
1Central Processing Unit

Computer Organization Computer Architectures Lab

CENTRAL  PROCESSING  UNIT

• Introduction

• General Register Organization

• Stack Organization

• Instruction Formats

• Addressing Modes

• Data Transfer and Manipulation

• Program Control

• Reduced Instruction Set Computer



2Central Processing Unit

Computer Organization Computer Architectures Lab

MAJOR  COMPONENTS  OF  CPU

Introduction 

• Storage Components
Registers

Flags

• Execution (Processing) Components
Arithmetic Logic Unit(ALU)

Arithmetic calculations, Logical computations, Shifts/Rotates

• Transfer Components
Bus

• Control Components
Control Unit Register

File ALU

Control Unit



3Central Processing Unit

Computer Organization Computer Architectures Lab

REGISTERS

• In Basic Computer, there is only one general purpose register, 
the Accumulator (AC)

• In modern CPUs, there are many general purpose registers

• It is advantageous to have many registers

– Transfer between registers within the processor are relatively fast

– Going “off the processor” to access memory is much slower

• How many registers will be the best ?



4Central Processing Unit

Computer Organization Computer Architectures Lab

GENERAL  REGISTER  ORGANIZATION
General Register Organization

MUXSELA{ MUX } SELB

ALUOPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8
decoder

SELD

Load
(7 lines)

Output

A bus B bus

Clock



5Central Processing Unit

Computer Organization Computer Architectures Lab

OPERATION  OF  CONTROL  UNIT
The control unit 

Directs the information flow through ALU by 

- Selecting various Components in the system

- Selecting the Function of ALU

Example:  R1  R2 + R3
[1] MUX A selector (SELA):  BUS A  R2
[2] MUX B selector (SELB):  BUS B  R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1  Out Bus

Control Word

Encoding of register selection fields

Control 

Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

SELA SELB SELD OPR

3 3 3 5



6Central Processing Unit

Computer Organization Computer Architectures Lab

ALU  CONTROL

Encoding of ALU operations OPR
Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 ADD A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Examples of ALU Microoperations

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

Control 

R1  R2  R3           R2        R3 R1       SUB        010  011  001  00101

R4  R4  R5          R4        R5 R4        OR         100  101  100  01010

R6  R6 + 1 R6 - R6       INCA      110  000  110  00001

R7  R1 R1 - R7       TSFA      001  000  111  00000

Output  R2            R2 - None    TSFA      010  000  000  00000

Output  Input     Input - None    TSFA      000  000  000  00000

R4  shl R4 R4 - R4      SHLA      100  000  100  11000

R5  0 R5 R5 R5       XOR       101  101  101  01100



7Central Processing Unit

Computer Organization Computer Architectures Lab

REGISTER  STACK  ORGANIZATION

Register Stack

Push, Pop operations

/*  Initially, SP = 0, EMPTY = 1, FULL = 0  */

PUSH POP

Stack Organization

SP  SP + 1 DR  M[SP]

M[SP]  DR SP  SP  1

If (SP = 0) then (FULL  1) If (SP = 0) then (EMPTY  1)

EMPTY  0 FULL  0

Stack
- Very useful feature for nested subroutines, nested interrupt services
- Also efficient for arithmetic expression evaluation
- Storage which can be accessed in LIFO
- Pointer:  SP
- Only PUSH and POP operations are applicable

A

B

C

0

1

2

3

4

63

Address

FULL EMPTY

SP

DR

Flags

Stack pointer

stack

6 bits



8Central Processing Unit

Computer Organization Computer Architectures Lab

MEMORY  STACK  ORGANIZATION
Stack Organization

- A portion of memory is used as a stack with a 
processor register as a stack pointer

- PUSH: SP  SP - 1
M[SP]  DR

- POP: DR  M[SP]
SP  SP + 1 

Memory with Program, Data, 
and Stack Segments

4001
4000

3999
3998
3997

3000

Data
(operands)

Program
(instructions)

1000

PC

AR

SP
stack

Stack grows
In this direction

- Most computers do not provide hardware to check stack overflow (full       
stack) or underflow (empty stack)   must be done in software



