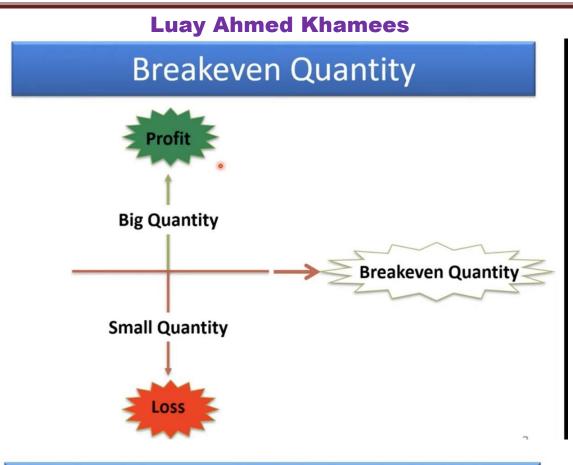
Luay Ahmed Khamees

Tikrit University

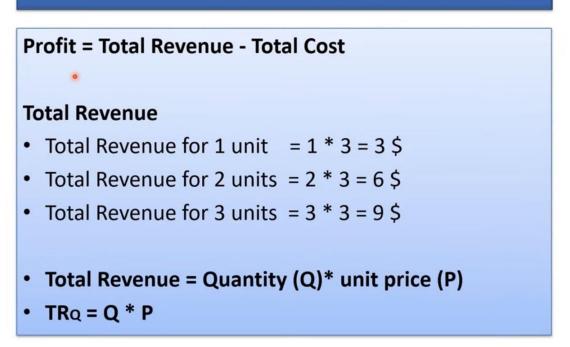
The College of Petroleum Processes Engineering

Petroleum and Gas Refining Engineering Department

Management and economics of petroleum

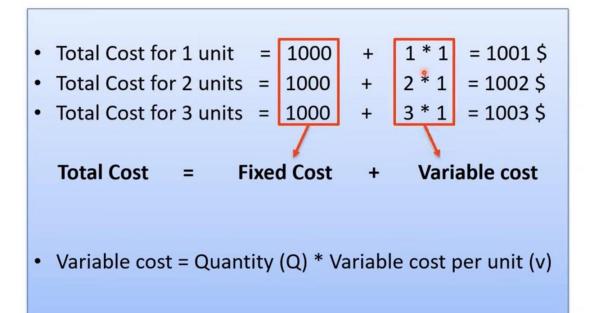

projects

Fourth Class


Lecture (6)

