

## Solvent De-asphalting of Short Residue : Indigenous Technology and Further Development

Mohan Konde HPCL Mumbai refinery

SYMPOSIUM ON SOLVENT EXTRACTION REVISITED FEBRUARY 5<sup>TH</sup> – 6th , 2010 IIChE (NRC) Auditorium



# **Solvent Deasphalting**

- Introduction
- Deasphalting solvents
- Process variables
- Solvent recovery
- Lube & conversion feed-stock preparation
- New Approaches
- Summary



# **Solvent Deasphalting**

- Introduction
- Deasphalting solvents
- Process variables
- Solvent recovery
- Lube & conversion feed-stock preparation
- New Approaches
- Summary

## **Residue Upgrading Processes**



हिन्द्रस्तान पहोलियम

#### **Residue Upgrading Choice of Process**





## SOLVENT DEASPHALTING



- A physical separation based residue upgradation process, separates vacuum residue on the basis of both molecular type & size.
- Produces extra heavy viscosity lube base stock and / or feedstock for conversion units.
- Pitch or Asphalt is obtained as bottom product

## **Applications of solvent deasphalting**





## **Deasphalting Solvents**



#### **Commercially used solvents are**

#### > LIGHTER SOLVENTS : PROPANE & ISOBUTANE

- Higher selectivity
- Reject all resins and asphaltenes
- Suitable for production of lubes oils
- HEAVIER SOLVENTS : n-BUTANE, PENTANE (n& i) and LIGHT NAPHTHA
  - -- Less selective than the lighter solvents
  - Produce higher yields of DAO/DMO (suitable as conversion feedstocks)

#### General Properties Deasphalting Solvents



Solubility of oil decreases with increase in temperature

> More selective at higher temperatures

> Exhibit lower critical solution temperature



- DAO and Asphalt are not finished products
- Require further processing



# **Processing of DAO**

#### **PROCESSING FOR**

- LUBE : Lube production increased by approx 20%
- CRACKING : 1/3<sup>rd</sup> of cat. cracking feed in a refinery can be DAO
- HYDROTREATING : Economical, consumes less hydrogen, less investment



# **Processing of Asphalt**

#### Process

- BLENDING : Tailor made asphalt (bitumen) or fuel oil
- VISBREAKING : Minimizes need or cutter stock
- GASIFICATION : Hydrogen, steam and power production

## DEASPHALTING: PROCESS VARIABLES



- > SOLVENT COMPOSITION
  - Blends of light hydrocarbon solvents
  - Increased operating flexibility
- > SOLVENT-TO-FEED RATIO (S/F)
  - Selectivity improves by increasing S/F at constant DAO yield
  - Economically optimum S/F is used
- TEMPERATURE / TEMPERATURE GRADIENT Oil solubility in solvent
  - Decreases with increase in temp. (optimum temps)
  - Temp. gradient improves separation between DAO-Asphalt phases

#### PRESSURE

- Maintained above V.P. of solvent at operating temperatures.



## LUBE APPLICATIONS OF DEASPHALTING

## **PROPANE DEASPHALTING (PDA)**



#### > PDA PRODUCES DAO FOR:

- Heavy lube oil base stock / bright stock
- Cylinder oils

#### > OPERATING CONDITIONS:

- Temperatures : 50 to 80°C
- S/F (vol /vol) : 6 to 10
- Pressure more than vap. pr. of the solvent



## Lube Oil Base Stock (Bright Stock) Production From Dao

#### CONVENTIONAL ROUTE

- Solvent refining
- Solvent dewaxing and
- Hydro finishing
- > HYDROPROCESSING ROUTE

#### > DESIRED QUALITY OF DAO FOR BRIGHT STOCK

- VISCOSITY, cSt, @100°C : 28 32
- CCR, WT% : < 2.0

#### > QUALITY OF DAO FROM REFINERIES:

|                        | HALDIA    | CPCL  | HPCL    |
|------------------------|-----------|-------|---------|
| KIN. VISC. cSt @98.9°C | 36-42     | 35-38 | 28-32   |
| CCR, wt%               | 1.7 – 2.0 | 1-1.2 | 1.5-2.2 |

## **PROPANE DEASPHALTING - STATUS**



| PLANT         | CAPACITY,<br>MMT/A | TECHNOLOGY                           |
|---------------|--------------------|--------------------------------------|
| HPCL, MUMBAI  | 548,000            | IIP / EIL                            |
| CPCL, CHENNAI | 574,000            | IIP / EIL                            |
| IOC HALDIA    | 650,000            | ROMANIAN/ EXPANSION BY<br>EIL / ROSE |

➢All plants produce LOBS(BS)

Solvent recovery : evaporation mode / supercritical mode

Development of know-how for supercritical mode is recently done by IIP,EIL & HPCL

