Example: Find the Maclaurian Series generated by $\sin x$ at x = 0

Solution:-

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^4 + \dots$$

$$f(x) = \sin x$$

$$f'(x) = \cos x$$

$$f''(x) = -\sin x$$

$$f'''(x) = -\cos x$$

$$f^4(x) = \sin x$$

$$f^5(x) = \cos x$$

$$f^{2n}(x) = (-1)^n \sin x$$

$$f^{(2n+1)}(x) = (-1)^n \cos x$$

$$f^{2n}(0) = 0$$

$$f^{(2n+1)}(0) = (-1)^n$$

$$\sin x = 0 + \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Example:- Find the Maclaurian Series generated by $\cosh x$ at x = 0

Solution:-

$$\cosh x = \frac{e^x + e^{-x}}{2} \qquad \sinh x = \frac{e^x - e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} \dots + \frac{x^n}{n!} + \dots$$
 (from example pp – 3)

$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \frac{x^n}{n!} + \dots$$

$$\frac{e^{x} + e^{-x}}{2} = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

H.W: Find the Maclaurian Séries generated by $\sinh x$ at x = 0.

Since the Maclaurian Series generated by e^x is

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} \dots + \frac{x^n}{n!} + \dots$$

now, replace x by $i\theta$

$$\begin{split} e^{i\theta} &= 1 + \frac{i\theta}{1!} + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \frac{i^4\theta^4}{4!} + \frac{i^5\theta^5}{5!} + \frac{i^6\theta^6}{6!} + \cdots \\ e^{i\theta} &= 1 + \frac{i\theta}{1!} - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \frac{\theta^6}{6!} + \cdots \end{split}$$

$$e^{i\theta} = \underbrace{\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots\right)}_{\cos\theta} + i\underbrace{\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} \cdots\right)}_{\sin\theta}$$

Taylor Series :-

If, instead of approximating the value of f near zero, we are concerned with values of x near some other point a, we write our approximating polynomials in powers of (x - a):

$$p_n(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

When we determine the coefficients a_0, a_1, \dots, a_n , we are led to a series as follows:

Which is called the **Taylor series** generated by f at x = a

Note:-

- (1) Maclaurin Series is a Taylor Series with a = 0
- (2) A function cannot generate a Taylor series expansion about x = a unless it has finite derivatives of all order at x = a

Example: Find the Taylor series generated by $\cos x$ at the point $a = 2\pi$

Solution:- The value of $\cos x$ and its derivative at $a=2\pi$ are the same as their values at a=0. Therefore

$$f^{(2k)}(x) = (-1)^k \cos x,$$

$$f^{(2k)}(2\pi) = (-1)^k \quad \text{and} \quad f^{(2k+1)}(x) = (-1)^{k+1} \sin x$$

$$f^{(2k)}(2\pi) = (-1)^k \quad \text{and} \quad f^{(2k+1)}(2\pi) = 0$$

as in previous example. The required series is

$$=1-\frac{(x-2\pi)^2}{2!}+\frac{(x-2\pi)^4}{4!}-\cdots=\sum_{k=0}^{\infty}(-1)^k\frac{(x-2\pi)^{2k}}{(2k)!}$$

Example: What are the first five terms of the Taylor series generated by $f(x) = \frac{1}{x}$ at x = 2?

Solution: The first 5 terms are with a = 2

$$f(2) + f'(2)(x-2) + \frac{f''(2)(x-2)^2}{2!} + \frac{f^{(3)}(2)(x-2)^3}{3!} + \frac{f^{(4)}(2)(x-2)^4}{4!}$$

We have

$$f(x) = x^{-1},$$
 $f(2) = 2^{-1} = \frac{1}{2},$

Petroleum Systems Control Engineering

2024-20525 **Second Semester** Calculus II (Second Class)

$$f'(x) = -x^{-2},$$

$$f'(x) = -x^{-2},$$
 $f'(2) = -\frac{1}{2^2},$

$$f''(x) = 2x^{-3}$$

$$f''(x) = 2x^{-3}$$
, $f''(2) = \frac{2!}{2^3}$,

$$f'''(x) = -6x^{-4}$$
, $f'''(2) = \frac{3!}{2^4}$,

$$f'''(2) = \frac{3!}{2^4},$$

$$f^4(x) = +24x^{-5}$$
, $f^4(2) = -\frac{4!}{2^5}$

$$f^4(2) = -\frac{4!}{2^5}$$

The first, 5 terms of the Taylor series are,

$$\frac{1}{2} - \frac{(x-2)}{2^2} + \frac{(x-2)^2}{2^3} - \frac{(x-2)^3}{2^4} + \frac{(x-2)^4}{2^5} + \cdots$$