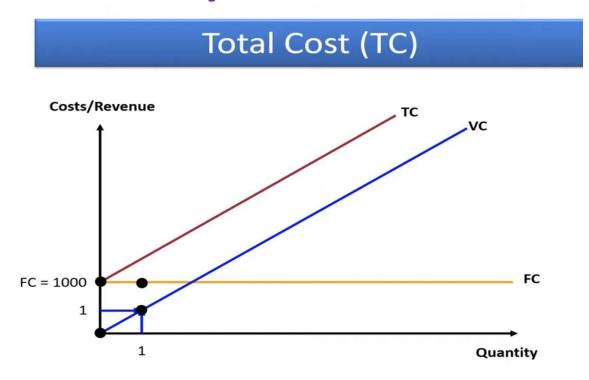
By

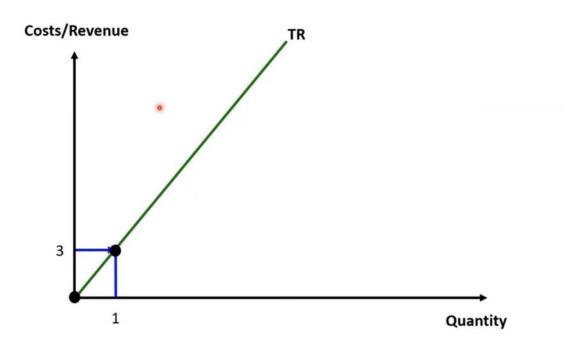
Luay Ahmed Khamees



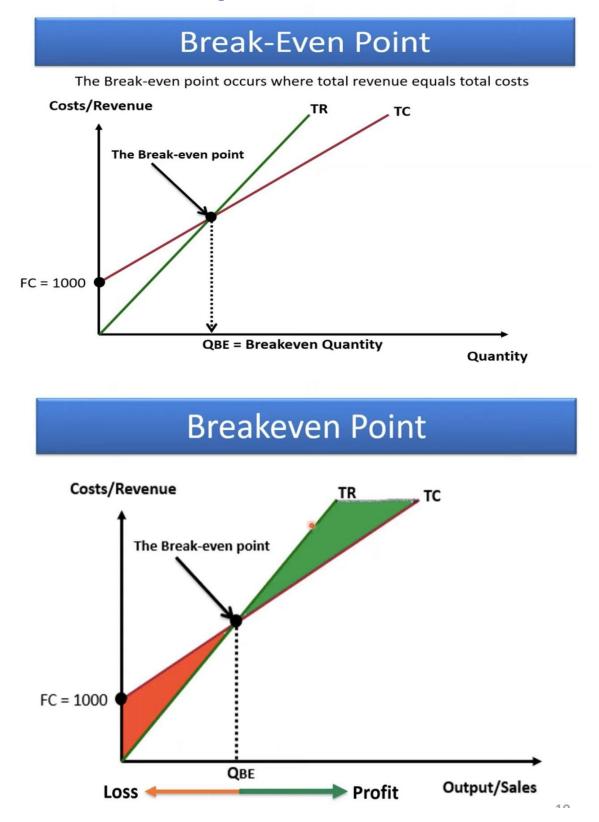
Profit Calculation

Luay Ahmed Khamees


Total Cost (TC)


Cost Examples

- Fixed Costs (FC) do not change with volume of production
 - Building costs
 - Minimum labor costs
 - (500 \$/Month or 400 \$/month + 1 \$/unit)
 - Depreciation cost Capital recovery of equipment (SLM or SYM)
- Variable Costs (VC) change with the volume of production
 - Materials costs
 - Labor costs (500 \$/Month or 400 \$/month + 1 \$/unit)
 - Depreciation cost Capital recovery of equipment (Activity method)


Luay Ahmed Khamees

Total Revenue (TR)

Luay Ahmed Khamees

Luay Ahmed Khamees

Breakeven Quantity (QBE)

- Total Revenue (TR) = P * Q
- P = unit price
- Total Cost (TC) = FC + VC
- Variable Cost (VC) = v * Q
- -v = variable cost per unit
- At breakeven point: TR = TC

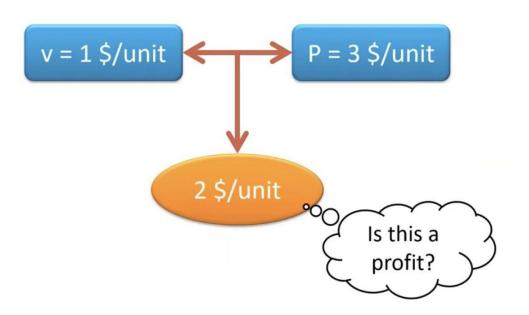
$$P * Q_{BE} = FC + v * Q_{BE}$$

$$P * QBE - v * QBE = FC \rightarrow QBE (P - v) = FC$$

 $OBE = FC / (P - v)$

Example 1

Determine the Breakeven Quantity if FC = 1000\$, v = 1\$/unit, and P = 3\$/unit.