9Central Processing Unit

Computer Organization Computer Architectures Lab

REVERSE  POLISH  NOTATION

A + B Infix notation
+ A B Prefix or Polish notation
A B + Postfix or reverse Polish notation

- The reverse Polish notation is very suitable for stack 
manipulation

• Evaluation of Arithmetic Expressions

Any arithmetic expression can be expressed in parenthesis-free 
Polish notation, including reverse Polish notation

(3 * 4) + (5 * 6)     3 4 * 5 6 * +

Stack Organization

• Arithmetic Expressions:  A + B

3 3 12 12 12 12 42

4 5 5

6

30

3 4 * 5 6 * +



10Central Processing Unit

Computer Organization Computer Architectures Lab

PROCESSOR ORGANIZATION

• In general, most processors are organized in one of 3 ways

– Single register (Accumulator) organization

» Basic Computer is a good example

» Accumulator is the only general purpose register

– General register organization

» Used by most modern computer processors

» Any of the registers can be used as the source or destination for 
computer operations

– Stack organization

» All operations are done using the hardware stack

» For example, an OR instruction will pop the two top elements from the 
stack, do a logical OR on them, and push the result on the stack



11Central Processing Unit

Computer Organization Computer Architectures Lab

INSTRUCTION  FORMAT

OP-code field - specifies the operation to be performed

Address field - designates memory address(es) or a processor register(s)
Mode field      - determines how the address field is to be interpreted (to 

get effective address or the operand)

• The number of address fields in the instruction format 
depends on the internal organization of CPU

• The three most common CPU organizations:

Instruction Format 

Single accumulator organization:

ADD X /* AC  AC + M[X]  */

General register organization:

ADD R1, R2, R3 /* R1  R2 + R3  */

ADD R1, R2 /* R1  R1 + R2  */

MOV R1, R2 /* R1  R2  */

ADD R1, X /* R1  R1 + M[X]  */

Stack organization:

PUSH X /* TOS  M[X]  */

ADD

• Instruction Fields



12Central Processing Unit

Computer Organization Computer Architectures Lab

• Three-Address Instructions

Program to evaluate  X = (A + B) * (C + D) :

ADD R1, A, B /*  R1  M[A] + M[B] */

ADD R2, C, D /*  R2  M[C] + M[D] */

MUL X, R1, R2 /*  M[X]  R1 * R2 */

- Results in short programs 
- Instruction becomes long (many bits)

• Two-Address Instructions

Program to evaluate  X = (A + B) * (C + D) :

MOV    R1, A               /* R1  M[A]           */
ADD     R1, B               /* R1  R1 + M[A]  */
MOV    R2, C               /* R2  M[C]           */
ADD     R2, D               /* R2  R2 + M[D]  */
MUL     R1, R2             /* R1  R1 * R2      */
MOV     X, R1               /* M[X]  R1           */

Instruction Format 

THREE,  AND  TWO-ADDRESS INSTRUCTIONS



13Central Processing Unit

Computer Organization Computer Architectures Lab

ONE,  AND  ZERO-ADDRESS INSTRUCTIONS

• One-Address Instructions
- Use an implied AC register for all data manipulation
- Program to evaluate  X = (A + B) * (C + D) :

Instruction Format 

LOAD   A           /*  AC  M[A]   */
ADD     B           /*  AC  AC + M[B]  */
STORE  T            /*  M[T]  AC   */
LOAD   C           /*  AC  M[C]   */
ADD     D           /*  AC  AC + M[D] */
MUL     T            /*  AC  AC * M[T] */
STORE  X           /*  M[X]  AC   */

• Zero-Address Instructions
- Can be found in a stack-organized computer
- Program to evaluate  X = (A + B) * (C + D) :

PUSH A /*  TOS  A */
PUSH B /*  TOS  B */
ADD /*  TOS  (A + B) */
PUSH C /*  TOS  C */
PUSH D /*  TOS  D */
ADD /*  TOS  (C + D) */
MUL /*  TOS  (C + D) * (A + B)  */  
POP X /*  M[X]  TOS */



