https://classroom.google.com/c/NzQ5NTA0NTg1MDM0?cjc=dqfddzc

Multiplying the Function by Unit Step Function

Example:- What is the equation of the function whose graph is

Solution

This function can be regarded as the sum of two translated (shifted) unit step functions as

More generally, the expression $f(t-a) \cdot u(t-a)$ represents the function obtained by translating f(t) a units to the right and cutting it off, i.e., making vanish identically to the left.

Example: What is the equation of the function whose graph is

Solution

the general equation of line is

$$y = mt + c$$

where m is the slope of line

 $y(t) = 2t + c \qquad \cdots \cdots \cdots (a)$ then, for the left hand line m = 2

and for right line m = -1 y(t) = -t + c(b)

we need only one point to find c,

for left hand line when t = 1, y = 0 from Eq. (a) c = -2 so y(t) = 2(t - 1) for $1 \le t \le 2$ for right hand line when t = 4, y = 0 from Eq. (b) c = 4 so y(t) = 4 - t for $2 \le t \le 4$ now, from $1 \le t \le 2$

2(t-1)[u(t-1)-u(t-2)] {defines the segment of the given function between t=1and t = 2 and vanishes elsewhere}

now, from $2 \le t \le 4$

(4-t)[u(t-2)-u(t-4)] {defines the segment of the given function between t=2and t = 4 and vanishes elsewhere

so the function from t = 1 to t = 4 is

from
$$t = 1$$
 to $t = 4$ is
$$2(t-1)[u(t-1) - u(t-2)] + (4-t)[u(t-2) - u(t-4)]$$

or

$$2(t-1)u(t-1) - 2(t-1)u(t-2) + (4-t)u(t-2) - (4-t)u(t-4)$$

but

ut
$$-2(t-1)u(t-2) + (4-t)u(t-2) = -2tu(t-2) + 2u(t-2) + 4u(t-2) - tu(t-2)$$

$$= 6u(t-2) - 3tu(t-2) = -3(t-2)u(t-2)$$

then, the function of graph is
$$2(t-1)u(t-1)-3(t-2)u(t-2)+(t-4)u(t-4)$$

Second Shifting Theorem (t-Shifting)

L.T of
$$\{f(t-a)u(t-a)\} = e^{-as}$$
 L.T of $\{f(t)\}$

Prove By definition we have

L. T of
$$\{f(t-a)u(t-a)\} = \int_0^\infty \{f(t-a)u(t-a)\} e^{-st} dt$$

because u(t-a) vanishes the f(t-a) identically to the left of t=a then the integration will starts from a

 $\int_{0}^{\infty} \{ f(t-a)u(t-a) \} e^{-st} dt = \int_{a}^{\infty} \{ f(t-a) \} e^{-st} dt$ or

now by transformation of the domain of integration by letting t = T + adt = dT

T = 0 and when $t \to \infty$, $T \to \infty$ note that

$$\int_{a}^{\infty} \{f(t-a)\} e^{-st} dt = \int_{0}^{\infty} \{f(T)\} e^{-s(T+a)} dT$$
$$= e^{-as} \int_{0}^{\infty} \{f(T)\} e^{-sT} dT = e^{-as} \text{ L.T of } \{f(t)\}$$

Corollary 1:-

L.T of
$$\{f(t)u(t-a)\} = e^{-as}$$
 L.T of $\{f(t+a)\}$

Corollary 2:-

if
$$LT^{-1}$$
 of $\{\phi(s)\} = f(t)$, then LT^{-1} of $\{e^{-as}\phi(s)\} = f(t-a)u(t-a)$

This corollary states that suppressing the factor e^{-as} in transform requires that the inverse of what remains be translated a units to the right and cut off to the left of the point t = a

Example: What is the transform of the function whose graph is shown in Figure

Solution

$$g(t) = f(t)u(t-1) - f(t)u(t-2)$$

$$f(t) = -(t^2 - 3t + 2)$$

where
$$f(t) = -(t^2 - 3t + 2)$$

using Corollary 1, observing that $f(t+1) = -[(t+1)^2 - 3(t+1) + 2] = -(t^2 - t)$

and

$$f(t+2) = -[(t+2)^2 - 3(t+2) + 2] = -(t^2 + t)$$

the required transform is

$$-e^{-s}$$
 L.T of $\{t^2 - t\} + e^{-2s}$ L.T of $\{t^2 + t\} = -e^{-s} \left(\frac{2}{s^3}, -\frac{1}{s^2}\right) + e^{-2s} \left(\frac{2}{s^3} - \frac{1}{s^2}\right)$