Solution

Breakeven Quantity(QBE) = FC / (P - v)

= 500 units

Luay Ahmed Khamees

Contribution

Contribution

Unit Contribution

- Unit Contribution = P v
- Unit Contribution = 3 1 = 2\$

Total Contribution

- Total Contribution = Unit Contribution * Q
- Total Contribution = (P-v) * Q = P*Q v*Q
- Total Contribution = TR VC

Profit

– Profit = TR– VC– FC = Total Contribution - Fixed Costs

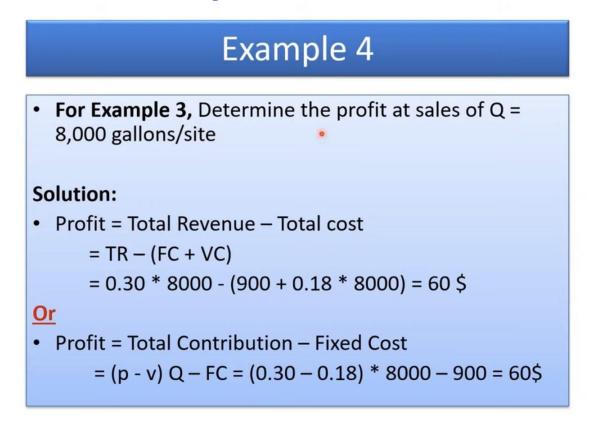
Luay Ahmed Khamees

Example 2

- Given
 - FC = 1000 \$, v = 1 \$/unit, and P = 3 \$/unit and Q = 600 units
- Required
 - Calculate the Unit contribution, Total contribution and Profit

Solution

- Unit contribution = p v = 3 1 = 2 \$
- Total contribution = 2 * 600 = 1200 \$
- Profit = 1200 1000 = 200 \$


Example 3

- Water vending machine: FC = \$900 per month per site, p = 30¢ per gallon, and v = 18¢ per gallon. Find the Breakeven Quantity?
- Solution

 $Q_{BE} = 900 / (0.30 - 0.18) = 7500$ gallon

- Must sell 7500 gallons per month per site to just breakeven.
- Selling more 7500 means a profit is realized

Luay Ahmed Khamees

Homework:

a)

Problem (1): For a vending machine project, the site cost = 12,000 SR/month, material cost = 1 SR/unit, and insurance cost = 500 SR/month, the labor cost = 1,500 SR/month, unit price = 3 SR per unit, and electricity cost = 1000 SR/ month and = 0.5 SR/unit.

- a) Find the Unit Contribution and the Breakeven Quantity.
- b) Determine the Total Contribution and Total Profit at sales of Q =15,000 unit.

Problem (2): For a vending machine project, the site cost = 5,000 SR/month, material cost = 0.5 SR/unit, and insurance cost = 400 SR/month, the labor cost = 1,000 SR/month, unit price = 1 SR per unit, and electricity cost = 100 SR/ month and =0.1 SR/unit.

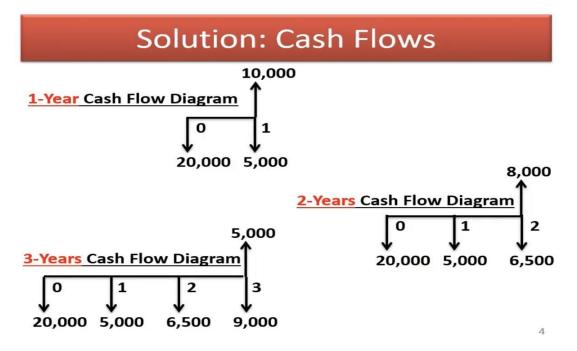
- a) Find the Unit Contribution and the Breakeven Quantity.
- b) Determine the **Total Contribution** and **Total Profit** at sales of Q = 25,000 unit.

P = 1 v = (0.1 + 0.5) = 0.6 FC = (5,000 + 400 + 1,000 + 100) = 6,500

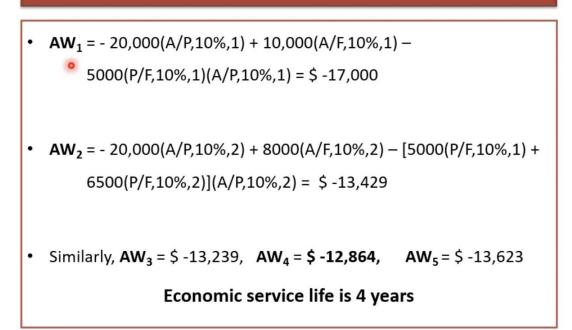
Unit Contribution = $P - v = 1 - 0.6 = 0.4 \ SR$ Breakeven Quantity = $Q_{Be} = \frac{FC}{P - v} = \frac{6,500}{1 - 0.6} = 16,250 \ unit$

