Engineering Analysis (Third Class)

Advanced Engineering Analysis

References 1- Advanced Engineering Mathematics by 'C. RAY WYLIE

2- Advanced Engineering Mathematics by ERIN KREYS

https://classroom.google.com/c/NjI1ODQwMDE5ODM3?cjc=stmlmg5 (رمز الصف الإلكتروني)

The General Linear Second – Order Differential Equation

The general linear ordinary differential equation of the second order can be written in the standard form

Where $y'' = \frac{d^2y}{dx^2}$ and $y' = \frac{dy}{dx}$ y = dependent variable, and x = independent variable

The a(x), b(x) and c(x) are coefficient. Equation (1) is said to be **nonhomogeneous**. If f(x) is identically zero, we have the so-called **homogeneous** equation.

$$a(x)y'' + b(x)y' + c(x)y = 0$$
 (homogeneous)

The Homogeneous Linear Second - Order Differential Equation with Constant Coefficients

When a(x), b(x) and c(x) are constants the general linear second order differential equation can be written in the standard form

$$ay'' + by' + cy = 0 \qquad \dots \dots \dots \dots (2)$$

Let the solution of equation (2) be in the form

 $y = e^{mx}$ where m is a constant to be determined.

Substituting $y' = me^{mx}$ and $y'' = m^2 e^{mx}$ in to equation (2)

$$e^{mx}(am^2 + bm + c) = 0$$

Since
$$e^{mx} \neq 0$$
 then

 $am^2 + bm + c = 0 \Rightarrow$ (characteristic or auxiliary equation)

The roots of characteristic equation can be obtained by

$$m_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Now, if

$$b^2 - 4ac = 0$$
 then $m_1 = m_2$ Real and equal Complete solution of the equation (2) is

$$y(x) = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$

if

$$b^2 - 4ac > 0$$
 then $m_1 \neq m_2$ Real and unequal Complete solution of the equation (2) is

$$y(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Engineering Analysis (Third Class)

Complete solution of the equation (2) is

and if

 $b^2 - 4ac < 0$ then m_1 and m_2 are complex conjugate $\frac{m_1 = p + iq}{m_2 = p - iq}$

 $y(x) = e^{px}(A\cos qx + B\sin qx)$

Example Find complete solution of the equation

Solution

let $y = e^{mx}$ then from given equation

then the characteristic equation becomes to

a = 1

And its roots are

Since $m_1 \neq m_2$ Real and unequal, a complete solution is

 $y(x) = c_1 e^{-3x} + c_2 e^{-4x}$

 $m_1 = -3$

b = 7

Example Find complete solution of the equation

Solution

let $y = e^{mx}$ then from given equation $e^{mx}(m^2 + 2m + 5) = 0$ the characteristic equation in this case is $m^2 + 2m + 5 = 0$ a = 1b = 2c = 5 $m_1 = -1 + 2i$ And its roots are $m_2 = -1 - 2i$ Since m_1 and m_2 are complex conjugate it clear that

Then, a complete solution of equation is

V

$$(x) = e^{-1x} (A\cos 2x + B\sin 2x)$$

Operator Notation

By definition

$$y' = \frac{dy}{dx} = Dy$$

Then by repetition of the process of differentiation

$$y'' = \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = D(Dy) = D^2 y$$
$$y''' = \frac{d^3 y}{dx^3} = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = D(D^2 y) = D^3 y$$

Similarly

y'' + 7y' + 12y = 0

 $e^{mx}(m^2 + 7m + 12) = 0$ $m^2 + 7m + 12 = 0$ c = 12

$$m_2 = -4$$

y'' + 2y' + 5y = 0

p = -1q=2

Engineering Analysis (Third Class)

••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••

The operator D can be handled in many respects as though it were a simple algebraic quantity.

Particular Solution

In particular solutions, the two arbitrary constants in the complete solution must usually be determined to fit given initial (or boundary) conditions on y and y'.

Example Find the solution of the equation y'' - 4y' + 4y = 0 for which y = 3 and y' = 4 when x = 0

Solution

Using operator notation, the given

 $D^2y - 4Dy + 4y = 0 \Rightarrow (D^2 - 4D + 4)y = 0$

Replace D by m the characteristic equation of given equation becomes to $m^2 - 4m + 4 = 0$ and its roots are $m_1 = m_2 = 2$; hence the complete solution is

$$y(x) = c_1 e^{2x} + c_2 x e^{2x}$$

Now to find the particular solution, differentiate y(x) with respect to x

$$y'(x) = 2c_1e^{2x} + c_2e^{2x} + 2c_2xe^{2x} = (2c_1 + c_2)e^{2x} + 2c_2xe^{2x} =$$

The substituting the given conditions into the equations for y and y', respectively, we have

$$3 = c_1$$
 and $4 = 2c_1 + 4c_2$

Hence, $c_1 = 3$, and $c_2 = -2$

Then the required solution is

$$y(x) = 3e^{2x} - 2xe^{2x}$$

H.WS

1- Find a complete solution of each of the following equations:

a- $y'' + 5y' = 0$	Answer	$y(x) = c_1 + c_2 e^{-5x}$
b- $(9D^2 - 12D + 4)y = 0$	Answer	$y(x) = c_1 e^{2x/3} + c_2 x e^{2x/3}$
c- $y'' + 10y' + 26y = 0$	Answer	$y(x) = e^{-5x}(A\cos x + B\sin x)$

