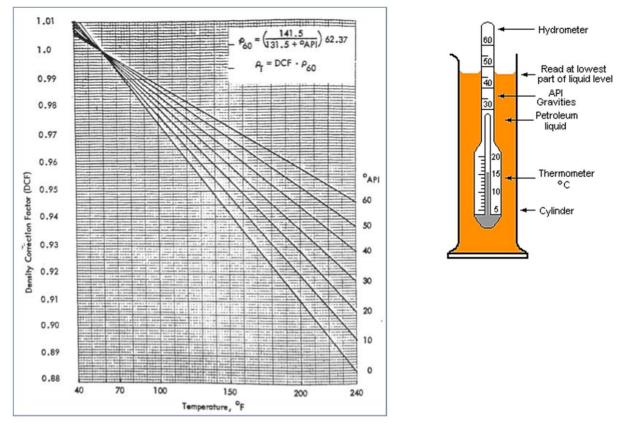
<u>Properties of Petroleum & Gases</u> <u>Petroleum & Gas Refining Engineering</u> <u>Petroleum & Gas Refining Engineering</u> <u>Petroleum & Gas Refining Engineering</u>


$$SG @ 60°F = \frac{\rho \text{ of liquid at } T}{\rho \text{ of water at } T}$$
(1)

$$SG @ 60°F = \frac{\rho \text{ of petroluem at } 60°F \text{ g/cm}^3}{0.999 \frac{g}{cm^3}}$$
(2)

ASTM D 287-92: API of crude oil and petroleum products by hydrometer method.

- A hydrometer (a calibrated floating device) is placed in the sample at the specified temperature.
- The depth to which the hydrometer sinks and comes to rest in the liquid indicates the relative weight of the liquid.
- The hydrometer reading (API) is converted to specific gravity at 15.6°C or API gravity at 60°F using standard tables or figures.

$$API = \frac{141.5}{Sp.\,Gr.\,@\,60^{\circ}F} - 131.5...(3)$$

Coefficient of thermal expansion γ

$$\begin{split} & SG_{60} \ = SG_T + [0.000331(T(^\circ\text{F}) - 60) \ (4) \\ & \text{Density at } 20^\circ\text{C} \ d_{20} \\ & d_{20} \ = \ 0.995 \ SG \ ... \ (5) \end{split}$$

Properties of Petroleum & Gases

Equation 5 was developed for hydrocarbons from C_5 to C_{20} ; however, it can be safely used up to C_{40} with PRD (percent relative deviation) of less than 0.1%.

 $\%D = \frac{estimated \ value - actual \ value}{actual \ value} \ x100 \dots (6)$

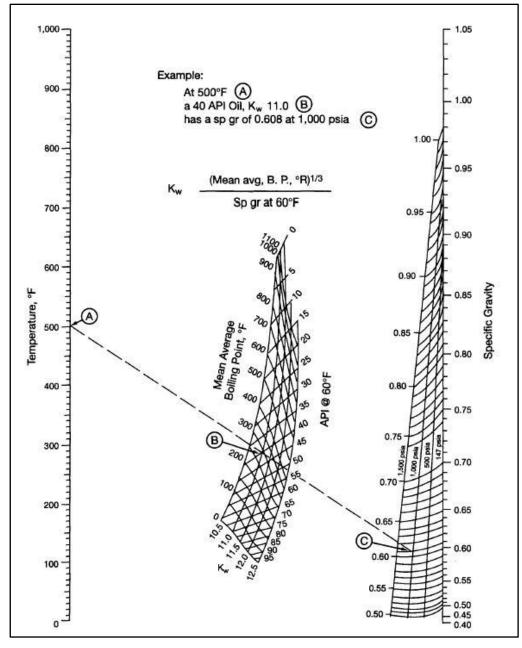


Figure (1): Correlation between MeABP, Kw, API and specific gravity

<mark>Riazi-Daubert Methods</mark>

For heavier fractions (molecular weight from 200 to 800) the following relation in terms of kinematic viscosities developed by Riazi and Daubert may be used.

$$SG = 0.7717 [v_{38}^{0.1157}] [v_{99}^{-0.1616}]$$
(7)

Predication of Molecular Weight (Riazi-Daubert Methods)

 \blacktriangleright Most oil fractions have molecular weights in the range of 100-700.

 $M = 42.965 [\exp(2.097 \ x \ 10^{-4} \ T_b - 7.7812 SG + 2.08476 \ x \ 10^{-3} \ T_b SG)]T_b^{1.26007} SG^{4.98308}$

Where M is the molecular weight of the petroleum fraction, T_b is the mean average boiling point of the petroleum fraction in K, and SG is the specific gravity at 60°F.

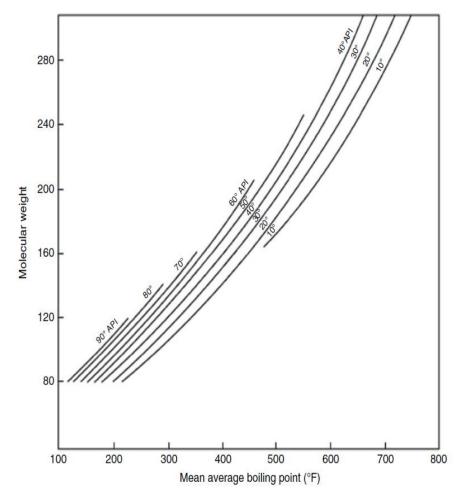
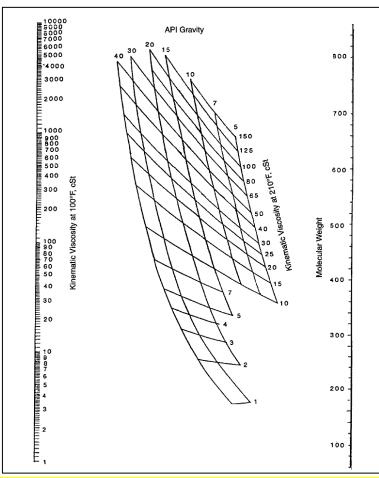



