

x s
s s

( )
( )

�
� �

2

4 12( )
    

cou9789x_ch03_032-068.indd   62cou9789x_ch03_032-068.indd   62 8/14/08   2:33:11 PM8/14/08   2:33:11 PM



Confirming Pages

 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 63

 Factoring and expanding into partial fractions give 

    

2

1 2 2 1 2 2( )( )( )s s j s j

A

s

B

s j

C

s j� � �
�

�
�

�
�

�   (3A.12)   

 Multiplying  Eq. (3A.12)  by  s   �  1 and setting  s   �   � 1 yields 

    
A

j j
�

� � � �
�

2

1 2 1 2

2

5( )( )    
 Multiplying  Eq. (3A.12)  by  s   �  2 j  and setting  s   �   � 2 j  yield s

    
B

j j

j
�

� � �
�

� �2

2 1 4

2

10( )( )    
 Matching the term 

    

( ) /� �

�

2 10

2

j

s j 
  with the first term of the conjugates of  Eq. (3A.10)  requires that 

    
a b k k1

2
10

1
5 1

1
10 1 20 2� � � � � � �

    
 Substituting in  Eq. (3A.11)  results in 

    
� �2

5
1
52 2cos sint t

    
 Hence the complete answer is 

    
x t e t tt( ) � � ��2

5
2
5

1
52 2cos sin

    
 Readers should verify that this answer satisfies the differential equation and initial 
conditions. In addition, they should show that it can also be obtained by matching 
the term with the second term of the conjugates of  Eq. (3A.10)  or by determining 
 C  instead of  B.      

  SUMMARY 

 In this appendix, we have presented and discussed several properties of Laplace trans-
forms. As we continue our studies with first-order systems, these properties will prove 
quite useful in our understanding and analysis of the process dynamics.  

  PROBLEMS 

   3A.1. If a forcing function  f (t)  has the Laplace transform 

    
f s

s

e

s

e

s

s s

( ) � � �
� �1
2

3

 
    graph the function  f (t) .  
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 The appendix to this chapter is a grouping of several Laplace transform theorems 
that will find later application. In addition, a discussion of the impulse function  d   ( t ) is 
presented there. Unavoidably, this appendix is rather dry. It may be desirable for the 
reader to skip directly to Chap. 4, where our control studies begin. At each point where 
a theorem of App. 3A is applied, reference to the appropriate section of the appendix 
can be made.  

  PROBLEMS 

    3.1.  Solve the following by using Laplace transforms.

   ( a )
     

d x

dt

dx

dt
x x x

2

2 1 0 0 0� � � � �( ) ( )′
     

  
( b )

     

d x

dt

dx

dt
x x x

2

2 2 1 0 0 0� � � � �( ) ( )′
     

  
( c )

     

d x

dt

dx

dt
x x x

2

2 3 1 0 0 0� � � � �( ) ( )′
       

  Sketch the behavior of these solutions on a single graph. What is the effect of the coefficient 
of  dx/dt?   

   3.2.  Solve the following differential equations by Laplace transforms.

   
( a )

     

d x

dt

d x

dt
t x x x x

4

4

3

3 0 0 0 0� � � � �cos ( ) ( ) ( ) (′ ′′′ ′′ 00 1) �
     

  ( b )
     

d q

dt

dq

dt
t t q q

2

2
2 2 0 4 0 2� � � � � �( ) ( )′

        

   3.3.  Invert the following transforms.

   
( a )

     

3

1 42 2

s

s s� �( )( )
     

  
( b )

     

1

2 52s s s� �( )
     

  
( c )

     

3 3 2

1

3 2

2 2
s s s

s s

� � �

�( )         

   3.4.  Expand the following functions by partial fraction expansion. Do  not  evaluate coefficients 
or invert expressions.

   

( a )

     

X s
s s s

( )
( ) ( )

�
� � �

2

1 1 32 2( )
     

  ( b )
     

X s
s s s s

( )
( )( )( )

�
� � �

1

1 2 33 3
     

  ( c )
     

X s
s s s s

( )
( )( )( )( )

�
� � � �

1

1 2 3 4         
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    3.5.     ( a )  Invert:  x ( s )  �  1/[ s ( s   �  1)(0.5 s   �  1)]  
  ( b ) Solve:  dx / dt   �  2 x   �  2   x (0)  �  0     

    3.6.  Obtain  y ( t ) for

   
( a )

     
y s

s

s s
( ) �

�

� �

1

2 52
     

  ( b )
     

y s
s s

s
( ) �

�2

4
2

     

  ( c )
     

y s
s

s
( )

( )
�

�

2

1 3
        

    3.7.     ( a )  Invert the following function. 

    
y s s( ) � �1 12 2

/ ( )
     

  ( b ) Plot  y  versus  t  from 0 to 3 p .     
    3.8.  Determine  f (t)  for  f ( s )  �  1/[ s  2  ( s   �  1)].  

    3.9.  Solve the following differential equations.

   
( a )

     

d x

dt

dx

dt
x u t x x

2

2 4 3 0 0 0� � � � �( ) ( ) ( )′
     

  ( b )
     

d x

dt

dx

dt
x u t x x

2

2 2 0 0 1� � � � �( ) ( ) ( )′
     

  
( c )

     
2 2 0 0 0

2

2
d x

dt

dx

dt
x u t x x� � � � �( ) ( ) ( )′

        

   3.10.  Use the trigonometric identities below to express the solution to Prob. 3.9 c  in terms of sine 
only. ( Note:  A sine and a cosine wave with the same frequency can be expressed as a single 
sine wave of the same frequency. The resulting sine wave will have a different amplitude 
and be phase-shifted from the original waves. This result will be important when we dis-
cuss frequency response in Chap. 15.) 

    

a b a b a b

A B A

1 2 3cos sin sin

sin sin

� � � �

� �

( )

( ) cos sin cosB B A�     

   3.11.  Find  f (t)  if  F ( s ) is

   
( a )

     

1

1 23( ) ( )s s� �      

  ( b )
     

s

s s

�

� �

1

2 52
     

  
( c )

     

s s

s s s

2

3 2
6

2 2

� �

� � �      

  
( d )

     

s

s s

�

�

1

22 ( )      
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( e )

     

1

1 1s As Bs( )( )� �      

  
( f )

     

s

s s

�

�

1

2 1( )      

  ( g )
     

s

s s

�

� �

1

3 12
     

  
( h )

     

s

s s

�

�

1

2 12 ( )         

   3.12.  Find the solution to the following set of equations. 

    

dx

dt
x x

dx

dt
x x e

x
t

1
1 2

2
1 2

1

2 3 1

2
0

� � �

� � �

�










( ) xx2 0 0( ) �

    

   Hint:  Transformed equations can be manipulated algebraically to solve for each unknown 
(i.e., two equations in two unknowns) and then inverted separately.  

   3.13.  Use MATLAB.
   ( a ) Find the partial fraction expansions for Prob. 3.11.  
  ( b ) Invert the transforms in Prob. 3.11, using the  ILAPLACE  command.  
  ( c ) Graph the solutions to Prob. 3.11 (skip Prob. 3.11 e ).     

   3.14.  Use the MATLAB  DSOLVE  command to solve Prob. 3.12.  

   3.15.  Use the MATLAB  DSOLVE  command to solve Prob. 3.9.  

   3.16.     ( a )  Solve the differential equations in Prob. 2.3, using partial fractions.  
  ( b ) Use the MATLAB  DSOLVE  command to solve the ODEs in Prob. 2.3.       
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