$$2 \le |z| \le 3$$

Solution

The annulus bounded by the circles with center at the origin and radii 2 and 3, including the boundary circles; bounded, closed, multiply connected.

Analytic Functions

The derivative of a function of a complex variable w = f(z) is defined to be

$$\frac{dw}{dz} = w' = f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} \qquad \cdots \cdots \cdots (1)$$

Familiar formulas of a complex variable derivative

$$1- \frac{d(w_1 \pm w_2)}{dz} = \frac{dw_1}{dz} \pm \frac{dw_2}{dz}$$

$$2- \frac{d(w_1w_2)}{dz} = w_1 \frac{dw_2}{dz} + w_2 \frac{dw_1}{dz}$$

3-
$$\frac{d(w_1/w_2)}{dz} = \frac{w_2(dw_1/dz) - w_1(dw_2/dz)}{w_2^2}$$

$$4- \frac{dw^n}{dz} = nw^{n-1} \frac{dw}{dz}$$

Since $\Delta z = \Delta x + i \Delta y$ is itself a complex variable, the question is how it is approach zero?

From the Figure, it is clear that Δz can approach the point P: z along infinity many different paths. In particular, Q can approach P along the line AP on which Δx is zero or along the line BP on which Δy is zero. Clearly, for the derivative of f(z) to exist, it is necessary that the limit of the difference quotient (1) be the same no matter how Δz approaches zero.

Cauchy-Riemann Equations

Theorem:- If u and v are real single - valued functions of x and y which, with their four first partial derivatives, are continuous throughout a region R, then the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

are both necessary and sufficient conditions that f(z) = u(x,y) + iv(x,y) be analytic in R. In this case, the derivative of f(z) is given by

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
 or

$$f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Example:-

For $(z) = \bar{z} = x - iy$, does f'(z) exist?

Solution

We have u = x and v = -y, then

$$\frac{\partial u}{\partial x} = 1 , \qquad \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial v}{\partial y} = A$$

$$\frac{\partial u}{\partial v} = 0$$

there is no point in the z-plane where f'(z) exist.

Example:-

For $f(z) = z\bar{z}$, does f'(z) exist?

Solution

$$\frac{\partial \mathbf{n}}{\partial z} = z\bar{z} = (x + iy)(x - iy) = x^2 + y^2, \text{ then we have } u = x^2 + y^2 \text{ and } v = 0$$

$$\frac{\partial u}{\partial x} = 2x \qquad , \qquad \frac{\partial v}{\partial x} = 0 \qquad , \qquad \frac{\partial v}{\partial y} = 0, \qquad \frac{\partial u}{\partial y} = 2y$$

are continuous everywhere. However Cauchy-Riemann equations, which in this case are

$$2x = 0$$

and

$$2y = 0$$

are satisfied only at the origin. Hence z = 0 is the only point at which f'(z) exist, and therefore $f(z) = z\bar{z}$ is nowhere analytic.

Example:-

For $f(z) = z^2$, does f'(z) exist?

Solution

$$f(z) = z^2 = (x + iy)^2 = (x^2 - y^2) + 2ixy$$
, then we have $u = x^2 - y^2$ and $v = 2xy$
 $\frac{\partial u}{\partial x} = 2x$, $\frac{\partial v}{\partial x} = 2y$, $\frac{\partial v}{\partial y} = 2x$, $\frac{\partial u}{\partial y} = -2y$

are continuous everywhere, and Cauchy-Riemann equations, which in this case are

Petroleum Systems Control Engineering

2024-20525 **Second Semester** Calculus II (Second Class)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Hence f'(z) exist at all points of z-plane, and its value is

$$f'(z) = 2x + 2iy = 2z$$

The Elementary Functions of z

The exponential function e^z is of fundamental importance, not only for its own sake but also as a basis for defining all the other elementary transcendental functions.

Properties of e^z

$$1- \qquad f(z) = w = e^z$$

Let
$$z = x + iy$$
 $f(z) = w = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y) = u(x, y) + iv(x, y)$

$$u = e^x \cos y \qquad \qquad v = e^x \sin y$$

$$v = e^x \sin y$$

$$\frac{\partial u}{\partial x} = e^x \cos y$$
, $\frac{\partial v}{\partial y} = e^x \cos y$ $\frac{\partial u}{\partial y} = -e^x \sin y$

$$\frac{\partial v}{\partial y} = e^x \cos y$$

$$\frac{\partial u}{\partial y} = -e^x \sin y$$

$$\frac{\partial v}{\partial x} = e^x \sin y$$

Since

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ then e^z is analytic everywhere

2-
$$f'(z) = \frac{de^z}{dz} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = e^x \cos y + ie^x \sin y = e^z$$

$$3- \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Example: - Prove that

$$\cos^2 z + \sin^2 z = 1$$

Solution

By substituting

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

and
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

in the given formula

$$\left(\frac{e^{iz} + e^{-iz}}{2}\right)^{2} + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^{2} = 1$$

$$\frac{1}{4} \left(e^{2iz} + 2 + e^{-2iz}\right) - \frac{1}{4} \left(e^{2iz} - 2 + e^{-2iz}\right) = 1$$

$$1 = 1$$

Example:- Prove that

$$\frac{d(\cos z)}{dz} = -\sin z$$

Solution

Since
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\frac{d(\cos z)}{dz} = \frac{d}{dz} \left(\frac{e^{iz} + e^{-iz}}{2} \right) = \frac{1}{2} \left(ie^{iz} - ie^{-iz} \right) \cdot \frac{i}{i}$$

$$\frac{d(\cos z)}{dz} = -\frac{e^{iz} - e^{-iz}}{2i} = -\sin z$$

Similarly we can prove

$$\frac{d(\sin z)}{dz} = \cos z$$

Example:- Prove that

 $\cos z = \cos x \cosh y - i \sin x \sinh y$

Solution

Let
$$z = x + iy$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{1}{2} (e^{iz} + e^{-iz})$
 $\Rightarrow \cos z = \frac{1}{2} (e^{i(x+iy)} + e^{-i(x+iy)}) = \frac{1}{2} e^{-y} (\cos x + i \sin x) + \frac{1}{2} e^{y} (\cos x - i \sin x)$
Or $\cos z = \cos x \frac{e^{y} + e^{-y}}{2} - i \sin x \frac{e^{y} - e^{-y}}{2}$
 $\cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$

Similarly we can prove

$$\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$$

Now, in particular taking x = 0

$$\cos iy = \cosh y$$

$$\sin iy = i \sinh y$$

Example: What is cos(1 + 2i)

Solution

Let
$$x = 1$$
, $y = 2$ in the equation $\cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y$
 $\cos(1 + 2i) = \cos 1 \cosh 2 - i \sin 1 \sinh 2 = (0.5403)(3.762) - i(0.8415)(3.627)$
 $\cos(1 + 2i) = 2.033 - 3.052i$

Example: Prove that the only values for which only $\sin z = 0$ are the real number of z =

 $0, \mp \pi, \mp 2\pi, \cdots$

Solution

Since $\sin z = \sin x \cosh y + i \cos x \sinh y$

When $\sin z = 0 = \sin x \cosh y + i \cos x \sinh y$

$$\sin x \cosh y = 0$$
(1) $\cos x \sinh y = 0$ (2)

Since $\cosh y \ge 1$ then equation (1) satisfies only if $\sin x = 0$, that is only

$$x = 0, \mp \pi, \mp 2\pi, \cdots$$

But for these values of $x \cos x$ either 1 or -1 and therefore cannot vanish. Thus for the second equation to hold, it is necessary that $\sinh y = 0 \Rightarrow y = 0$

