Fourier Series and Fourier Integral

JOSEPH FOURIER (1768-1830). French physicist and mathematician

<u>Definition</u> A function f is **periodic** if and only if if there exists a positive number 2p such that for every t in the domain of f, f(t + 2p) = f(t). The number 2p is called a **period** of f Notes:-

- 1- If f(t) and g(t) have the period 2p, then the function h(t) = af(t) + bg(t).has the period 2p also.
- 2- f(t) = constant is periodic.

The Euler Coefficients

Let f(t) be an arbitrary periodic function of period 2p, then f(t) has formal expansion of the form

The introduction of the factor $\frac{1}{2}$ is a conventional device to render more symmetric the final formulas for the coefficients.

To determine the coefficients a_o , a_n and b_n , we need the following definite integrals, which are valid for values of d

$$1- \int_{d}^{d+2p} \cos \frac{n\pi t}{p} dt = 0 \qquad n \neq 0$$

$$2-\int_{d}^{d+2p}\sin\frac{n\pi t}{p}dt=0$$

$$3-\int_{d}^{d+2p}\cos\frac{n\pi t}{p}\cos\frac{m\pi t}{p}dt=0 \qquad n\neq m$$

$$4-\int_{d}^{d+2p}\cos^{2}\frac{n\pi t}{p}\,dt=p\qquad n\neq 0$$

$$5- \int_{d}^{d+2p} \cos \frac{m\pi t}{p} \sin \frac{n\pi t}{p} dt = 0$$

6-
$$\int_{d}^{d+2p} \sin \frac{m\pi t}{p} \sin \frac{n\pi t}{p} dt = 0 \qquad n \neq m$$

$$7- \int_{d}^{d+2p} \sin^2 \frac{n\pi t}{p} dt = p \qquad n \neq 0$$

Now, to find a_o integrate both sides of equation (1) from t = d to t = d + 2p

Petroleum Systems Control Engineering

$$\int_{d}^{d+2p} f(t) dt = \frac{a_o}{2} \int_{d}^{d+2p} dt + a_1 \int_{d}^{d+2p} \cos \frac{\pi t}{p} dt + \dots + a_n \int_{d}^{d+2p} \cos \frac{n\pi t}{p} dt + \dots + b_1 \int_{d}^{d+2p} \sin \frac{\pi t}{p} dt + \dots + b_n \int_{d}^{d+2p} \sin \frac{n\pi t}{p} dt + \dots$$

The first term on the right hand side is simply $=\frac{1}{2}a_ot|_d^{d+2p}=pa_o$, and by equations (2) and (3) all integrals contains cosine and sine vanishes ,then:-

$$a_o = \frac{1}{p} \int_d^{d+2p} f(t) \, dt$$

To find a_n $(n = 1, 2, 3, \cdots)$ multiply both sides of equation (1) by $\cos \frac{n\pi t}{p}$ and then integrate from t = d to t = d + 2p

$$\int_{d}^{d+2p} f(t) \cos \frac{n\pi t}{p} dt$$

$$= \frac{a_o}{2} \int_{d}^{d+2p} \cos \frac{n\pi t}{p} dt + a_1 \int_{d}^{d+2p} \cos \frac{n\pi t}{p} \cos \frac{n\pi t}{p} dt + \dots + a_n \int_{d}^{d+2p} \cos^2 \frac{n\pi t}{p} dt + \dots$$

$$+ b_1 \int_{d}^{d+2p} \cos \frac{n\pi t}{p} \sin \frac{\pi t}{p} dt + \dots + b_n \int_{d}^{d+2p} \cos \frac{n\pi t}{p} \sin \frac{n\pi t}{p} dt + \dots$$

By equations (2), (4) and (6) all terms on the right hand vanishes except the one involving $\cos^2 \frac{n\pi t}{p}$

$$\int_{d}^{d+2p} f(t) \cos \frac{n\pi t}{p} dt = pa_n$$

$$a_n = \frac{1}{p} \int_{d}^{d+2p} f(t) \cos \frac{n\pi t}{p} dt$$

To find b_n $(n=1,2,3,\cdots)$ multiply both sides of equation (1) by $\sin\frac{n\pi t}{p}$ and then integrate from t=d to t=d+2p

