Petroleum Systems Control Engineering

2024-20525 **Second Semester** Calculus II (Second Class)

By taking the inverse of both sides $z = \cosh^{-1}(-2)$

$$z = \cosh^{-1}(-2)$$

$$\cosh^{-1}z = \ln(z \pm \sqrt{z^2 - 1})$$

where
$$z = -2 + 0i$$

where
$$z = -2 + 0i$$
 $\cosh^{-1}(-2) = \ln(-2 \pm \sqrt{(-2)^2 - 1})$ remember that $\ln z = -2 + 0i$

$$\ln|z| + i\left(\theta_1 + 2n\pi\right)$$

$$z = \ln(-2 \pm \sqrt{3}) = \cosh^{-1}2 + i(2n+1)\pi$$

Example: Show that $\frac{d(\cos^{-1}z)}{dz} = -\frac{1}{\sqrt{1-z^2}}$

Solution

$$w = \cos^{-1} z \implies \cos w = z$$

$$\cos w = z$$

Let $w = \cos^{-1} z \implies \cos w = z$ differentiate both side with respect to z $\frac{d}{dz} \cos w = 1 \implies$

$$\frac{d}{dz}\cos w = 1 \implies \sin w \frac{dw}{dz} = 1$$

or

$$\frac{dw}{dz} = -\frac{1}{\sin w}$$

$$\frac{dw}{dz} = -\frac{1}{\sin w} \qquad \text{but} \qquad \sin^2 w + \cos^2 w = 1 \qquad \sin w = \sqrt{1 - \cos^2 w}$$

$$\sin w = \sqrt{1 - \cos^2 w}$$

$$\frac{dw}{dz} = -\frac{1}{\sqrt{1 - \cos^2 w}}$$

$$\frac{dw}{dz} = -\frac{1}{\sqrt{1-\cos^2 w}} \qquad \qquad \frac{d(\cos^{-1}z)}{dz} = -\frac{1}{\sqrt{1+z^2}}$$

Example: Show that $\frac{d(\sinh^{-1}z)}{dz} = \frac{1}{\sqrt{1+z^2}}$

Solution

Let

$$w = \sinh^{-1} z \implies \sinh w = z$$

$$\sinh w = z$$

differentiate both side with respect to z

$$\frac{d}{dz}\sinh w = 1 \Rightarrow \qquad \cosh w \frac{dw}{dz} = 1$$

$$\cosh w \frac{dw}{dz} = 1$$

$$=\frac{1}{\cosh w}$$

$$\frac{dw}{dz} = \frac{1}{\cosh w} \qquad \text{but} \qquad \cosh^2 w - \sinh^2 w = 1 \qquad \Rightarrow \qquad \cosh w = 1$$

$$\cosh w =$$

 $\sqrt{1 + \sinh^2 w}$

$$\frac{dw}{dz} = \frac{1}{\sqrt{1 + \sinh^2 w}}$$

$$\frac{d(\sinh^{-1}z)}{dz} = \frac{1}{\sqrt{1+z^2}}$$

PROBLMES

- 1- Express the principle value of each of the following in the form a + ib

 - (a) $\ln(-10)$ (b) $\ln(1-i\sqrt{3})$
- (c) $\sin(1+i)$ (d) $\cosh(1-i)$

i)

- (e) i^i
- (f) $\cos^{-1} 2$

Answers

(a)
$$1 + i\pi$$

(b)
$$\ln 2 - i(\pi/3)$$

(a)
$$1 + i\pi$$
 (b) $\ln 2 - i(\pi/3)$ (c) $1.299 + 0.635i$ (d) $0.834 - 2.164i$

d)
$$0.834 - 2.164i$$

(e)
$$e^{-\pi/2}$$

(e)
$$e^{-\pi/2}$$
 (f) $-1.317i$

2- Express the principle value of each of the following in the form a + ib

(a)
$$\ln(-3+4i)$$
 (b) 2^{i}

(b)
$$2^{i}$$

(d)
$$tanh^{-1} 2$$

(e)
$$(1-i)^{2+i}$$

(e)
$$(1-i)^{2+i}$$
 (f) $(2+i)^{1-i}$

3- Prove that

(a)
$$\cos^2 z + \sin^2 z = 1$$

(a)
$$\cos^2 z + \sin^2 z = 1$$
 (b) $\cos(z_1 \mp z_2) = \cos z_1 \cos z_2 \pm \sin z_1 \sin z_2$

(c)
$$\sin(z_1 \mp z_2) = \sin z_1 \cos z_2 \mp \cos z_1 \sin z_2$$
 (d) $d(\cos z)/dz = -\sin z$