Luay Ahmed Khamees

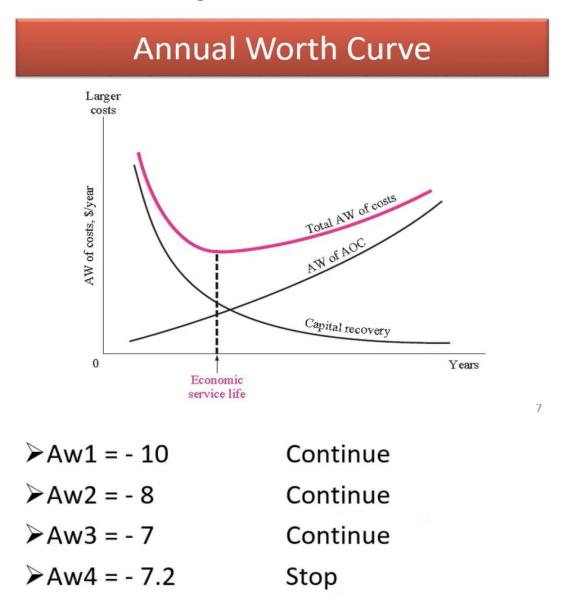
REPLACEMENT AND RETENTION DECISIONS


RETENTION DECISIONS ECONOMIC SERVICE LIFE

Example1: Economic Service Life


Determine the ESL of an asset which has the costs shown below. Let i = 10%

End of Year	Cost, \$	Salvage value,\$
0	-20,000	-
1	-5,000	<mark>0</mark> 10,000
2	-6,500	8,000
3	-9,000	5,000
4	-11,000	5,000
5	-15,000	3,000


Luay Ahmed Khamees

Solution

Luay Ahmed Khamees

The ESL is 3 Years and Aw = -7

Luay Ahmed Khamees

REPLACEMENT DECISIONS

asset or system is: "Should it be replaced now or later?"

- If the decision is to replace, the study is complete.
- If the decision is to retain, the cost estimates and decision will be revisited each year.

Replacement or Retention?

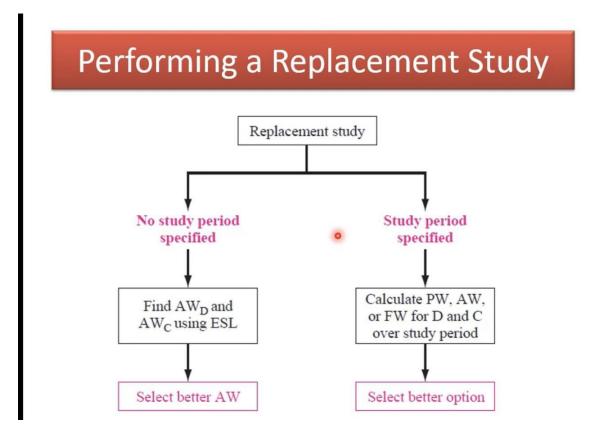
- The fundamental question answered by a replacement study about a currently installed asset or system is: "Should it be replaced now or later?"
- If the decision is to replace, the study is complete.
- If the decision is to retain, the cost estimates and decision will be revisited each year.

Luay Ahmed Khamees

Basics

The need for a replacement study can develop from several sources:

- 1. Reduced performance: Physical deterioration, reduced reliability or productivity.
- 2. Altered requirements: New requirements of accuracy, speed, or other specifications cannot be met by the existing equipment or system
- 3. Obsolescence: International competition and rapidly changing technology make currently used systems and assets perform acceptably but less productively than equipment coming available.