14Central Processing Unit

Computer Organization Computer Architectures Lab

ADDRESSING  MODES

Addressing Modes 

• Addressing Modes

* Specifies a rule for interpreting or modifying the 
address field of the instruction (before the operand 
is actually referenced)

* Variety of addressing modes 

- to give programming flexibility to the user
- to use the bits in the address field of the
instruction efficiently 



15Central Processing Unit

Computer Organization Computer Architectures Lab

TYPES  OF  ADDRESSING  MODES

• Implied Mode
Address of the operands are specified implicitly 
in the definition of the instruction
- No need to specify address in the instruction
- EA = AC, or EA = Stack[SP]
- Examples from Basic Computer

CLA, CME, INP

• Immediate Mode
Instead of specifying the address of the operand,
operand itself is specified
- No need to specify address in the instruction
- However, operand itself needs to be specified
- Sometimes, require more bits than the address
- Fast to acquire an operand

Addressing Modes 



16Central Processing Unit

Computer Organization Computer Architectures Lab

TYPES  OF  ADDRESSING  MODES

• Register Mode
Address specified in the instruction is the register address
- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field in the instruction
- Faster to acquire an operand than the memory addressing
- EA = IR(R)  (IR(R): Register field of IR)

• Register Indirect Mode
Instruction specifies a register which contains
the memory address of the operand 
- Saving instruction bits since register address

is shorter than the memory address
- Slower to acquire an operand than both the 

register addressing or memory addressing
- EA = [IR(R)] ([x]: Content of x)

• Autoincrement or Autodecrement Mode
- When the address in the register is used to access memory, the 

value in the register is incremented or decremented by 1 
automatically

Addressing Modes 



17Central Processing Unit

Computer Organization Computer Architectures Lab

TYPES  OF  ADDRESSING  MODES

Addressing Modes 

• Direct Address Mode
Instruction specifies the memory address which
can be used directly to access the memory
- Faster than the other memory addressing modes
- Too many bits are needed to specify the address 

for a large physical memory space
- EA = IR(addr) (IR(addr): address field of IR)

• Indirect Addressing Mode
The address field of an instruction specifies the address of a memory 
location that contains the address of the operand
- When the abbreviated address is used large physical memory can be 
addressed with a relatively small number of bits

- Slow to acquire an operand because of an additional memory access
- EA = M[IR(address)]



18Central Processing Unit

Computer Organization Computer Architectures Lab

TYPES  OF  ADDRESSING  MODES

Addressing Modes 

• Relative Addressing Modes
The Address fields of an instruction specifies the part of the address 
(abbreviated address) which can be used along with a designated 
register to calculate the address of the operand
- Address field of the instruction is short
- Large physical memory can be accessed with a small number of 

address bits
- EA = f(IR(address), R), R is sometimes implied

3 different Relative Addressing Modes depending on R;

* PC Relative Addressing Mode (R = PC)
- EA = PC + IR(address)

* Indexed Addressing Mode (R = IX, where IX: Index Register)
- EA = IX + IR(address)

* Base Register Addressing Mode
(R = BAR, where BAR: Base Address Register)

- EA = BAR + IR(address)



19Central Processing Unit

Computer Organization Computer Architectures Lab

ADDRESSING  MODES    - EXAMPLES -

Addressing
Mode

Effective
Address

Content
of AC

Addressing Modes 

Direct address 500 /* AC  (500) */       800
Immediate operand - /* AC  500 */       500
Indirect address 800 /* AC  ((500)) */       300
Relative address 702 /* AC  (PC+500) */       325
Indexed address 600 /* AC  (RX+500) */       900
Register - /* AC  R1 */       400
Register indirect 400         /* AC  (R1) */       700
Autoincrement 400 /* AC  (R1)+ */       700
Autodecrement 399 /* AC  -(R) */       450

Load to AC    Mode

Address = 500

Next instruction

200

201

202

399

400

450

700

500 800

600 900

702 325

800 300

MemoryAddress

PC = 200

R1 = 400

XR = 100

AC



20Central Processing Unit

Computer Organization Computer Architectures Lab

DATA  TRANSFER  INSTRUCTIONS

Load LD
Store  ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

Name             Mnemonic

• Typical Data Transfer Instructions

Direct address LD  ADR AC M[ADR]