2- Find a particular solution of each of the following equations which satisfies the given conditions:

a-	25y'' + 20y' + 4y = 0	, ,	y = y' = 0	when $x = 0$	
			Answer	y(x)=0	
b-	y'' + 4y = 0	,	y = 2, when	x=0 , y'	= 6, when $x = 0$
			Answer	$y(x) = 2\cos 2x + $	3 sin 2 <i>x</i>

The Nonhomogeneous Second - Order Differential Equation with Constant Coefficients

Consider the following nonhomogeneous Equation

$$a(x)y'' + b(x)y' + c(x)y = f(x) \qquad \cdots \cdots \cdots \cdots (1)$$

Dividing both sides of equation (1) by a(x) the equation reduced to

$$y'' + p(x)y' + q(x)y = r(x) \qquad \cdots \cdots \cdots \cdots (2)$$

The solution of nonhomogeneous equation (2) is

$$y(x) = y_h + y_p$$

Where

 $y_h = c_1 y_1 + c_2 y_2$ is a general solution of the homogeneous ODE (2) and

 y_p is a particular solution of (2)

There are two methods to find particular solution y_p .

- 1- Undetermined Coefficients
- 2- Variation of Parameter

Particular Solutions by the Method of Variation of Parameter

Let $y_1(x)$, $y_2(x)$ be two homogeneous solutions of equation (2) and y_p be a particular solution of (2)

The fundamental idea behind the process is this. Instead of using two arbitrary constants c_1 and c_2 to combined two independent solutions of the homogeneous equation (2)

 $y^{\prime\prime} + p(x)y^{\prime} + q(x)y = 0$

as we do in constructing the homogeneous solutions, we attempt to find two functions of x, say u_1 , and u_2 , such that

$$y_p = u_1 y_1 + u_2 y_2$$

By differentiation,

$$, \qquad y_p' = (u_1y_1' + u_1'y_1) + (u_2y_2' + u_2'y_2) = (u_1'y_1 + u_2'y_2) + (u_1y_1' + u_2y_2')$$

3)

For simplicity, let

 $\therefore y_p' = u_1 y_1' + u_2 y_2'$

and

$$y_p'' = (u_1 y_1'' + u_1' y_1') + (u_2 y_2'' + u_2' y_2')$$

substituting y_p, y'_p , and y''_p into equation we obtain

$$(u_1y_1'' + u_1'y_1' + u_2y_2'' + u_2'y_2') + p(x)(y_1' + u_2y_2') + q(x)(u_1y_1 + u_2y_2) = r(x)$$

Engineering Analysis (Third Class)

$$u_{1}\underbrace{[y_{1}''+p(x)y_{1}'+q(x)y_{1}]}_{zero} + u_{2}\underbrace{[y_{2}''+p(x)y_{2}'+q(x)y_{2}]}_{zero} + u_{1}'y_{1}'+u_{2}'y_{2}' = r(x)$$

$$u_{1}'y_{1}'+u_{2}'y_{2}' = r(x) \qquad \dots \dots \dots \dots \dots \dots (4)$$

$$\begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix} \begin{bmatrix} u_1' \\ u_2' \end{bmatrix} = \begin{bmatrix} 0 \\ r(x) \end{bmatrix}$$

Then by grammar rule

$$u_{1}' = -\frac{y_{2}}{y_{1}y_{2}' - y_{2}y_{1}'}r(x) \quad \text{and} \quad u_{2}' = \frac{y_{1}}{y_{1}y_{2}' - y_{2}y_{1}'}r(x)$$

Since $u_{1} = -\int \frac{y_{2}r(x)}{y_{1}y_{2}' - y_{2}y_{1}'}dx \quad \text{and} \quad u_{2} = \int \frac{y_{1}r(x)}{y_{1}y_{2}' - y_{2}y_{1}'}dx$
$$y_{p} = y_{2}\int \frac{y_{1}r(x)}{y_{1}y_{2}' - y_{2}y_{1}'}dx - y_{1}\int \frac{y_{2}r(x)}{y_{1}y_{2}' - y_{2}y_{1}'}dx \quad \text{where } W(x) = y_{1}y_{2}' - y_{2}y_{1}' = \text{Wronskian}$$

or $y_{p} = y_{1}\int \frac{W_{1}r(x)}{W}dx + y_{2}\int \frac{W_{2}r(x)}{W}dx$

 $y'' + y = \sec x$

 $r(x) = \sec x$

Example Find a complete solution of the equation <u>Solution</u> By inspection $y_h = c_1 cosx + c_2 sinx$

$$y_1 = cosx \qquad y_2 = sinx$$
$$y'_1 = -sinx \qquad y'_2 = cosx$$

then $y_1y_2' - y_2y_1' = \cos^2 x + \sin^2 x = 1$

$$\therefore \quad y_p = \sin x \int \cos x \sec x \, dx - \cos x \int \sin x \sec x \, dx = x \sin x - \cos x \int \frac{\sin x}{\cos x} \, dx$$

 $y_p = xsinx + cosx \ln|cosx|$

Finally

$$y(x) = c_1 cosx + c_2 sinx + x sinx - cosx \ln|cosx|$$

H.WS

Find a complete solution of each of the following equations:

a-
$$y'' - y = coshx$$
 Answer $y(x) = c_1 cosh x + c_2 sinhx + \frac{x sinhx}{2}$
b- $y'' + 2y' + y = e^{-x} lnx$ Answer $y(x) = c_1 e^{-x} + c_2 x e^{-x} + \left(\frac{x^2}{2} lnx - \frac{3}{4}x^2\right) e^{-x}$