Petroleum Systems Control Engineering

Engineering Analysis (Third Class)

then L.
$$T^{-1}\left\{\frac{1}{(s+1)^2}\right\} = te^{-t}$$
, $\frac{d}{dt}$ L. $T^{-1}\{\phi(s)\} = e^{-t} - te^{-t}$
 \therefore $y(t) = \frac{1}{3!}e^{-t}t^3 + e^{-t} - te^{-t}$

Theorem: - Initial value theorem

Using this theorem we can find the initial value of a of a function without finding the complete solution

$$f(0^+) = \lim_{s \to \infty} [sF(s)]$$

Prove

as

L. T of
$$\{f'(t)\} = \int_0^\infty f'(t) e^{-st} dt = s F(s) - f(0)$$

Taking limit as $s \to \infty$ of both sides of above equation

$$\lim_{s \to \infty} \int_0^\infty f'(t) \ e^{-st} \ dt = \lim_{s \to \infty} [s \ F(s) - f(0)]$$

$$s \to \infty \qquad e^{-st} \to 0 \qquad \Rightarrow \qquad \lim_{s \to \infty} [s \ F(s) - f(0)] = 0$$

since
$$f(0)$$
 is constant $f(0) = \lim_{s \to \infty} [sF(s)]$

Example:- If
$$Y(s) = \frac{-5s^2 - 7s - 8}{s^3 + 3s^2 - 4s}$$
 what is $y(0)$

Solution

$$sF(s) = \frac{-5s^3 - 7s^2 - 8s}{s^3 + 3s^2 - 4s}$$
$$\lim_{s \to \infty} [sF(s)] = \frac{-5 - \frac{7}{s} - \frac{8}{s}}{1 + \frac{3}{s} - \frac{4}{s}} = -5$$

The student can check this result by taking $[L \cdot T]^{-1}$ then taking $\lim_{t \to 0} y(t)$

Corollary

$$\lim_{s \to \infty} s[sF(s) - f(0^+)] = f'(0^+)$$

Example:- If

$$F(s) = \frac{s+3}{2s^2 + 2s + 1}$$

what are the values of $f(0^+)$ and $f'(0^+)$?

Solution

$$sF(s) = \frac{s^2 + 3s}{2s^2 + 2s + 1}$$

$$f(0^+) = \lim_{s \to \infty} [sF(s)] = \lim_{s \to \infty} \left[\frac{s^2 + 3s}{2s^2 + 2s + 1} \right] = \lim_{s \to \infty} \left[\frac{1 + \frac{3}{s}}{2 + \frac{2}{s} + \frac{1}{s^2}} \right] = \frac{1}{2}$$

$$f'(0^+) = \lim_{s \to \infty} s[sF(s) - f(0^+)] = \lim_{s \to \infty} s\left[\frac{s^2 + 3s}{2s^2 + 2s + 1} - \frac{1}{2} \right]$$

$$f'(0^+) = \lim_{s \to \infty} s \left[\frac{4s^2 - s}{2(2s^2 + 2s + 1)} \right] = 1$$

Theorem: - Final value theorem

$$f(\infty) = \lim_{s \to 0} [sF(s)]$$

Prove

L. T of
$$\{f'(t)\} = \int_0^\infty f'(t) e^{-st} dt = s F(s) - f(0)$$

Taking limit as $s \to 0$ of both sides of above equation

$$\lim_{s\to 0} \int_0^\infty f'(t) \ e^{-st} \ dt = \lim_{s\to 0} [s \ F(s) - f(0)]$$

as
$$s \to 0$$
 $e^{-st} = 1$ \Rightarrow $f(t)|_0^{\infty} = \lim_{s \to 0} [s F(s) - f(0)]$
 \Rightarrow $f(\infty) - f(0) = \lim_{s \to 0} [s F(s)] - f(0)$
 $f(\infty) = \lim_{s \to 0} [s F(s)]$

Example: If $Y(s) = \frac{1}{s+1}$ what is $y(\infty)$

Solution

$$f(\infty) = \lim_{s \to 0} [s F(s)] = \lim_{s \to 0} \frac{s}{s+1} = 0$$

Check

since
$$LT^{-1}\frac{1}{s+1} = e^{-t}$$
 $f(\infty) = \lim_{t \to \infty} [e^{-t}] = 0$

Differentiation and Integration Theorems of Transform

1-Differentiation Theorem

If f(t) is piecewise regular on $[0, \infty]$ and of exponential order and if L.T of $f(t) = \phi(s)$ then:

L.T of
$$\{tf(t)\} = -\phi'(s)$$

Prove By definition we have

L. T of
$$\{f(t)\} = F(s) = \int_0^\infty f(t) e^{-st} dt$$

Differentiating both sides with respect to s

$$\frac{d}{ds}F(s) = \frac{d}{ds}\int_0^\infty f(t) \ e^{-st} \ dt$$

$$\frac{d}{ds}\phi(s) = \int_0^\infty \frac{\partial}{\partial s}f(t) \ e^{-st} \ dt = \int_0^\infty f(t) \left[-t \ e^{-st}\right] \ dt$$
Or
$$\phi'(s) = -\int_0^\infty t f(t) \ e^{-st} \ dt = -\text{L.T of } \{tf(t)\}$$

$$\therefore \text{ L. T of } \{tf(t)\} = -\phi'(s)$$

Corollary By taking inverses of above theorem and solve for f(t) we obtain

$$\{tf(t)\} = -[L \cdot T]^{-1} \{ \phi'(s) \}$$

$$f(t) = -\frac{1}{t} [L \cdot T]^{-1} \{ \phi'(s) \}$$

Example: Find is L.T of $\{t \sin \omega t\}$

Solution

[first shifting theorem]

$$f(t) = \sin \omega t \qquad \text{L. T of } \{\sin \omega t\} = \frac{\omega}{s^2 + \omega^2} = \phi(s)$$

$$\Rightarrow \qquad \phi'(s) = \frac{-2s\omega}{(s^2 + \omega^2)^2} \qquad \Rightarrow \qquad -\phi'(s) = \frac{2s\omega}{(s^2 + \omega^2)^2}$$

$$\text{L. T of } \{t \sin \omega t\} = \frac{2s\omega}{(s^2 + \omega^2)^2}$$

HW:- Find is L.T of $\{t \cos \omega t\}$

Example: Find is L.T of $\{t^2 \sin 4t\}$

Solution

$$t^2 \sin 4t = t \cdot t \sin 4t = t f(t)$$

But from previous example L. T of $\{t \sin 4t\} = \frac{8s}{(s^2+4^2)^2} = \phi(s)$

Then

$$\phi'(s) = \frac{8(s^2+4^2)^2 - 8s^2 \cdot 4(s^2+4^2)}{(s^2+4^2)^4} = \frac{128 - 24s^2}{(s^2+4^2)^3}$$

$$\therefore L.T \text{ of } \{t^2 \sin 4t\} = -\phi'(s) = \frac{24s^2 - 128}{(s^2 + 4^2)^3}$$

Example: Find is L.T of $\{t e^{-3t} \sin 2t\}$

Solution

Let
$$f(t) = e^{-3t} \sin 2t$$
 \Rightarrow $\phi(s) = \frac{2}{(s+3)^2+4}$
 \Rightarrow $\phi'(s) = \frac{-4(s+3)}{((s+3)^2+4)^2}$

L.T of
$$\{t e^{-3t} \sin 2t\} = -\phi'(s) = \frac{4(s+3)}{((s+3)^2+4)^2}$$

Example: What is y(t) if $Y(s) = \ln[(s+1)/(s-1)]$

Solution

From the corollary
$$f(t) = -\frac{1}{t} [L \cdot T]^{-1} \{ \varphi'(s) \}$$
Let
$$\varphi(s) = \ln \frac{s+1}{s-1} \qquad \text{or} \qquad \varphi(s) = \ln(s+1) - \ln(s-1)$$

$$\varphi'(s) = \frac{1}{s+1} - \frac{1}{s-1} \qquad \Rightarrow \qquad LT^{-1} \varphi'(s) = e^{-t} - e^{t}$$

$$\phi'(s) = \frac{1}{s+1} - \frac{1}{s-1}$$
 \Rightarrow LT⁻¹ $\phi'(s) = e^{-t} - e^{t}$

$$f(t) = -\frac{1}{t} \left[e^{-t} - e^{t} \right] \cdot \frac{2}{2} \qquad \Rightarrow \qquad f(t) = \frac{2}{t} \left[\frac{e^{t} - e^{-t}}{2} \right] = \frac{2 \sinh t}{t}$$

<u>HW</u>:- What is y(t) if $Y(s) = \ln \frac{s^2 - 1}{s^2}$

Example: prove that L.T of $\{t^2f(t)\} = \varphi''(s)$

Since
$$\{t^2f(t)\}=\{t\cdot tf(t)\}$$
 now let $tf(t)=g(t)$
then from theorem L.T of $\{tg(t)\}=-G'(s)$ but $G(s)=\text{L.T of }\{tf(t)\}=-\varphi'(s)$

Petroleum Systems Control Engineering

so L.T of
$$\{t^2 f(t)\} = -[-\phi'(s)]' = \phi''(s)$$

HW: Check L.T of $\{t^2 \sin 4t\}$

Example

Solve the following variable coefficient differential equation

$$ty''(t) + 2(t-1)y'(t) + (t-2)y(t) = 0$$

Solution

The given differential equation can be written as

$$ty''(t) + 2ty'(t) - 2y'(t) + ty(t) - 2y(t) = 0 \qquad \dots \dots \dots (1)$$
L.T of $\{tf(t)\} = -\phi'(s)$