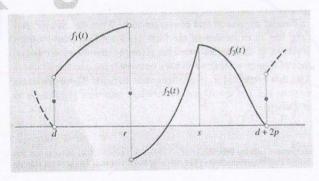
$$\int_{d}^{d+2p} f(t) \sin \frac{n\pi t}{p} dt$$

$$= \frac{a_o}{2} \int_{d}^{d+2p} \sin \frac{n\pi t}{p} dt + a_1 \int_{d}^{d+2p} \cos \frac{\pi t}{p} \sin \frac{n\pi t}{p} dt + \dots + a_n \int_{d}^{d+2p} \sin \frac{n\pi t}{p} \cos \frac{n\pi t}{p} dt$$

$$+ \dots + b_1 \int_{d}^{d+2p} \sin \frac{n\pi t}{p} \sin \frac{n\pi t}{p} dt + \dots + b_n \int_{d}^{d+2p} \sin^2 \frac{n\pi t}{p} dt + \dots$$
Similarly
$$b_n = \frac{1}{p} \int_{d}^{d+2p} f(t) \sin \frac{n\pi t}{p} dt$$

 a_0 , a_n , b_n are called Euler-Fourier formulas, and the series (1) when its coefficients have these values is known the Fourier Series of f(t)

<u>Dirichlet Theorem</u> If f(t) is a bounded periodic function which in any one periodic has at most a finite number of local maximum and minimum and a finite number of points of discontinuity, then the Fourier series of f(t) converges to f(t) at all points when f(t) is continuous and converges to the average of the right- and left- hand limits of f(t) at each point where f(t) is discontinuous. In Figure below the function f(t) is defined by three different expressions $f_1(t)$, $f_2(t)$, and $f_3(t)$ successive portions of the period interval $d \le t \le t + 2p$. Hence the Euler formulas can be written as



$$a_n = \frac{1}{p} \int_d^{d+2p} f(t) \cos \frac{n\pi t}{p} dt = \frac{1}{p} \int_d^r f_1(t) \cos \frac{n\pi t}{p} dt + \frac{1}{p} \int_r^s f_2(t) \cos \frac{n\pi t}{p} dt + \frac{1}{p} \int_s^{d+2p} f_3(t) \cos \frac{n\pi t}{p} dt$$

$$b_n = \frac{1}{p} \int_d^{d+2p} f(t) \sin \frac{n\pi t}{p} dt = \frac{1}{p} \int_d^r f_1(t) \sin \frac{n\pi t}{p} dt + \frac{1}{p} \int_r^s f_2(t) \sin \frac{n\pi t}{p} dt + \frac{1}{p} \int_s^{d+2p} f_3(t) \sin \frac{n\pi t}{p} dt$$

Example:- What is the Fourier expansion of the periodic function whose definition in one period is

$$f(t) = \begin{cases} 0 & -\pi \le t \le 0\\ \sin t & 0 \le t \le \pi \end{cases}$$

Solution

Graph the given function, then from the graph the half-period of the given function is $p = \pi$, taking

 $d = -\pi$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} \sin t \, \cos nt \, dt$$

From identities

$$\sin t \cos nt = \frac{1}{2} [\sin(1+n)t + \sin(1-n)t]$$

$$a_n = \frac{1}{\pi} \left[-\frac{1}{2} \left\{ \frac{\cos((1-n)t)}{1-n} + \frac{\cos((1+n)t)}{1+n} \right\} \right]_0^{\pi} =$$

$$a_n = -\frac{1}{2\pi} \left[\frac{\cos (\pi - n\pi)}{1 - n} + \frac{\cos (\pi + n\pi)}{1 + n} - \left(\frac{1}{1 - n} + \frac{1}{1 + n} \right) \right] = -\frac{1}{2\pi} \left[\frac{-\cos n\pi}{1 - n} + \frac{-\cos n\pi}{1 + n} - \frac{2}{1 - n^2} \right]$$

$$a_n = \frac{1 + \cos n\pi}{\pi (1 - n^2)} \qquad n \neq 1$$

For
$$n = 1$$
 $a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos t \, dt = \frac{1}{\pi} \int_{0}^{\pi} \sin t \, \cos t \, dt = \frac{\sin^2 t}{2\pi} \Big|_{0}^{\pi} = 0$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \sin nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} \sin t \, \sin nt \, dt$$

