Properties of Petroleum & Gases Reid vapor pressure (ASTM D323)

- RVP is a standard test for low boiling point distillates: naphtha, gasoline, light cracked distillates and aviation gasoline with vapor pressures above 26 psig at 37.8°C (100°F).
- RVP test for crude oil helps refiners understand the nature of feedstocks to make the optimal processing decisions.
- > RVP test measures **evaporation rates**.
- RVP is the absolute vapor pressure exerted by the vapor of the liquid and any dissolved gases at 37.8 °C (100 °F)

The apparatus used for RVP test is described below

- > The vapor chamber and the sample container have the same diameter.
- > The volume of the vapor chamber is **4 times** bigger than the volume of sample container.
- The RVP tester inserted vertically in a water bath up to a level of 190 mm of the vapor chamber at 100°F (37.8 °C) for 30 min and then removed, tilted once or twice and replaced for a further 15 min.
- > At the end of this time the vapor pressure of the test sample is read from the pressure gage.
- RVP measures the vapour-lock tendency of a motor gasoline in which excessive vapours are produced in the fuel line causing interruption of the liquid fuel supply to the engine.
- The fuel can vaporize due to being heated the local climate or due to a lower boiling point at high altitude.

Petroleum & Gas Refining Engineering

Properties of Petroleum & Gases RVP of several pure hydrocarbons are given as follows:

i-C₄: 4.896 bar (71 psia); n-C₄: 3.585 bar (52 psia); i-C₅: 1.338 bar (19.4 psia); n-C₅: 1.0135 bar (14.7 psia); i-C₆: 0.441 bar (6.4 psia); n-C₆:0.34 bar (5.0 psia); benzene: 0.207 bar (3.0 psia); toluene: 0.03 bar (0.5 psia),

RVP directly proportional to Volatility (the tendency of a substance to vaporize). At a given temperature, a substance with higher vapour pressure vaporizes more readily than a substance with a lower vapour pressure.

• RVP is used for estimation of losses from storage tanks during filling or draining.

Losses in Vol % = (14.5 RVP - 1)/6 where RVP is in bar

• In general, true vapor pressure TVP is higher than RVP because of light gases dissolved in liquid fuel. (1bar = 14.5psig) (1psig 0.068 bar).

Prediction of the Reid Vapour Pressure

- High levels of vaporization are desirable for winter starting and operation (High RVP • **Gasoline**)
- lower levels of vaporization are desirable for hot summer to avoid vapour lock (Low RVP **Gasoline**)
- Fuel cannot be pumped when there is vapour in the fuel line (summer)
- Winter starting will be more difficult when liquid gasoline in the combustion chambers has • not vaporized.
- The maximum allowable **RVP is 75.8 kPa** (11 psia), while this limit at 32°C (90°F) reduces • to 55.2 kPa (8 psia).

TVP at 100°F (311 K) can be estimated from equation below:

 $\log_{10} TVP_{100} = 3.204 x \left(1 - 4 x \frac{T_b - 41}{1393 - T_b}\right) \dots 25$

26

Where T_b is the normal boiling point in K and TVP₁₀₀ is the true vapour pressure at 100°F (311 K).

$$RVP = P_c exp(Y) \dots 26$$
$$Y = -X \left(\frac{T_b SG}{T_r}\right) (1 - T_r)^5 \dots 27$$

Petroleum & Gas Refining Engineering

 $\mathbf{X} = -276.7445 + 0.06444 (T_b) + 10.0245 (SG) - 0.129 T_b SG + \frac{9968.8675}{T_b SG} +$

44. 6778 In T_b + 63. 6683 In SG 28

$$T_r = \frac{311}{T_c}$$

 $T_c = 19.06232 T_b^{0.58848} SG^{0.3596} \dots 29$

 $P_c = 5.53027 x 10^7 T_b^{-2.3125} SG^{2.3201} \dots 30$

- T_c is the pseudocritical temperature (maximum temperature at which compression can cause liquefaction of liquid) in kelvin.
- P_c is the pseudocritical pressure (defined as the pressure above which liquid and gas cannot coexist at any temperature).
- For conditions where RVP should be lowered (hot weather), heavier hydrocarbons with lower RVP are used for blending purposes.

Exercise: An finished fuel (Sp.G: 0.744) has ASTM D86 distillation data as given in the table below. What is **this fuel**?. Does the **fuel have a vapour lock tendency**?. Does the vapour lock tendency will change if the fuel blended with $i-C_6$ (**RVP: 0.441 bar**)?.

V% distilled	IBP	5	10	30	50	70	90	95	EP
ASTM°C	48	67	76	110	141	163	184	190	201

Solution:

To determine whether the fuel have a VLT or not, we must find RVP for the fuel.

$$RVP = P_c exp(Y)$$

$$T_b = \frac{IBP + FBP}{2} = 124.5$$

$$P_c = 5.53027 x 10^7 T_b^{-2.3125} SG^{2.3201}$$

SG		Tb	Х	Tr	Y	Тс	Рс	RVP
	0.744	397.	5 0.464102	0.528	-6.08975	580.2983	27.15286	0.061528

The fuel is summer gasoline

Now if we blended iC_6 (RVP 0.441bar bigger than 0.061528 bar) will definitely increases the vapour lock tendency of the final blend.

Problem 1: A TBP data for crude oil is given in the table below. Find the following:

a) EFV curve $T_{0\%}, T_{10\%}, T_{30\%}, T_{50\%}, T_{70\%}, T_{90\%}, T_{100\%}$

b)ASTM D86 curve if ASTM $T_{50\%}$ is equals to $534^{\circ}F$

c)The base of the crude sample by Kw if API is 37

d)If the wt% of the SR gasoline cut is equals to 20, what would be the RON

Vol % distilled	TO	T10	T20	T30	T40	T50	T60	T70	T90	T100
TBP °F	62	150	255	344	437	531	623	717	800	897

Problem 2: ASTM D86 distillation data for the straight run gasoline (Sp.G: 0.720 at 60/60 °F) are given in the table below. Calculate the following:

a)RVP

b)RON

c)RON & MON + 33.3% MTBE/US gallon (RON for MTBE:113-117, MON for MTBE:95-101)

d)If the gasoline from point c is blended with a mixture consist of 33.3% alkylate/US gallon (RON 96) and 27.27% Coker gasoline/US gallon (RON 92), what would be the RON for the final blend.

Vol % distilled	IBP	5	10	30	50	70	90	95	EP
ASTM D86 °C	37	42	49	66	93	133	203	211	217

Copper strip corrosion test

- > Measures the corrosivity of light and mid distillates due to presence of sulphur compounds.
- ASTM D130 for Petroleum products (gasoline, aviation fuel, kerosene, diesel, fuel oil, natural gasoline).
- A polished copper strip is immersed in the sample for three hours at 50°C (122°F). The strip is then removed and tested for discoloration and corrosion of a copper strip under standard test conditions.

Properties of Petroleum & Gases

Classification number ranges from 1 to 4 after a comparison with the ASTM D130 copper strip

corrosion standard is given as below.

class	Designation	Description
1	Slight Tarnish	a) Light orange, almost same as the finely polished strip
		b) Dark orange
2	Moderate	a) Claret red
	Tarnish	b) Lavender
		c) Multi colored
		d) Silvery
		e) Brassy or gold
3	Dark Tarnish	a) Magenta overcast on brassy strip
		b) Multi colored with red and green showing no gray
4	Corrosion	a) Transparent black, dark gray, or brown
		b) Graphite or lusterless black
		c) Glassy or black