Definitions

- Defender currently installed asset
- Challenger the "best" alternative to replace the defender
- AW primary economic measure of comparison between defender and challenger.
- Economic Service Life (ESL) the number of years at which the lowest AW of cost for an alternative occurs
- Defender First Cost the current market value of the defender
- Challenger First Cost is the actual investment needed for acquisition and installation.

Luay Ahmed Khamees

Challenger First Costs

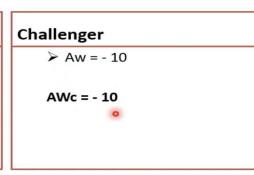
- On occasion, an unrealistically high trade-in value may be offered for the defender compared to its fair market value. In this event, the net cash flow required for the challenger is reduced.
- The correct amount to recover and use in the economic analysis for the challenger is its first cost minus the difference between the trade-in value (TIV) and market value (MV) of the defender.
- In equation form, The challenger First Cost = P- (TIV - MV)

Luay Ahmed Khamees

1- No Study Period Specified

Decision Rule

Defender	Challenger
	➤ Aw = - 5
➤ Aw1 = - 10	
➤ Aw2 = - 8	AWc = - 5
➤ Aw3 = - 7 o	
➤ Aw4 = - 7.2	
The ESL is 3 Years and AWd = - 7	


AWc > AWd

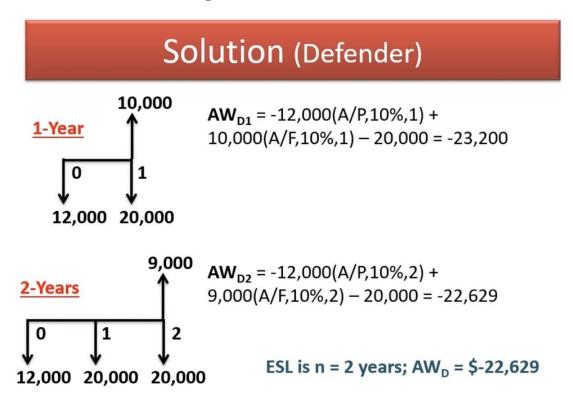
Replace Now

Decision Rule (Cont.)

Defend	der

Aw1 = - 10
Aw2 = - 8
Aw3 = - 7
Aw4 = - 7.2
The ESL is 3 Years and AWd = - 7

AWd > Awc


Keep for 3 years then replace

Luay Ahmed Khamees

Example 2

 An asset purchased 2 years ago for \$40,000 is harder to maintain than expected. It can be sold now for \$12,000 or kept for a maximum of 2 more years, in which case its operating cost will be \$20,000 each year, with a salvage value of \$10,000 after 1 year or \$9000 after two years. A suitable challenger will have an annual worth of \$-24,000 per year. At an interest rate of 10% per year, should the defender be replaced now, one year from now, or two years from now?

Luay Ahmed Khamees

Solution (Decision)

 Defender
 Challenger

 • $AW_{D1} = -23,200$ • $AW_c = -24,000$

 • $AW_{D2} = -22,629$ •

Lower AWD2 = \$-22,629 Keep defender for 2 years

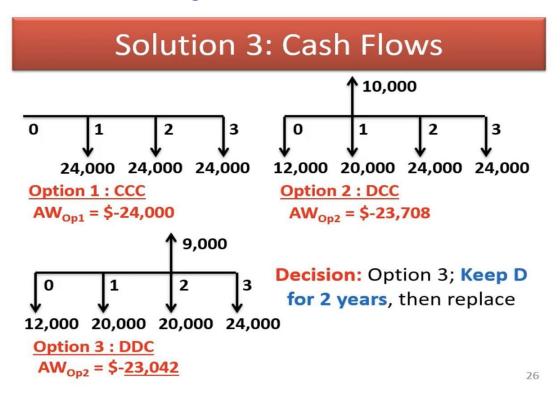
Note: conduct one-year-later analysis next year

Luay Ahmed Khamees

2- Specified Study Period

- Same procedure as before, except calculate AW values over study period instead of over ESL years of n_D and n_C
- It is necessary to develop all viable defenderchallenger options and calculate AW or PW for each one over study period
- Select option with lowest cost or highest income

Luay Ahmed Khamees


Example 3

An asset purchased 2 years ago for \$40,000 is harder to maintain than expected. It can be sold now for \$12,000 or kept for a maximum of 2 more years, in which case its operating cost will be \$20,000 each year, with a salvage value of \$10,000 after 1 year or \$9000 after two years. A suitable challenger will have an annual worth of \$-24,000 per year. At an interest rate of 10% per year and over a study period of exactly 3 years, determine when the defender should be replaced.