Indirect address LD  @ADR AC  M[M[ADR]]

Relative address LD  $ADR AC  M[PC + ADR]

Immediate operand LD  #NBR AC  NBR

Index addressing LD  ADR(X) AC  M[ADR + XR]

Register LD  R1 AC  R1

Register indirect LD  (R1) AC  M[R1]

Autoincrement LD  (R1)+ AC  M[R1], R1  R1 + 1

Autodecrement             LD  -(R1)        R1  R1 - 1, AC  M[R1]

Mode
Assembly
Convention Register Transfer

Data Transfer and Manipulation

• Data Transfer Instructions with Different Addressing Modes 



21Central Processing Unit

Computer Organization Computer Architectures Lab

DATA  MANIPULATION  INSTRUCTIONS

• Three Basic Types: Arithmetic instructions
Logical and bit manipulation instructions
Shift instructions

• Arithmetic Instructions
Name                                  Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Name                     Mnemonic

Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right thru carry RORC
Rotate left thru carry ROLC

Name                             Mnemonic

• Logical and Bit Manipulation Instructions • Shift Instructions

Data Transfer and Manipulation

Increment                              INC
Decrement                             DEC
Add                                        ADD
Subtract                                 SUB
Multiply                                  MUL
Divide                                     DIV
Add with Carry                      ADDC
Subtract with Borrow           SUBB
Negate(2’s Complement)      NEG



22Central Processing Unit

Computer Organization Computer Architectures Lab

FLAG, PROCESSOR STATUS WORD

• In Basic Computer, the processor had several (status) flags – 1 bit 
value that indicated various information about the processor’s 
state – E, FGI, FGO, I, IEN, R

• In some processors, flags like these are often combined into a 
register – the processor status register (PSR); sometimes called a 
processor status word (PSW)

• Common flags in PSW are

– C (Carry): Set to 1 if the carry out of the ALU is 1

– S (Sign): The MSB bit of the ALU’s output

– Z (Zero): Set to 1 if the ALU’s output is all 0’s

– V (Overflow): Set to 1 if there is an overflow

Status Flag Circuit

c7

c8

A            B
8            8

8-bit ALU

V   Z  S   C
F7

F7 - F0

8

F

Check for
zero output



23Central Processing Unit

Computer Organization Computer Architectures Lab

PROGRAM  CONTROL  INSTRUCTIONS
Program Control

PC

+1
In-Line Sequencing (Next instruction is fetched 
from the next adjacent location in the memory)

Address from other source; Current Instruction, 
Stack, etc; Branch, Conditional Branch, 
Subroutine, etc

• Program Control Instructions                  

Name                         Mnemonic
Branch                             BR
Jump                                JMP
Skip                                  SKP
Call                                   CALL
Return                              RTN
Compare(by  )                CMP
Test(by AND)                   TST

* CMP and TST instructions do not retain their 
results of operations (  and AND, respectively).
They only set or clear certain Flags.



24Central Processing Unit

Computer Organization Computer Architectures Lab

CONDITIONAL  BRANCH  INSTRUCTIONS

BZ Branch if zero Z = 1
BNZ Branch if not zero Z = 0
BC Branch if carry C = 1
BNC Branch if no carry C = 0
BP Branch if plus S = 0
BM Branch if minus S = 1
BV Branch if overflow V = 1
BNV Branch if no overflow V = 0

BHI Branch if higher A > B
BHE Branch if higher or equal A  B
BLO Branch if lower A < B
BLOE Branch if lower or equal A  B
BE Branch if equal A = B
BNE Branch if not equal A  B

BGT Branch if greater than A > B
BGE Branch if greater or equal A  B
BLT Branch if less than A < B
BLE Branch if less or equal A  B
BE Branch if equal A = B
BNE Branch if not equal A  B

Unsigned compare conditions (A - B)

Signed compare conditions (A - B)

Mnemonic   Branch condition        Tested condition

Program Control



25Central Processing Unit

Computer Organization Computer Architectures Lab

SUBROUTINE  CALL  AND  RETURN

Call subroutine
Jump to subroutine
Branch to subroutine
Branch and save return address

