Adsorbants, Types and Applications By Dr. Rafi Jamal Algawi

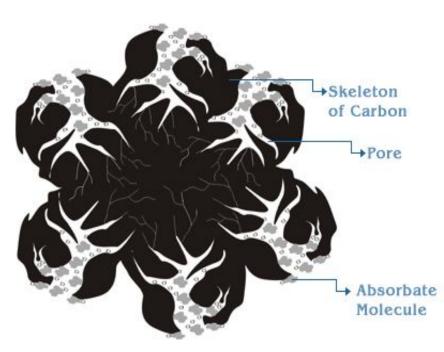
Adsorbents: Basic types

Activated Carbon (AC)

Removal of all of the adsorbates mentioned above (to varying degrees) by the far most popular adsorbent

- Activated Alumina
- Molecular Sieves (zeolite)

Clays with adsorptive properties



Adsorbents: Preparation of activated carbon

AC can be prepared from any carbonaceous material

e.g.

- Wood
- Lignite
- Coal
- Nutshells
- Bones

[Kan-Carbon, 2018]

Adsorbents: Preparation of activated carbon

Production process: Two steps

• Pyrolysis:

The carboneous material has to be pyrolyzed (heated in a low oxygen environment). This forms a "char".

• Activation:

The char is then activated by heating to 800-1000 $^{\circ}$ C in the presence of steam, oxygen or C0₂ to form gaseous products.

Adsorbents: Preparation of activated carbon

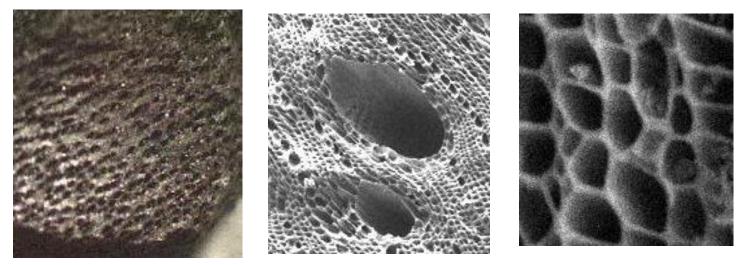
Production process: Two steps

• Pyrolysis:

The carboneous material has to be pyrolyzed (heated in a low oxygen environment). This forms a "char".

• Activation:

The char is then activated by heating to 800-1000 $^{\circ}$ C in the presence of steam, oxygen or C0₂ to form gaseous products.

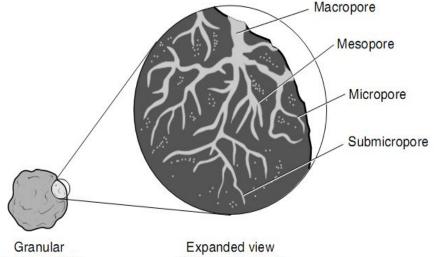


Adsorbents: Properties of activated carbon

AC has a heterogeneous pore structure:

Increasing magnification

Photos of Activated Carbon [Zhang, 2015]



Adsorbents: Properties of activated carbon

Definition of AC pore size

- Micropores: d < 2 nm
- Mesopores: d = 2-20 nm
- Macropores: d > 20 nm

Distribution:

carbon particle

of internal structure

Pore size	% pore volume	% surface area
Micro	30 - 60	> 95
Meso	< 10	< 5
Macro	25 - 30	negligible

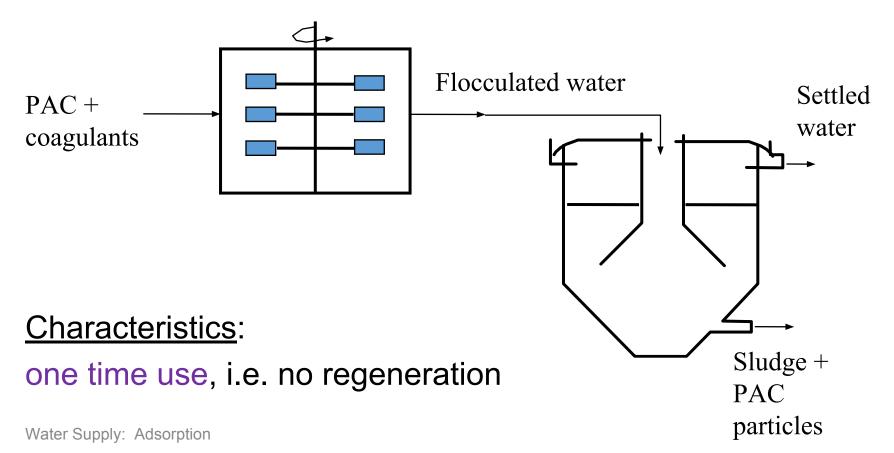
Adsorbents: Types of activated carbon

PAC: Powdered activated carbon

- \Box Fine powder, d < 0.05 mm
- □ Surface area as much as 100 acres/lb (≈ 1000 m²/g)
- \square Pore sizes (radii) down to 10⁻⁹ m
- **GAC:** Granular activated carbon
 - Diameter: 0.5 4 mm
 - □ Surface area equal or a bit less than PAC

Adsorbents: Types of activated carbon Comparison of GAC and PAC [Zhang, 2015]:

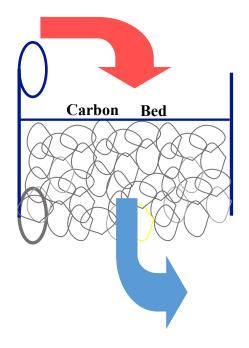
		Type of activated carbon ^a	
Parameter	Unit	GAC	PAC
Total surface area	m ² /g	700-1300	800-1800
Bulk density	kg/m ³	400-500	360-740
Particle density, wetted in water	kg/L	1.0-1.5	1.3-1.4
Particle size range	mm (μm)	0.1-2.36	(5-50)
Effective size	mm	0.6-0.9	na
Uniformity coefficient	UC	≤1.9	na
Mean pore radius	Â	16-30	20-40
lodine number		600-1100	800-1200
Abrasion number	minimum	75-85	70-80
Ash	%	≤8	≤6
Moisture as packed	%	2-8	3-10



Adsorbents: Types of activated carbon

How to use PAC (typically for taste and odor removal):

Mixing with raw water + removal by sedimentation or filtration



Adsorbents: Types of activated carbon

How to use GAC (typically for treatment of groundwater and riverbank filtrate in order to remove taste, odor, and micropollutants):

- Use of a fixed-bed column
- Downward flow through the column
- After exhaustion of the carbon capacity regeneration in a furnace by oxidizing the adsorbed organic matter

Applications

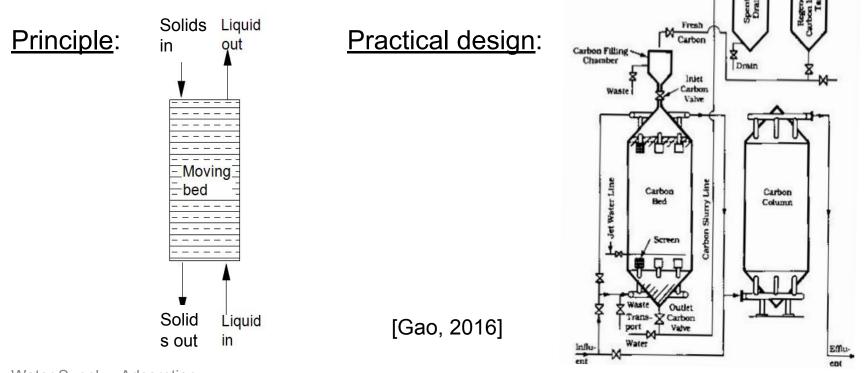
- Removal of refractory organic compounds
- Removal of inorganic compounds such as nitrogen, sulfides, and heavy metals
- Chemical reduction of oxidants
- Removal of taste and odor compounds

Process configurations

Column flow system: Fixed-bed

- Provides filtration as well as adsorption \Box
- Has to be periodically backwashed or Cart cleaned Liquid Influent in Influent Drain Distributor Transport Practical design Principle: Water Surface urbon Slurry Line Wash Waste Carbon Bed Transport Water Underdrain Liquid [Gao, System Effluent out 2016]

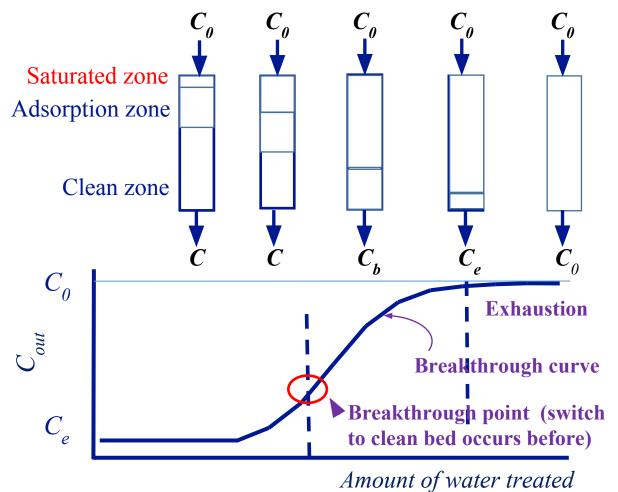
Wash Water



Process configurations

Column flow system: Fluidized-bed

- Continuous supply of fresh + removal of spent carbon
- Not effective as a filter

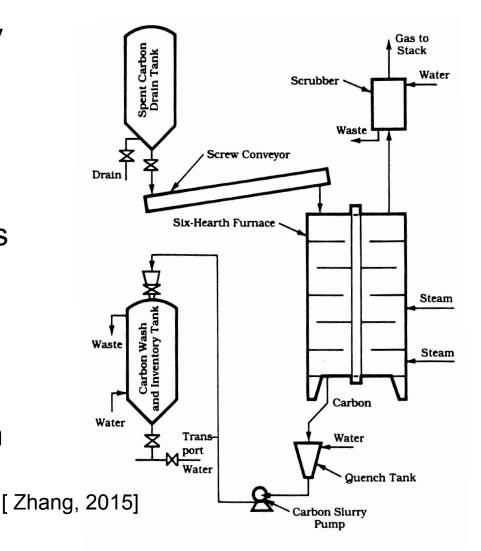


Process configurations

Fixed-bed system: Breakthrough development

The time to breakthrough is decreased by:

- Increased particle size of carbon
- Higher concentration in the influent
- Increased pH of the water
- Increased flow rate
- Lower bed depth


Water Supply: Adsorption

Carbon Regeneration

- Spent carbon is usually regenerated at 500 °C under low oxygen conditions in the presence of steam.
- Activated carbon loss is about 5-15% for each regeneration.
- Adsorbed organics are volatilized and oxidized during the regeneration process.