Developing all viable options

OPTION	YEAR 1	YEAR 2	YEAR 3
1	С	С	С
2	D	С	С
3	D	D	С

Luay Ahmed Khamees

Solution 3 (Cont.)

- AW₀₁ = - 24,000

- AW₀₂ = - 12,000(A/P,10%,3) - 10,000(P/F,10%,1) (A/P,10%,3)- 24,000(F/A,10%,2) (A/F,10%,3) = - 23,708

- AW₀₃ = - 12,000(A/P,10%,3) 20,000(P/A,10%,2)(A/P,10%,3)+ 9,000(P/F,10%,2)
(A/P,10%,3)- 24,000(A/F,10%,3) = - 23,042

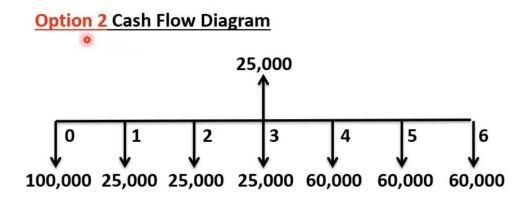
Luay Ahmed Khamees

Example 4

- Replacement study information for an equipment placed into service 5 years ago:
 - The current equipment will have to serve for either 2, 3 or 4 more years before replacement.
 - The equipment has a current market value of \$100,000; expected to decrease by \$25,000 per year.
 - The AOC is \$25,000 per year.
 - The replacement challenger is a fixed-price contract to provide the same services at \$60,000 per year for a minimum of 2 years and a maximum of 5 years.
 - Use MARR of 12% per year to perform a replacement study over a 6year period to determine when to sell the current equipment and purchase the contract services.

Luay Ahmed Khamees

Solution 4

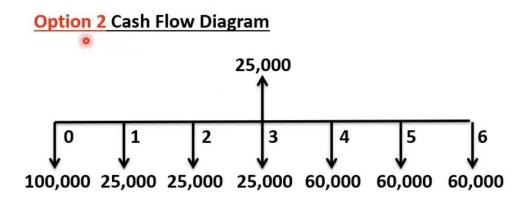

• Since the defender will be retained for 2, 3 or 4 years, there are three viable options. And the challenger shall be used 2, 3, 4, or 5 years

0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Option 1	D	D	с	с	с	с
Option 2	D	D	D	с	с	с
Option 3	D	D	D	D	с	с

Luay Ahmed Khamees

Solution 4: Cash Flows (Cont.)

A sample PW computation for option 2 is:



PW₂ = - 100,000 - 25,000(*P*/A,12%,3) + 25,000(*P*/F,12%,3) - 60,000(*F*/A,12%,3)(*P*/F,12%,6) = - 244,817

Luay Ahmed Khamees

Solution 4: Cash Flows (Cont.)

A sample PW computation for option 2 is:

 $\begin{aligned} \mathsf{PW}_2 &= -100,000 - 25,000(\textit{P/A},12\%,3) + 25,000(\textit{P/F},12\%,3) - \\ & 60,000(\textit{F/A},12\%,3)(\textit{P/F},12\%,6) = -244,817 \end{aligned}$

Solution 4

Results table

Option	Def.	Ch.	PW
Option 1	2	4	-247,666
Option 2	3	3	-244,817
Option 3	4	2	<u>-240,369</u>

Option 3 has the lowest cost PW value (\$240,369). Keep the defender all 4 years, then replace it.