• Fixed Location in the subroutine (Memory)
• Fixed Location in memory
• In a processor Register
• In memory stack

- most efficient way

Program Control

• Subroutine Call

• Two Most Important Operations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* Save the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

• Locations for storing Return Address
CALL

SP  SP - 1
M[SP]  PC
PC  EA

RTN
PC  M[SP]
SP  SP + 1



26Central Processing Unit

Computer Organization Computer Architectures Lab

PROGRAM  INTERRUPT

Types of Interrupts

External interrupts
External Interrupts initiated from the outside of CPU and Memory
- I/O Device → Data transfer request or Data transfer complete
- Timing Device → Timeout
- Power Failure 
- Operator

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program 
- Register, Stack Overflow
- Divide by zero
- OP-code Violation
- Protection Violation 

Software Interrupts
Both External and Internal Interrupts are initiated by the computer HW.
Software Interrupts are initiated by the executing an instruction.
- Supervisor Call → Switching from a user mode to the supervisor mode

→ Allows to execute a certain class of operations
which are not allowed in the user mode

Program Control



27Central Processing Unit

Computer Organization Computer Architectures Lab

INTERRUPT  PROCEDURE

- The interrupt is usually initiated by an internal or
an external signal rather than from the execution of 
an instruction (except for the software interrupt)

- The address of the interrupt service program is 
determined by the hardware rather than from the 
address field of an instruction

- An interrupt procedure usually stores all the 
information necessary to define the state of CPU 
rather than storing only the PC.

The state of the CPU is determined from;
Content of the PC
Content of all processor registers
Content of status bits

Many ways of saving the CPU state 
depending on the CPU architectures

Program Control

Interrupt Procedure and Subroutine Call



28Central Processing Unit

Computer Organization Computer Architectures Lab

RISC: Historical Background
RIS

C

IBM System/360, 1964

• The real beginning of modern computer architecture

• Distinction between Architecture and Implementation

• Architecture: The abstract structure of a computer 
seen by an assembly-language programmer

• Continuing growth in semiconductor memory and 
microprogramming  

 A much richer and complicated instruction sets

 CISC(Complex Instruction Set Computer)

High-Level
Language

Instruction
Set

Hardware

Compiler
-program

Architecture

Implementation

Hardware

Hardware



29Central Processing Unit

Computer Organization Computer Architectures Lab

ARGUMENTS ADVANCED AT THAT TIME

• Richer instruction sets would simplify compilers

• Richer instruction sets would alleviate the software crisis    

– move as much functions to the hardware as possible

• Richer instruction sets would improve architecture quality



30Central Processing Unit

Computer Organization Computer Architectures Lab

ARCHITECTURE  DESIGN  PRINCIPLES  - IN  70’s -

RISC

• Large microprograms would add little or nothing 

to the cost of the machine
 Rapid growth of memory technology
 Large General Purpose Instruction Set

• Microprogram is much faster than the machine instructions
 Microprogram memory is much faster than main memory
 Moving the software functions into 

microprogram for the high performance machines

• Execution speed is proportional to the program size
 Architectural techniques that led to small program
 High performance instruction set

• Number of registers in CPU has limitations
 Very costly
 Difficult to utilize them efficiently



31Central Processing Unit

Computer Organization Computer Architectures Lab

COMPARISONS  OF  EXECUTION  MODELS

A  B + C      Data: 32-bit 

RISC

Load rB B

Load rC C

Add rA

Store rA A

rB rC

Load B

Add C

Store A

Add B C A

• Register-to-register

• Memory-to-register

• Memory-to-memory

I = 104b; D = 96b; M = 200b

I = 72b; D = 96b; M = 168b

I = 56b; D = 96b; M = 152b

8 4 16

8 16

8 16 16 16



32Central Processing Unit

Computer Organization Computer Architectures Lab

RISC

FOUR  MODERN  ARCHITECTURES   IN  70’s

Year

# of instrs.

Control mem. size

Instr. size (bits)