(e)
$$d(\sin z)/dz = \cos z$$
 (f) $d(\tan z)/dz = \sec^2 z$

(f)
$$d(\tan z)/dz = \sec^2 z$$

4-What is the derivative of

(a)
$$\cosh z$$

(b)
$$\sinh z$$

(c)
$$\tanh z$$

Answers

(a)
$$\frac{d \cosh z}{dz} = \sinh z$$

(b)
$$\frac{d \sinh z}{dz} = \cosh z$$

(c)
$$\frac{d \tanh z}{dz} = \operatorname{sech}^2 z$$

5-Show that

(a)
$$d(\cos^{-1} z)/dz = -1/\sqrt{1-z^2}$$

(b)
$$d(\sin^{-1} z)/dz = 1/\sqrt{1-z^2}$$

(c)
$$d(\tan^{-1} z)/dz = 1/(1+z^2)$$

(a)
$$d(\cosh^{-1}z)/dz$$

(b)
$$d(\sinh^{-1}z)/dz$$

(b)
$$d(\sinh^{-1} z)/dz$$
 (c) $d(\tanh^{-1} z)/dz$

(a)
$$\frac{d \cosh^{-1} z}{dz} = \frac{1}{(z^2 - 1)^{1/2}}$$

$$\frac{d\cosh^{-1}z}{dz} = \frac{1}{(z^2-1)^{1/2}} \quad \text{(b)} \quad \frac{d\sinh^{-1}z}{dz} = \frac{1}{(z^2+1)^{1/2}} \quad \text{(c)} \quad \frac{d\tanh^{-1}z}{dz} = \frac{1}{1-z^2}$$

(c)
$$\frac{d \tanh^{-2} z}{dz} = \frac{1}{1-z^2}$$

Find all solutions of the equation $e^z = -2$ Answers $\ln 2 + i(2n + 2n)$

$$e^z = -2$$

Answers
$$\ln 2 + i(2\pi)$$

 $1)\pi$

8- Find all solutions of the equation

$$\sin z = 3$$

9- Find all solutions of the equation $\cosh z = -2$ Answers $\cosh^{-1} 2 + i(2n+1)\pi$

$$\cosh z = -2$$
 Answers

$$\cosh^{-1} 2 + i(2n+1)\pi$$

10- Prove that $e^{\overline{z}} = e^{\overline{z}}$

11- Prove that $\overline{\cos z} = \cos \overline{z}$

12- Is $\overline{\ln z} = \ln \bar{z}$?

13- Is $\overline{\sin z} = \sin \overline{z}$?

14- Show that

$$\tan z = \frac{\sin 2x + i \sinh 2y}{\cos 2x + \cosh 2y}$$

15- Show that

$$\tanh z = \frac{\sinh 2x + i \sin 2y}{\cosh 2x + \cos 2y}$$

- 16- If $w = \sin z$, what are the equations of the curves in the uv plane into which the lines x = c and y = k are transformed by w?
- Work Exercise 16 if $w = \cosh z$
- Work Exercise 16 if $w = \sinh z$

Fourier Series and Fourier Integral

JOSEPH FOURIER (1768-1830). French physicist and mathematician

Definition A function f is **periodic** if and only if if there exists a positive number 2p such that for every t in the domain of f, f(t + 2p) = f(t). The number 2p is called a **period** of f

Notes:-

- 1- If f(t) and g(t) have the period 2p, then the function h(t) = af(t) + bg(t).has the period 2p also.
- 2- f(t) = constant is periodic.

The Euler Coefficients

Let f(t) be an arbitrary periodic function of period 2p, then f(t) has formal expansion of the form

The introduction of the factor $\frac{1}{2}$ is a conventional device to render more symmetric the final formulas for the coefficients.

To determine the coefficients a_0 , a_n and b_n , we need the following definite integrals, which are valid for values of d

$$1-\int_{d}^{d+2p}\cos\frac{n\pi t}{p}dt=0 \qquad n\neq 0$$

$$2-\int_{d}^{d+2p}\sin\frac{n\pi t}{p}dt=0$$

$$3- \int_{d}^{d+2p} \cos \frac{n\pi t}{p} \cos \frac{m\pi t}{p} dt = 0 \qquad n \neq m$$

4-
$$\int_{d}^{d+2p} \cos^{2} \frac{n\pi t}{p} dt = p \qquad n \neq 0$$
5-
$$\int_{d}^{d+2p} \cos \frac{m\pi t}{p} \sin \frac{n\pi t}{p} dt = 0$$

$$\int_{d}^{d+2p} \cos \frac{m\pi t}{p} \sin \frac{n\pi t}{p} dt = 0$$

$$6-\int_{d}^{d+2p}\sin\frac{m\pi t}{p}\sin\frac{n\pi t}{p}dt=0 \qquad n\neq m$$

$$7- \int_{d}^{d+2p} \sin^2 \frac{n\pi t}{p} dt = p \qquad n \neq 0$$

Now, to find a_0 integrate both sides of equation (1) from t = d to t = d + 2p