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Example 1: The plant to be controlled has the transfer function
(S + 0.5)
G(S) =
S+1)( S —1)

1) stabilize it with feedback

2) Draw block diagram model-reference adaptive inverse control of a
stabilized minimum-phase plant.

Solution:

This plant is minimum-phase and is unstable. The first step is to
stabilize it with feedback. A root-locus diagram is shown in Fig. 1. It is
clear from this diagram that the plant can be stabilized by making use

of the simple unity feedback system of Fig. 2, by setting the loop gain

within the stable range o2 > k > 2. The loop gain was set to k = 4 for this

control experiment. The closed loop transfer function is minimum-

phase and has two poles in the left half of the s-plane.
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The plant and its stabilization are continuous (analog) systems. The
adaptive inverse control part, as it would be in the real world, is
discrete (digital). A diagram of the complete system is shown in Fig. 3,
including the necessary analog-to-digital conversion (ADC) and digital-
to-analog conversion (DAC) components. The command input is
sampled and is fed to both the inverse controller and the reference
model. The controller output is converted to analog form, using a
zero-order hold, to drive the plant and its stabilization loop. The error
signal used to adapt the inverse controller is discrete. This is the
difference between the reference model output and the sampled

plant output
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Fig. 1: Root-locus of minimum-phase plant with proportional feedback
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Fig. 2: Minimum-phase plant stabilized with proportional feedback, k=4
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Fig. 3: Model-reference adaptive inverse control of a stabilized minimum-phase plant.




Example 2: The plant to be controlled has the transfer function
S+0.5
G(S) = ( )

S+1)( S —1)
1) stabilize it with feedback
2) Draw block diagram of Model-reference inverse control system for
minimum-phase plant with adaptive plant disturbance canceler.
Solution:

This plant is minimum-phase and is unstable. The first step is to
stabilize it with feedback. A root-locus diagram is shown in Fig. 4. It is
clear from this diagram that the plant can be stabilized by making use

of the simple unity feedback system of Fig. 5, by setting the loop gain

within the stable range o2 > k > 2. The loop gain was set to k = 4 for this
control experiment. The closed loop transfer function is minimum-

phase and has two poles in the left half of the s-plane.
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The plant and its stabilization are continuous (analog) systems. The
adaptive inverse control part, as it would be in the real world, is
discrete (digital). A diagram of Model-reference inverse control system
for minimum-phase plant with adaptive plant disturbance canceler is
shown in Fig. 6, including the necessary analog-to-digital conversion
(ADC) and digital-to-analog conversion (DAC) components. The
command input is sampled and is fed to both the inverse controller
and the reference model. The controller output is converted to analog
form, using a zero-order hold, to drive the plant and its stabilization
loop. The error signal used to adapt the inverse controller is discrete.
This is the difference between the reference model output and the

sampled plant output
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Fig. 4: Root-locus of minimum-phase plant with proportional feedback
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Fig. 5: Minimum-phase plant stabilized with proportional feedback, k=4
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Fig. 6: Model-reference inverse control system for minimum-phase plant with adaptive plant disturbance canceler



L1 Adaptive Control Concept
Direct Model Reference Adaptive Control (MRAC)

Let the system dyna
differential equation:

X(t) = A,,,.r(t)+b(

y(t) =c'x(1),

mics propagate according to the following

u(r)+ k_;.r,x'(r)) . X)) =2xn,
(1.1)

where x(f) € R" is the state of the system (measured), A,, € R"*" is aknown Hurwitz matrix
that defines the desired dynamics for the closed-loop system, b, ¢ € R" are known constant
vectors, k, € R" is a vector of unknown constant parameters, u(f) € R is the control input,

and y(f) € R is the regulatec
reference input r(f) € R, the o

output. Given a uniformly bounded piecewise-continuous

hjective 1s to define an adaptive feedback signal u(f) such that:

y(f) tracks r(r) with desired s

necifications, while all the signals remain bounded.
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The MRAC architecture proceeds by considering the nominal controller

nom(t) = —k, X(t)+k,r(t). (1.2)

|
cTAZ'D

. A
k, £

(1.3)

This nominal controller assumes perfect cancelation of the
uncertainties in (1.1) and leads to the desired (ideal) reference system

Xp(t)= Am‘m(”‘|‘bA r(t), xp(0)=xp,

(1.4)
Ym(f)=¢ -hn“,)-

where x,,() € R" is the state of the reference model. The choice of K, according to (1.3)
ensures that y,,(f) tracks step reference inputs with zero steady-state error.

Lecture Advanced Adaptive Control Dr Thamir Hassan Atyia  Tikrit Uni 35



The direct model reference adaptive controller is given by

u(t) = =k (t)x(t)+kor (1), (15)

where ky(1) € R" is the estimate of ;. Substituting (1.5) into (1.1) yields the closed-loop
system dynamics

(1) = (A — bk, (1)x(1)+bkor(t),  x(0) = xo.
(1) =c'x(1).

where IEI(I) - IEI(!) — ky denotes the parametric estimation error.
Letting (1) £ x(t) = x(t) be the tracking error signal, the tracking error dynamics
can be written as _
6(t) = Ane(t) + bk (1), €(0)=0. (16)
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The update law for the parametric estimate is given by

Iz.r(f_) = —TI'x(t)e' (1)Pb, Er(o_) =Ky, (L.7)
where ' R is the adaptation gain and P = P" > 0 solves the algebraic Lyapunov
equation

ATP‘f‘PAm :—Q

m

for arbitrary Q = QT = ().

