Tikrit University

The College of Petroleum Processes Engineering

Petroleum and Gas Refining Engineering Department

Management and economics of petroleum projects

Fourth Class

Lecture (5)

By

Luay Ahmed Khamees

Depreciation Models

Depreciation – Definition

- Depreciation is the reduction of an asset's value over time.
- by:
 - Wear, Use, Deterioration, Obsolescence
- Why depreciation?

Taxes = (income - expenses - depreciation) (tax rate)

Why depreciation?

 The capital investments of a corporation in tangible assets; equipment, computers, vehicles, buildings, and machinery are commonly recovered on the books of the corporation through depreciation.

Depreciable?

- Property is depreciable if it must:
 - be used in business
 - have a determinable useful life which is longer than one year
 - wear out, get used up, or become obsolete
 - not be inventory, stock in trade, or investment property
 - Land is not depreciable because it has an infinite life.

Problem

- Variable Cost per Unit = 1 SR
- Unit Price = 3 SR
- Machine First Cost = 50,000 SR
- Quantity Sold = 1 unit/year
 - Profit = ????????????

Solution

- Profit = Total Revenue Total Cost
- Profit = [1*3] [1*1] = +2?
- Profit = [1*3] [(1*1) + 50,000] = -49,998?
- Profit = [1*3] [(1*1) + 8,000] = -7,998?

Depreciation

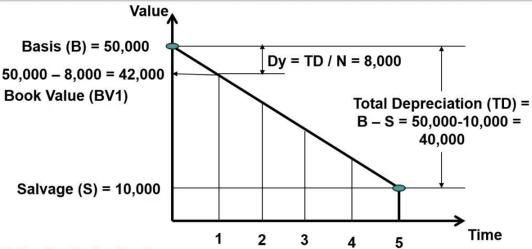
Types of Depreciation

- Book Depreciation
 - Used for internal managerial decision making.
 - Management is free to use any method they so choose to compute book depreciation amounts
- Tax Depreciation
 - Used by a firm for income tax reporting
 - Follows strict rules and regulations.

Luay Ahmed Khamees

Depreciation Methods

- Depreciation Methods
 - 1. Straight-Line Method (SL),
 - 2. Activity Method,
 - 3. Sum-of-the-Years Digits Method (SYD).


Straight-Line Method

1

Example 1

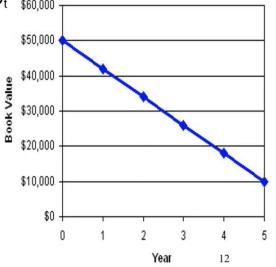
- Given:
 - First cost or Basis (B) is \$50,000
 - Machine life (Recovery Period) is 5 years
 - Estimated salvage (S) of \$10,000.
- Required:
 - Depreciation rate (Dy)
 - The Book Value (BV) at the end of each year

Solution

BV1 = B - Dy1 = B - Dy1

BV2 = BV1 - Dy2

BV3 = BV2 - Dy3


BVn = Salvage value

Solution (Cont.)

SL depreciation: $D_t = (50,000-10,000)/5 = \$8,000$

SL book value: $BV_t = BV_{t-1} - D_t$ \$60,000

Year, t	D _t	BV _t
0	0	\$50,000
1	8,000	42,000
2	8,000	34,000
3	8,000	26,000
4	8,000	18,000
5	8,000	10,000

Depreciation Terms

- First Cost or Basis (B) of an asset is:
 - Purchasing cost plus, Delivery costs plus,
 Installation costs and any other costs associated with preparing the asset for use.
- Salvage Value (SV) is the estimated market value at the end of the asset's useful life
 - Expressed as an estimated amount or as a percentage of the first cost

Luay Ahmed Khamees

Salvage Value

- Book Value of an Asset (BVt)
 - The remaining, undepreciated capital investment on the firm's books after the accumulated amounts of depreciation have been subtracted from the original cost basis.
- Recovery Period is Number of years over which basis of property is recovered through accounting process.