The Binomial Series :-

The Maclaurin series generated by $f(x) = (1 + x)^m$ is called Binomial Series:

To derive the series, we first list the function and its derivative:-

$$f(x) = (1+x)^m$$

$$f'(x) = m(1+x)^{m-1}$$

$$f''(x) = m(m-1)(1+x)^{m-2}$$

$$f'''(x) = m(m-1)(m-2)(1+x)^{m-3}$$

$$f^{k}(x)=m(m-1)(m-2)...(m-k+1)(1+x)^{m-k}$$

We then evaluate these at x = 0 and sub. In the Maclaurin series formula to obtain

$$= 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)(m-2)\dots(m-k+1)x^k}{k!} - \dots$$
(*)

Example:-

Use the binomial series to estimate $\sqrt{1.25}$ with an error of less than 0.001.

Solution :-

We take $x = \frac{1}{4}$, $m = \frac{1}{2}$ in eq (*) to obtain

$$(1+\frac{1}{4})^{1/2} = 1 + \frac{1}{2} \frac{1}{4} + \frac{(1/2)(-1/2)}{2!} (\frac{1}{4})^2 + \frac{(1/2)(-1/2)(-3/2)}{3!} (\frac{1}{4})^3 + \cdots$$
$$= 1 + \frac{1}{8} - \frac{1}{128} + \frac{1}{1024} - \frac{5}{32768} + \cdots$$

$$\frac{1}{1024} = 0.00097 < 0.001$$

For error less than 0.001, \Rightarrow the approximation

 $\sqrt{1.25} \cong 1 + \frac{1}{8} - \frac{1}{128} = 1.1171875$ is with $\frac{1}{1024}$ of the exact value and thus the required accuracy.

Convergence of Power Series:

The power series

$$\sum_{n=0}^{\infty} a_n x^n$$

Defines a function whenever it converges, namely, the function f whose value at each x is the number.

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

Theorem: - The Converges Theorem for Power Series

If a power series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 + a_2 x^2 + \cdots$$

Converges for x = c ($c \ne 0$), then converges absolute for all |x| < |c|. If the series diverges for x = d then it diverges for all |x| > |d|.

Finding the Interval of Convergence :-

The interval of convergence of a power series $\sum_{n=0}^{\infty} a_n x^n$ can often be found by applying the **Ratio test** or the **Root test** to the series of absolute values, $\sum_{n=0}^{\infty} |a_n x^n|$

Thus, if

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| \quad (Ratio\ Test) \qquad \qquad \rho = \lim_{n \to \infty} \sqrt[n]{|a_n x^n|} \quad (Root\ Test)$$

Then

- (a) $\sum a_n x^n$ converges absolutely for all values of x for which $\rho < 1$
- (b) $\sum a_n x^n$ diverges at all values of x for which $\rho > 1$,
- (c) $\sum a_n x^n$ may either converges or diverges at a value of x for which $\rho = 1$

Petroleum Systems Control Engineering

2024-20525 Second Semester Calculus II (Second Class)

Example :- Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n}$,

Solution:-We apply the Ratio Test to the series with absolute values and find

$$\rho = \lim_{n \to \infty} \left| \frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} \right| = |x|$$

Therefore the original series converges absolutely if |x| < 1 and diverges if |x| > 1

Example: For what values of x does the series $\sum_{n=1}^{\infty} \frac{(2x-5)^n}{n^2}$ converges?

Solution: we apply the Root Test to the series of absolute value

$$\rho = \lim_{n \to \infty} \sqrt[n]{\frac{(2x-5)^n}{n^2}} = \lim_{n \to \infty} \frac{|2x-5|}{\sqrt[n]{n^2}} = \frac{|2x-5|}{1} = |2x-5|,$$

The series converges absolutely for

$$|2x - 5| < 1$$
 or $-1 < 2x - 5 < 1$

or

$$4 < 2x < 6 \qquad \text{or} \qquad 2 < x < 3$$

At the end points

When = 2 , the series is
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n^2} \right]$$
 , Which converges

When = 3, the series is
$$\sum_{n=1}^{\infty} \left[\frac{(1)^n}{n^2} \right]$$
, which converges,

Therefore, the interval of convergence is $2 \le x \le 3$