Consider the following Lyapunov function candidate:

i P
V(e(t).ky(1) =" ()Pe(r) + ij(r)k,r(r). (18)

The block diagram of the closed-loop system is given in fig. 7.
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lf:l-(r) =_Tx(t)e' (t)Pb
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Figure 7: Closed-loop direct MRAC architecture
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Direct MRAC with State Predictor

Next, we consider a re-parameterization of the above architecture
using a state predictor (or identifier), given by

X(1)= Api()+bu(t)+ k] (Ox(1).  (0)=xo.

(1.9
J(t)y=c' (). }

where X(f) € R" is the state of the predictor. The system in (1.9) replicates the system
structure from (1.1) with the unknown parameter k, replaced by its estimate I:'_r(_r_). By
subtracting (1.1) from (1.9), we obtain the prediction error dynamics (or identification error
dynamics), independent of the control choice,

X(1) = ApX(1)+ bk (Hx(t), (0)=0,

- A Ay " A1 ‘ . ‘ .
where x(f) = x(f)—x(f)andk,(f) =k, (f)—k,. Notice that these error dynamics are identical
to the error dvnamics in (1.6).
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Next, let the adaptive law for EIU ) be given as

-
-~ ”~,

ke(t) = —Tx()X " (1)Pb, ke(0) = kyo. (1.10)
where I" € R™ is the adaptation rate and ATP+PA,=-0.0=0" >0.This adaptive

m
law 1s similar to (1.7) in its structure, except that the tracking error e(f) is replaced by the

prediction error x(f). The choice of the Lyapunov function candidate
. - o . - "
V(X)) Ex()) =X " (OO PX()+ Fk_:!_{r}k_rir}

The block diagram of the closed-loop system with the predictor is given in
Figure 7. Figures 6 and 7 illustrate the fundamental difference between
the direct MRAC and the predictor-based adaptation. In Figure 7, the
control signal is provided as input to both systems, the system and the
predictor, while in Figure 6 the control signal serves only as input to the
system. This feature is the key to the development of L1 adaptive control

architectures with quantifiable performance bounds.
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Figure 7: Closed-loop MRAC architecture with state predictor
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Example 3: Drive the equations of L1 adaptive control and draw its
block diagram for the following system:

X(1) = Ax(t) +b(u(t)+6 "x(1)), x(0)=xy.

(2.1)
v(t) = CT.x(t).

where x(t) € R" is the system state vector (measured); u(f) € R is the control signal; b, ¢ € R"
are known constant vectors; A is the known n x n matrix, with (A, b) controllable; € 1s
the unknown parameter, which belongs to a given compact convex set # € ®@ C R"; and
y(f) € R is the regulated output. In this section we present an adaptive control solution,
which ensures that the system output y(f) follows a given piecewise-continuous bounded
reference signal r(f) with quantifiable transient and steady-state performance bounds.

the control structure

U(t) =um(t)+uaq(t), up(t)= —k,-,l;-r(f)-. (2.2)
Uag(s) = —C(s) (A(s) —ker(s)) ()2 6T ()x(1)
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Solution: The closed-loop system:
(1) = Apx(1)+b(0 " x(t) +uq(). x(0)=xq,

2.3)
v(t)=c'x(1). {
The state predictor:
-%(f) = ApX(1) +b(éT(t)3'(_t) +uqd(1)),  X(0) =xp, (2.4)

(1) =c'i(1),
where x(f) € R" is the state of the predictor and A() € R" is the estimate of the parameter 6,
governed by the following projection-type adaptive law:

A(t) = TProj(B(t),—x " (1)Pbx(1)), 6H(0)=6y 0, (2.5)
where X(f) = x(f) —x(t) is the prediction error, I' € R is the adaptation gain, and P =
P > 0solves the algebraic Lyapunov equation A,I P+ P Ap =—Q forarbitrary symmetric

D=0 =0
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= 1

—rp Ky ADQ—D C(s)
I

¥(t)= Apx(t) 4 blugy(t) +0 " x(1)
y(t)=c'x(t)

P () = And () +blugg(0)+6T (1) (1)
3 j)=c'i)
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The “supervisor”:
ewill check what “plant-model” error is minimum
ewill switch to the controller associated with the selected model

Can provide a very fast decision (if there are not too many models)

but not a fine tuning

e

o

: Supervisory Cﬂﬂtl‘ﬂl]

N

MODELS
> o |0
a_____J o
E9
» G2 = =
CONTROLLERS ' ':Q
F : =) v
> 1 . =
y ) Y > Gn 8 J > SUPERVISOR
o
e K> o PLANT 1 =
= e f&[ ] =
.-‘.—x.
| e 1/ \
e A
N
N

S/

Lecture Advanced Adaptive Control

Dr Thamir Hassan Atyia

Tikrit Uni 45



'

~ Adaptive Control with Multiple Models ]

The supervisor select the best fixed model and then the adaptive
model will be selected. Multiple fixed models: improvement of the
adaptation transients. Adaptive plant model estimator(Closed Loop
Output Error (CLOE) Estimator) :performance improvement.
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