Since L.T of $\{tf(t)\} = -\phi'(s)$

L.T of
$$\{y'(t)\} = L.T$$
 of $\left\{\frac{dy}{dt}\right\} = s Y(s) - y_0$

L.T of
$$\{y''(t)\} = s^2 Y(s) - s y_o - y'_o$$

then L.T of $\{ty'(t)\} = -[Y(s) + sY'(s)]$

and L.T of
$$\{ty''(t)\} = -[s^2Y'(s) + 2sY(s) - y_0]$$

now, taking L.T of both sides of equation (1)

$$-[s^2Y'(s) + 2sY(s) - y_o] - 2[Y(s) + sY'(s)] - 2[sY(s) - y_o] - Y'(s) - 2Y(s) = 0$$

after rearranging we obtain

$$-(s^2 + 2s + 1)Y'(s) - 4(s + 1)Y(s) = -3y_0$$

$$(s+1)^2Y'(s) + 4(s+1)Y(s) = -3y_o$$

or
$$Y'(s) + \frac{4}{(s+1)}Y(s) = \frac{3y_0}{(s+1)^2}$$
(2)

this equation is linear first order differential equation which can be solved by Integrating Factor

Integrating Factor

The solution of differential equation of the form

$$\frac{dy}{dx} + P(x) y = Q(x) \text{ has solution of the form}$$
$$y = Ce^{-h} + e^{-h} \int e^{h} Q(x) dx$$

Where $h = \int P(x) dx$ Integrating Factor

Now comparing with equation (2)

$$P(x) = \frac{4}{(s+1)} \quad \text{and} \quad Q(x) = \frac{3y_o}{(s+1)^2}$$
So
$$h = \int \frac{4}{(s+1)} ds = 4 \ln(s+1) = \ln(s+1)^4$$

$$Y(s) = Ce^{-\ln(s+1)^4} + e^{-\ln(s+1)^4} \int e^{\ln(s+1)^4} \frac{3y_o}{(s+1)^2} ds$$

Engineering Analysis (Third Class)

Petroleum Systems Control Engineering

$$Y(s) = \frac{c}{(s+1)^4} + \frac{1}{(s+1)^4} \int (s+1)^2 \ 3y_o \ ds$$

$$Y(s) = \frac{c}{(s+1)^4} + \frac{y_o}{s+1}$$
The inverse L.T is
$$y(t) = \frac{t^3}{3!} Ce^{-t} + y_o e^{-t}$$

2-Integration Theorem

If f(t) is piecewise regular on $[0, \infty]$ and of exponential order and if L.T of $f(t) = \phi(s)$, and if f(t)/t has a limit as t approaches zero from the right then:-

L.T of
$$\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} \phi(s) \, ds$$

This theorem means that integration of the transform of a function f(t) corresponds to the division of f(t) by t

Prove

From the definition of L.T of
$$f(t)$$
 L. T of $\{f(t)\} = \phi(s) = \int_0^\infty f(t) \ e^{-st} \ dt$ integration both sides of this
$$\int_s^\infty \phi(s) \ ds = \int_s^\infty \left[\int_0^\infty f(t) \ e^{-st} \ dt \right] ds$$
 by reversing the order of integration
$$\int_s^\infty \phi(s) \ ds = \int_0^\infty \int_s^\infty f(t) \ e^{-st} \ ds \ dt = \int_0^\infty f(t) \left[\frac{e^{-st}}{-t} \right]_s^\infty dt$$

$$\int_s^\infty \phi(s) \ ds = \int_0^\infty \frac{f(t)}{t} \ e^{-st} \ dt = \text{L.T of } \left\{ \frac{f(t)}{t} \right\}$$

Corollary

By taking inverse of a integration theorem

$$\frac{f(t)}{t} = LT^{-1} \int_{s}^{\infty} \phi(s) \, ds \qquad \Rightarrow \qquad f(t) = t \ LT^{-1} \int_{s}^{\infty} \phi(s) \, ds$$

This Corollary is useful in finding inverse when the integral of a transform is simpler to work with than the transform itself.

Example: What is L.T of $\left\{\frac{\sin kt}{t}\right\}$

Solution

Let
$$f(t) = \sin kt$$
 \Rightarrow $\varphi(s) = \frac{k}{s^2 + k^2}$
applying the integration theorem $\int_s^\infty \varphi(s) \, ds = \int_s^\infty \frac{k}{s^2 + k^2} \, ds$
let $s = k \tan \theta \Rightarrow \theta = \tan^{-1} \frac{s}{k} \Rightarrow$
 $ds = k \sec^2 \theta \, d\theta$
so $\int_s^\infty \frac{k}{s^2 + k^2} \, ds = \int_s^\infty \frac{k^2 \sec^2 \theta}{k^2 \tan^2 \theta + k^2} \, d\theta$

Recall the assumptions:-
$$1-a^{2}+u^{2} \quad \text{Let} \quad u=a \, \tan \theta$$

$$2-a^{2}-u^{2} \quad \text{Let} \quad u=a \, \sin \theta$$

$$3-u^{2}-a^{2} \quad \text{Let} \quad u=a \, \sec \theta$$