Example: Find the solution of equations $y'(t) + 3y(t) + 2 \int_0^t y \, dt = f(t)$ for which $y_0 = 1$ if f(t) is the function whose graph is shown in Figure

Solution

$$f(t) = 2u(t-1) - 2u(t-2)$$

then the differential equation can be

written as

$$y'(t) + 3y(t) + 2 \int_0^t y \, dt = 2u(t-1) - 2u(t-2)$$

now taking L.T of both sides we have

$$[s Y(s) - (1)] + 3Y(s) + 2\frac{1}{s}Y(s) = \frac{2e^{-s}}{s} - \frac{2e^{-2s}}{s}$$
 Note: - since $a = 0$, then

 $\int_{-\infty}^{0} y(t) dt = 0$

$$(s^2 + 3s + 2)Y(s) = 2e^{-s} - 2e^{-2s} + s$$

or
$$Y(s) = \frac{s}{(s+1)(s+2)} + \frac{2e^{-s}}{(s+1)(s+2)} - \frac{2e^{-2s}}{(s+1)(s+2)}$$

the first term in Y(s) can be written as

$$\frac{s}{(s+1)(s+2)} = \frac{k_1}{s+1} + \frac{k_2}{s+2}$$
 \Rightarrow $k_1 = -1$

and
$$k_2 = 2$$

then
$$\frac{s}{(s+1)(s+2)} = \frac{2}{s+2} - \frac{1}{s+1}$$

and
$$k_2 = 2$$

$$\frac{s}{(s+1)(s+2)} = \frac{2}{s+2} - \frac{1}{s+1}$$
so $LT^{-1} \frac{1}{(s+1)(s+2)} = 2e^{-2t} - e^{-t}$

and by suppressing the exponential factor in the second term Y(s)

$$\frac{2}{(s+1)(s+2)} = \frac{k_1}{s+1} + \frac{k_2}{s+2}$$
 \Rightarrow $k_1 = 2$ and $k_2 = -2$

$$\Rightarrow$$
 $k_1 = 2$ and $k_2 = -2$

then L.
$$T^{-1} \frac{2e^{-s}}{(s+1)(s+2)} = 2(e^{-(t-1)} - e^{-2(t-1)}) u(t-1)$$

and L. T⁻¹
$$\frac{2e^{-2s}}{(s+1)(s+2)} = 2(e^{-(t-2)} - e^{-2(t-2)}) u(t-2)$$

L.
$$T^{-1} \frac{2e^{-2s}}{(s+1)(s+2)} = 2(e^{-(t-2)} - e^{-2(t-2)}) u(t-2)$$

 $y(t) = 2e^{-2t} - e^{-t} + 2(e^{-(t-1)} - e^{-2(t-1)}) u(t-1) - 2(e^{-(t-2)} - e^{-2(t-2)}) u(t-2)$

Dirac's Delta Function

Consider the function

$$f_k(t-a) = \begin{cases} 1/k & a \le t \le a+k \\ 0 & \text{otherwise} \end{cases}$$
(1)

This function represents a force of magnitude 1/k acting from t = a to t = a + k, where k is positive and small. The integral of a function acting over a time interval $a \le t \le a + k$ is called the impulse of the function.

Now, the impulse of f_k is

$$I_k = \int_0^\infty f_k(t-a) \, dt = \int_a^{a+k} \frac{1}{k} dt = 1$$
(2)

By taking the limit of f_k as $k \to 0$

$$\lim_{k\to 0} f_k(t-a) = \delta(t-a)$$

 $\delta(t-a)$ is called **Dirac delta function**

Note: From equations (1) and (2) by taking limit as $k \to 0$ we obtain

Note:- From equations (1) and (2) by taking limit as
$$k \to 0$$
 we obtain
$$\delta(t-a) = \begin{cases} \infty & \text{if } t = a \\ 0 & \text{otherwise} \end{cases} \text{ and } \int_0^\infty \delta(t-a) \, dt = 1$$
Sifting property of $\delta(t-a)$

$$\int_0^\infty g(t) \, \delta(t-a) \, dt = g(a)$$

$$\int_0^\infty g(t) \, \delta(t-a) \, dt = g(a)$$

To obtain the L.T of $\delta(t-a)$, we write

$$f_k(t-a) = \frac{1}{k}[u(t-a) - u(t-(a+k))]$$

L.T of $\{f_k(t-a)\}=\frac{1}{ks}[e^{-as}-e^{-(a+k)s}]=e^{-as}\frac{1-e^{-ks}}{ks}$

now, taking the limit as $k \to 0$ (using l'Hopital's rule)

$$\lim_{k\to 0} \frac{se^{-(a+k)s}}{s} = e^{-as}$$

Then

L.T of
$$\delta(t-a) = e^{-as}$$