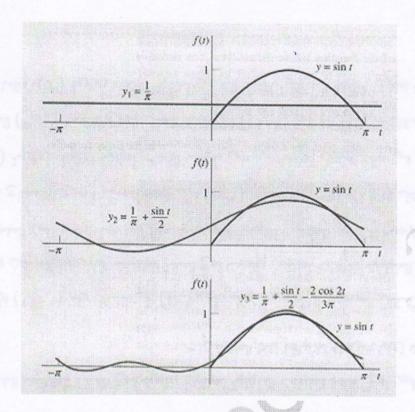
Since $\sin t \sin nt = \frac{1}{2} [-\cos(1+n)t + \cos(1-n)t]$

$$b_n = \frac{1}{\pi} \left[\frac{1}{2} \left\{ \frac{\sin(1-n)t}{1-n} - \frac{\sin(1+n)t}{1+n} \right\} \right]_0^{\pi} = 0 \qquad n \neq 1$$

For
$$n = 1$$
 $b_1 = \frac{1}{\pi} \int_0^{\pi} \sin^2 t \, dt = \frac{1}{\pi} \int_0^{\pi} \frac{1 - \cos 2t}{2} \, dt = \frac{1}{\pi} \left[\frac{t}{2} - \frac{\sin 2t}{4} \right]_0^{\pi} = \frac{1}{2}$

Hence, evaluating the coefficients for $= 0, 1, 2, 3, \dots$, we have

$$f(t) = \frac{1}{\pi} + \frac{\sin t}{2} - \frac{2}{\pi} \left(\frac{\cos 2t}{3} + \frac{\cos 4t}{15} + \frac{\cos 6t}{35} + \frac{\cos 8t}{63} + \cdots \right)$$



Theorem 1 If f(t) is an even periodic function which satisfies the Dirichlet conditions, the coefficients in the Fourier series of f(t) are given by the formulas

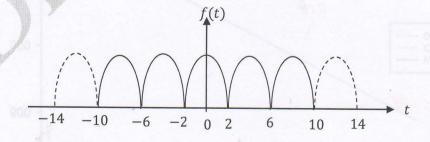
$$a_n = \frac{2}{p} \int_0^p f(t) \cos \frac{n\pi t}{p} dt$$
 $b_n = 0$ where $2p$ is the period of $f(t)$

Example:- What is the Fourier expansion of the periodic function whose definition in one period is

$$f(t) = 4 - t^2 \qquad -2 \le t \le 2$$

Solution

Graph the given function, then from the graph the half-period of the given function is p = 2, taking



Since
$$f(t) = f(-t)$$
 the given function is even function then $b_n = 0$
$$a_n = \frac{2}{2} \int_0^2 f(t) \cos \frac{n\pi t}{2} dt = \int_0^2 (4 - t^2) \cos \frac{n\pi t}{2} dt$$

$$a_n = \int_0^2 4 \cos \frac{n\pi t}{2} dt - \int_0^2 t^2 \cos \frac{n\pi t}{2} dt$$

$$a_n = \left[\frac{8}{n\pi} \sin \frac{n\pi t}{2} \right]_0^2 - \left[\frac{8t}{n^2 \pi^2} \cos \frac{n\pi t}{2} + \left(\frac{2t^2}{n\pi} - \frac{16}{n^3 \pi^3} \right) \sin \frac{n\pi t}{2} \right]_0^2$$

$$a_n = -\frac{16}{n^2 \pi^2} \cos n\pi = \frac{16}{n^2 \pi^2} (-1)^{n+1} n \neq 0$$
For $n = 0$
$$a_0 = \frac{2}{2} \int_0^2 (4 - t^2) dt = \left[4t - \frac{t^3}{3} \right]_0^2 = \frac{16}{3}$$