## **Heavier Solvent Deasphalting**



#### Heavier solvents:

- C<sub>3</sub>/C<sub>4</sub> MIX
- n BUTANE
- PENTANES (n & i)
- LIGHT NAPHTHA

Produce higher yields of DAO / DMO compared to propane

#### Status

No application in India so far

## **COMPARISON OF SOLVENT (C\_3 - C\_5)**



| Solvent                              | Feed<br>(SR) | Propane<br>(C <sub>3</sub> ) | Propane –<br>butane (C <sub>3</sub> /C <sub>4</sub> ) | Butane<br>(C <sub>4</sub> ) | Pentane<br>(C <sub>5</sub> ) |
|--------------------------------------|--------------|------------------------------|-------------------------------------------------------|-----------------------------|------------------------------|
|                                      |              | DAO                          |                                                       |                             |                              |
| Yield, wt%                           | 100          | 29                           | 46.8                                                  | 67.3                        | 82.8                         |
| API gravity                          | 6.6          | 21                           | 16                                                    | 12.1                        | 10.3                         |
| Viscosity, cSt @ 100°C               | 1900         | 35                           | 110                                                   | 340                         | 800                          |
| CCR, wt%                             | 22.1         | 1.5                          | 5.0                                                   | 10.6                        | 14.0                         |
| Sulphur, wt%                         | 4.29         | 2.60                         | 3.0                                                   | 3.6                         | 3.9                          |
| Asphaltenes, wt%                     |              |                              |                                                       |                             |                              |
| Metals, ppm                          |              |                              |                                                       |                             |                              |
| " <b>V</b> "                         | 70           | 1.1                          | 2.5                                                   | 7                           | 23                           |
| "Ni"                                 | 21           | 0.3                          | 0.7                                                   | 2.1                         | 7                            |
|                                      |              |                              |                                                       |                             |                              |
| Sp. Gravity                          |              | 1.047                        | 1.089                                                 | 1.116                       | 1.175                        |
| Sof. Pt. (R&B), °C                   |              | 160                          | 225                                                   | 270                         | 390                          |
| PEN. (25°C, 100g, 5 sec.) 1/10<br>mm |              | 5                            | 0                                                     | 0                           | 0                            |

## DAO Yield - Quality Relationship





# General Operating Conditions of SDA Units Vs. Type of Solvent



| OPERATING<br>CONDITIONS  | PROPANE   | BUTANE       | PENTANE      |
|--------------------------|-----------|--------------|--------------|
| EXTRACTION<br>RANGE (°C) | 50 – 80   | 100 – 130    | 170 – 210    |
| PRESSURE<br>RANGE (MPa)  | 3.5 – 4.0 | <u>~</u> 4.0 | <u>~</u> 4.0 |
| SOLVENT<br>RATIO (VOL.)  | 6 – 9     | 4 – 7        | 3 - 5        |

# Solvent Recovery From DAO & Asphalt Phases



#### > EVAPORATIVE MODE

- Multiple effect evaporation (up to 3 stages)
- Series of progressively lower pressure flashes followed by stripping

#### > SUPERCRITICAL MODE (FOR DAO/DMO PHASE)

- Phase separation at / above critical temperature of solvent
- 85 to 93% solvent recovered as lighter phase for heat exchange and recycle in the process
- Recovered solvent has very low DAO content
- Remaining solvent from DAO recovered by flashing / stripping

#### Advantages of Supercritical Solvent Recovery



- More energy efficient approach
- Utilities savings up to 40% (with heavier solvents)
- More compact unit
- Savings in capital investment for grass-root plants (15 to 25%)

#### **Supercritical Solvent Recovery**



23

हिन्द्रसाम पेहीलियम



#### Deasphalting For Conversion Feedstock Preparation

## **Conversion Feed-stocks**



#### •VGO

Produced through vacuum distillation (broad cut ~ 370-540°C, typical)

#### • DAO / DMO

Produced through heavier solvent deasphalting

## Feed Stock Characteristics and Their Affects



Feedstock for conversion processes like FCC and Hydro-cracking require control on contents of following impurities

- NITROGEN
- SULFUR
- METALS (Ni & V)
- CCR
- ASPHALTENES

## **Effect of Impurities**



#### > NITROGEN

Nitrogen compounds neutralize acidic function of catalyst, essential for cracking

#### > SULFUR

Causes corrosion and catalyst poison

#### > METALS

Deposit irreversibly on catalyst surface, influence life of catalyst

#### CCR / ASPHALTENES

Coke precursors

## Typical feed stock impurities -Limitations



| Feed to Unit  | Nitrogen,<br>Wt% | Sulphur,<br>Wt% | CCR,<br>Wt% | Metals<br>(ppm) |
|---------------|------------------|-----------------|-------------|-----------------|
| FCC           | 0.20             | 2.5             | 2.0         | 2               |
| RFCC          |                  |                 | 8.0         | 30-50           |
| Hydrocracking | 0.12             | 3.0             | 1.5         | 3               |

## Solvent Deasphalting – New Approaches



Residue Decarbonization Process / Technology (RDCP)

- The process uses self catalysed reactor and combines with solvent deasphalting
- Non-coking reactor produces light cuts / distillates
- Heavy liquid phase is sent to deasphalting
- Light cuts and deasphalted oil are blended to yield product for further processing
- Yield of liquid products increases about 10 wt%
- SDA process is being applied in many ways allowing the refiner to move towards zero fuel oil production