Straight-Line: The Standard (SL)

- Notations
 - B = The Basis or, first cost
 - N = The Recovery Period,
 - S = Estimated Salvage Value at t = n,
 - TD = The total depreciation = B S
 - Dy = Annual depreciation charge = TD / N

Activity Method

2

Activity Measures

Asset	Activity measure		
Vehicles	Kilometers		
Printer	Number of printed papers		
Crane	Number of working hours		

Example 2 (Activity Method)

Cost of crane \$500,000
Estimated useful life 5 years
Estimated salvage value \$50,000
Productive life in hours 30,000 hours

If the company used the crane for 4,000 hours in the first year, calculate:

- 1. The depreciation charge for the first year
- 2. The book value at the end of the first year

Solution

- B = 500,000\$
- S = 50,000\$

$$TD = B - S = 500,000 - 50,000 = 450,000$$
\$

• Life = 5 years or 30,000 hrs

$$\triangleright$$
 Dh = TD / Lh = 450,000 / 30,000 = 15 \$/hr

• Dy = Dh * Working hours/year

$$\triangleright$$
Dy1 = 15 * 4,000 = 60,000

$$BV1 = B - Dy1 = 500,000 - 60,000 = 440,000$$
\$

Sum-of-the-Years' Digits Method

3

Sum-of-the-Years'-Digits Method

- Sum-of-the-Years'-Digits. Each fraction uses the sum of the years as a denominator (5 + 4 + 3 + 2 + 1 = 15). The numerator is the number of years of estimated life remaining as of the beginning of the year.
- Alternate sum-of-the-years' calculation = n
 (n+1) / 2

Example 3 (SYD Method)

Cost of crane	\$500,000
Estimated useful life	5 years
Estimated salvage value	\$ 50,000
Productive life in hours	30,000 hours

Sum-of-the-Years'-Digits. Each fraction uses the sum of the years as a **denominator** (5 + 4 + 3 + 2 + 1 = 15). The **numerator** is the number of years of estimated life remaining as of the beginning of the year.

Alternate sum-of-the-years' calculation = n (n+1) / 2

Luay Ahmed Khamees

SYD Method

Year	Dep. Fraction	Dep. Expenses	End of Year Book Value
1	5/15	450,000 * (5/15) = 150,000	500,000 - 150,000 = 350,000
2	4/15	450,000 * (4/15) = 120,000	350,000 - 120,000 = 230,000
3	3/15	450,000 * (3/15) = 90,000	230,000 – 90,000 = 140,000
4	2/15	450,000 * (2/15) = 60,000	140,000 - 60,000 = 80,000
5	1/15	450,000 * (1/15) = 30,000	80,000 - 30,000 = 50,000
Sum = 15	15/15=1	450,000	

Problem (1): The first cost of a machine is 15,000 SR with a life of 4 years or 1000 working hours and estimated salvage of 5,000 SR. if the company used this machine as shown in the following table:

year	1	2	3	4
Working hours	100	200	300	400

Calculate the book value at the end of the fourth year using:

Luay Ahmed Khamees

a) Straight line method

$$B = 15000 SR$$

$$S = 5000 SR$$

$$N = 4$$

$$TD = B - S = 1500 - 5000 = 10000 SR$$

$$Dy = \frac{TD}{N} = \frac{10000}{4} = 2500 \, SR/YEAR$$

$$Bv_1 = B - Dy_1 = 15000 - 2500 = 12500 SR$$

$$Bv_1 = B - Dy_1 = 15000 - 2500 = 12500 SR$$

$$Bv_2 = Bv_1 - Dy_2 = 12500 - 2500 = 10000 SR$$

$$Bv_3 = Bv_2 - Dy_3 = 10000 - 2500 = 7500 SR$$

$$Bv_4 = Bv_3 - Dy_4 = 7500 - 2500 = 5000 SR$$

Luay Ahmed Khamees

b) Activity method

$$B = 15000 SR$$

$$S = 5000 SR$$

$$life = 1000 hours$$

$$TD = B - S = 1500 - 5000 = 10000 SR$$

$$Dh = \frac{tD}{life} = \frac{10000}{1000} = 10 \, SR/hr$$

$$Dy = Dh * working hours/year$$

$$Dy = Dh * working hours/year$$

$$Dy_1 = 10 * 10 = 1000 SR$$

$$Bv_1 = B - Dy_1 = 15000 - 1000 = 14000 \text{ SR}$$

$$Dy_2 = 10 * 200 = 2000 SR$$

$$Bv_2 = Bv_1 - Dy_2 = 14000 - 2000 = 12000 \text{ SR}$$

$$Dy_3 = 10 * 300 = 3000 SR$$

$$Dy_3 = 10 * 300 = 3000 SR$$

$$Bv_3 = Bv_2 - Dy_3 = 12000 - 3000 = 9000 \text{ SR}$$

$$Dy_4 = 10 * 400 = 4000 SR$$

$$Bv_4 = Bv_3 - Dy_4 = 9000 - 4000 = 5000 \text{ SR}$$

Luay Ahmed Khamees

c) sum-of-the-digits method

Year	Dep. Fraction	Dep. Exposes	End of year
			Book value
1	4/10	10000*4/10 =	15000 – 4000
		4000	= 11000
2	3/10	10000*3/10 =	11000 – 3000
		3000	= 8000
3	2/10	10000*2/10 =	8000 – 2000 =
	3 - 3 - 3	2000	÷ 6000
4	1/10	10000*1/10 =	6000 - 1000 =
		1000	5000
Sum = 10	10/10	1000	

Luay Ahmed Khamees

problem (2): The first cost of a machine is 40,000 SR with a life of 5 years or 2,000 working hours and the estimated salvage of 10,000 SR. If the company used this machine as shown in the following table:

year	1	2	3	4	5
Working hours	500	300	400	300	500

Calculate the Book Value at the end of the five years using:

a) Activity method

$$B = 40000 SR$$
 $S = 10000 SR$ $life = 2000 Hours$

$$life = 2000 Hours$$

$$TD = B - S = 40000 - 10000 = 30000 \text{ SR}$$

$$Dh = \frac{TD}{life} = \frac{30000}{2000} = 15 \, SR/hr$$

$$Dy = Dh * working Hours/year$$

$$Dy_1 = 15 * 500 = 7500 SR$$

$$Bv_1 = B - Dy_1 = 40000 - 7500 = 32500 \text{ SR}$$

$$Dy_2 = 15 * 300 = 4500 SR$$

$$Bv_2 = Bv_1 - Dy_2 = 32500 - 4500 = 28000 \text{ SR}$$

$$Dy_3 = 15 * 400 = 6000 SR$$

$$Bv_3 = Bv_2 - Dy_3 = 28000 - 6000 = 22000 \text{ SR}$$

Luay Ahmed Khamees

$$Dy_4 = 15 * 300 = 4500 SR$$

$$Bv_4 = Bv_3 - Dy_4 = 22000 - 4500 = 17500 \text{ SR}$$

$$Dy_5 = 15 * 500 = 7500 SR$$

$$Bv_5 = Bv_4 - Dy_5 = 17500 - 7500 = 10000 \text{ SR}$$

$$Dy_5 = 15 * 500 = 7500 SR$$

$$Bv_5 = Bv_4 - Dy_5 = 17500 - 7500 = 10000 \text{ SR}$$

b) Straight-Line Method

$$B = 40000 SR$$
 $S = 10000 SR$

$$N=5$$

$$TD = B - S = 40000 - 10000 = 30000 SR$$

$$Dy = \frac{TD}{N} = \frac{30000}{5} = 6000 \text{ SR/year}$$

$$Bv_1 = B - Dy_1 = 40000 - 6000 = 34000 \text{ SR}$$

$$Bv_1 = B - Dy_1 = 40000 - 6000 = 34000 \text{ SR}$$

$$Bv_2 = Bv_1 - Dy_2 = 34000 - 600 = 28000 \text{ SR}$$

$$Bv_3 = Bv_2 - Dy_3 = 28000 - 6000 = 22000 \text{ SR}$$

$$Bv_4 = Bv_3 - Dy_4 = 22000 - 6000 = 16000 \text{ SR}$$

$$Bv_5 = Bv_4 - Dy_5 = 16000 - 6000 = 10000 \text{ SR}$$

Luay Ahmed Khamees

3- Sum of digit method:

Year	Dep. Fraction	Dep. Exposes	End of year
			Book value
1	5/15	30000*5/15 =	40000 –
	_	10000	10000 =
			30000
2	4/15	30000*4/15 =	30000 – 8000
		8000	= 22000
3	3/15	30000*3/15 =	22000 – 6000
		6000	= 16000
4	2/15	30000*2/15 =	16000 – 4000
		4000	= 12000
5	1/15	30000*1/15 =	12000 – 2000
		2000	= 10000
Sum = 15	15/15	30000	