$$2t$$

$$2t$$

$$-\left(\frac{2}{n\pi} \right)^2 \cos \frac{n\pi t}{2}$$

$$2$$

$$-\left(\frac{2}{n\pi} \right)^3 \sin \frac{n\pi t}{2}$$

Substituting these coefficients into the series, we obtain

$$f(t) = \frac{8}{3} + \frac{16}{\pi^2} \left(\cos \frac{\pi t}{2} - \frac{1}{2^2} \cos \frac{\pi t}{2} + \frac{1}{3^2} \cos \frac{\pi t}{2} - \frac{1}{4^2} \cos \frac{\pi t}{2} + \cdots \right)$$

Theorem 2 If f(t) is an odd periodic function which satisfies the Dirichlet conditions, the coefficients in the Fourier series of f(t) are given by the formulas

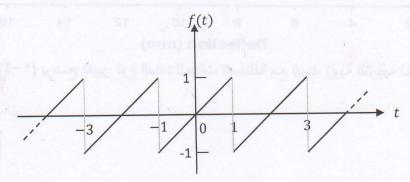
$$b_n = \frac{2}{p} \int_0^p f(t) \sin \frac{n\pi t}{p} dt$$
 $a_n = 0$ where $2p$ is the period of $f(t)$

Example: What is the Fourier expansion of the periodic function whose definition in one period is

$$f(t) = t \qquad -1 < t < 1$$

Solution

Graph the given function, then from the graph the half-period of the given function is p = 1



Petroleum Systems Control Engineering

Engineering Analysis (Third Class)

Since f(t) = -f(-t) the given function is odd function then

$$b_n = \frac{2}{1} \int_0^1 f(t) \sin \frac{n\pi t}{1} dt = 2 \int_0^1 t \cdot \sin n\pi t dt$$

$$b_n = 2\left[-t \cdot \frac{1}{n\pi}\cos n\pi t + \left(\frac{1}{n\pi}\right)^2 \sin n\pi t\right]_0^1$$

$$b_n = 2\left[-\frac{1}{n\pi}\cos n\pi\right]$$

 $\begin{array}{cccc}
D & I \\
t & + & \sin n\pi t \\
1 & -\frac{1}{n\pi}\cos n\pi t \\
0 & -\left(\frac{1}{n\pi}\right)^2 \sin n\pi t
\end{array}$

 $a_n = 0$

Remember that

$$\cos n\pi = (-1)^n$$

Hence
$$b_n = \frac{2(-1)^{n+1}}{n\pi}$$

Substituting these coefficients into the series, we obtain

$$f(t) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin n\pi t}{n}$$

PROBLMES

Find the Fourier expansion of the periodic function whose definitions on one period is

$$1- f(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & 1 < t < 3 \\ -1 & 3 < t < 4 \end{cases}$$

Answers:
$$a_n =$$

$$b_n = \begin{cases} 2/\pi n & n = 1, 3, 5, \cdots \\ 4/\pi n & n = 2, 6, 10, \cdots \\ 0 & n = 4, 8, 12, \cdots \end{cases}$$

2-
$$f(t) = |t|$$
 $-2 \le t \le 2$

$$3- f(t) = \begin{cases} 0 & -2 \le t \le -1 \\ \cos \frac{\pi t}{2} & -1 \le t \le 1 \\ 0 & 1 \le t \le 2 \end{cases}$$
 Answers: $\frac{1}{\pi} + \frac{1}{2} \cos \frac{\pi t}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos n\pi t}{4n^2 - 1}$

Half-Range Expansion

When f(t) will be defined on an interval $0 \le t \le p$, and on this interval we want to represent f(t) by a Fourier. Then, if we represents f(t) an even periodic function which is called **half-range cosine** series

$$f(t) = \frac{1}{2}a_o + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{p}$$

$$b_n = 0$$

and if we represents f(t) an odd periodic function which is called half-range sine series, then

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{p}$$
 $a_n = 0$