Figure (2): Correlation between boiling point, molecular weight, and API gravity

For heavy petroleum fractions, Riazi and Daubert developed a three-parameter correlation in terms of kinematic viscosity based on the molecular weight of heavy fractions in the range of 200-800: the equation below is only recommended when the boiling point is not available.

$$M = 223.56 \left[v_{38}^{-1.2435+1.228SG} v_{99}^{3.4758-3.038SG} \right] SG^{-0.6665}$$
(9)

A graphical presentation of Equation (9) is shown in Figure below:

Figure (3): Correlation between viscosity, molecular weight, and gravity

Prediction Average Boiling Points by Riazi-Daubert Correlations

- Boiling points of petroleum fractions are presented by distillation curves such as ASTM D86 or TBP.
- > There are five average boiling points:
- VABP (volume average boiling point)
- > MABP (molal average boiling point)
- ➢ WABP (weight average boiling point)

$$ABP = \sum_{i=1}^{n} x_i T_{bi}$$

where **ABP** is the VABP, MABP, or WABP and x_i is the corresponding volume, mole, or weight fraction of component i. **T**_{bi} is the normal boiling point of component **i in kelvin**.

- CABP (cubic average boiling point)
- MeABP (mean average boiling point)

$$\frac{Properties of Petroleum \& Gases}{MeABP} = \frac{MABP + CABP}{2}$$
(10)

For petroleum fractions in which volume, weight, or mole fractions of components are not known, the average boiling points are calculated through ASTM D 86 distillation curve as

$$VABP = \frac{T_{10} + T_{30} + T_{50} + T_{70} + T_{90}}{5}$$
(11)

Where T_{10} , T_{30} , T_{50} , T_{70} , and T_{90} are ASTM D86 temperatures at 10, 30, 50, 70, and 90 vol% distilled.

Slope of the ASTM distillation curves

A parameter that approximately characterizes slope of a distillation curve is the slope of a linear line between 10 and 90% points. This slope shown by SL is defined as

$$SL = \frac{T_{90} - T_{10}}{90 - 10}$$
(12)

Figure (4): Average Boiling Points of Petroleum Fractions

 $ABP = VABP \pm \Delta T \qquad (13)$ $WABP = VABP \pm \Delta T_W$ $MABP = VABP \pm \Delta T_M$ $CABP = VABP \pm \Delta T_C$ $MeABP = VABP \pm \Delta T_C$

 ΔT is the correction temperature to **VABP** for each ABP. All temperatures are in °F.

The most useful is MeABP, which is recommended for most physical properties as well as calculation of Watson K.

Exercise: For the straight run SR Naphtha fraction, the experimental **ASTM D86** data with 98.8% recovery vol% are given below. Calculate VABP, WABP, CABP, MABP, and MeABP. Find the base of the fraction by Kw method.

Vol% Distilled	IBP	5	10	30	50	70	90	95	FBP
ASTM D86 °F	92	118	128	164	198	230	262	272	300

Solution:

$VARP = \frac{128 + 1}{128 + 1}$	$\frac{164 + 198 + 230 + 262}{5} = 196.4 ^{\circ}\text{F}$				
VADI –	5				
$SL = \frac{262 - 128}{90 - 10}$	= 1 . 675 °F				
$\Delta T_W = +5^{\circ}F$	$WABP = 201.4^{\circ}F$				
$\Delta T_M = -15^{\circ} \mathrm{F}$	<i>MABP</i> = 181 . 4 °F				
$\Delta T_c = -3$	<i>CABP</i> = 193 . 4 °F				
$\Delta T_{Me} = -5^{\circ} F$	<i>MeABP</i> = 191 . 4 °F				
(MeABPcan be calculated by eq. 10)					

If specific gravity of a fraction is not available, it may be estimated from available distillation curves at 10 and 50% points as given by the following equation:

$$SG = a[(T_{10})^b (T_{50})^c] \quad (14)$$

where constants *a*, *b*, and c for the three types of distillation data, namely, ASTM D 86, TBP, and EFV, are given in the Table below. Temperatures at **10 and 50% are both in kelvin**.

Distillation	T_{10}	T_{50}	SG			
type	range, ^a °C	range, ^a °C	range	a	Ь	с
ASTM D 86	35-295	60-365	0.70-1.00	0.08342	0.10731	0.26288
TBP	10-295	55-320	0.67 - 0.97	0.10431	0.12550	0.20862
EFV	79-350	105365	0.74-0.91	0.09138	-0.0153	0.36844

 $SG = 0.08342[(326.37)^{0.10731}(365.37)^{0.26288}] = 0.7323$

$$K_w = \frac{\sqrt[3]{651.07 R}}{0.7323 @ 60°F} = 11.840 mixed (pf\&N)$$

Note: To use **Figure 3**, based on the value of V_{38} a point is determined on the vertical line, then from V_{99} and SG, another points on the chart is specified. A line that connects these two points intersects with the line of molecular weight where it may be read as the estimated value.