Technology

Execution model

Cache size

1973

208

420 Kb

16-48

ECL MSI

reg-mem

mem-mem
reg-reg

64 Kb

1978

303

480 Kb

16-456

TTL MSI

reg-mem

mem-mem
reg-reg

64 Kb

1978

270

136 Kb

8-24

ECL MSI

stack

64 Kb

1982

222

420 Kb

6-321

NMOS VLSI

stack

mem-mem

64 Kb

IBM 370/168 VAX-11/780 Dorado iAPX-432

DEC Xerox Intel



33Central Processing Unit

Computer Organization Computer Architectures Lab

COMPLEX INSTRUCTION SET COMPUTER 

• These computers with many instructions and addressing 
modes came to be known as Complex Instruction Set 
Computers (CISC)

• One goal for CISC machines was to have a machine language 
instruction to match each high-level language statement type



34Central Processing Unit

Computer Organization Computer Architectures Lab

VARIABLE LENGTH INSTRUCTIONS 

• The large number of instructions and addressing modes led CISC 
machines to have variable length instruction formats

• The large number of instructions means a greater number of bits to 
specify them

• In order to manage this large number of opcodes efficiently, they 
were encoded with different lengths:

– More frequently used instructions were encoded using short opcodes.

– Less frequently used ones were assigned longer opcodes.

• Also, multiple operand instructions could specify different 
addressing modes for each operand

– For example, 

» Operand 1 could be a directly addressed register,

» Operand 2 could be an indirectly addressed memory location,

» Operand 3 (the destination) could be an indirectly addressed register.

• All of this led to the need to have different length instructions in 
different situations, depending on the opcode and operands used 



35Central Processing Unit

Computer Organization Computer Architectures Lab

VARIABLE LENGTH INSTRUCTIONS 

• For example, an instruction that only specifies register 
operands may only be two bytes in length

– One byte to specify the instruction and addressing mode

– One byte to specify the source and destination registers.

• An instruction that specifies memory addresses for operands 
may need five bytes

– One byte to specify the instruction and addressing mode

– Two bytes to specify each memory address

» Maybe more if there’s a large amount of memory.

• Variable length instructions greatly complicate the fetch and 
decode problem for a processor

• The circuitry to recognize the various instructions and to 
properly fetch the required number of bytes for operands is 
very complex



36Central Processing Unit

Computer Organization Computer Architectures Lab

COMPLEX INSTRUCTION SET COMPUTER 

• Another characteristic of CISC computers is that they have 
instructions that act directly on memory addresses

– For example, 
ADD L1, L2, L3

that takes the contents of M[L1] adds it to the contents of M[L2] and stores the 
result in location M[L3]

• An instruction like this takes three memory access cycles to 
execute

• That makes for a potentially very long instruction execution cycle

• The problems with CISC computers are

– The complexity of the design may slow down the processor,

– The complexity of the design may result in costly errors in the processor 
design and implementation,

– Many of the instructions and addressing modes are used rarely, if ever



37Central Processing Unit

Computer Organization Computer Architectures Lab

SUMMARY: CRITICISMS  ON  CISC
RISC

High Performance General Purpose Instructions

- Complex Instruction
→ Format, Length, Addressing Modes 
→ Complicated instruction cycle control due to the complex 

decoding HW and decoding process

- Multiple memory cycle instructions
→ Operations on memory data
→ Multiple memory accesses/instruction

- Microprogrammed control is necessity
→ Microprogram control storage takes

substantial portion of CPU chip area
→ Semantic Gap is large between machine 

instruction and microinstruction

- General purpose instruction set includes all the features 
required by individually different applications
→ When any one application is running, all the features 

required by the other applications are extra burden to 
the application                         



38Central Processing Unit

Computer Organization Computer Architectures Lab

REDUCED INSTRUCTION SET COMPUTERS 

• In the late ‘70s and early ‘80s there was a reaction to the 
shortcomings of the CISC style of processors

• Reduced Instruction Set Computers (RISC) were proposed as 
an alternative

• The underlying idea behind RISC processors is to simplify the 
instruction set and reduce instruction execution time

• RISC processors often feature:

– Few instructions

– Few addressing modes

– Only load and store instructions access memory

– All other operations are done using on-processor registers

– Fixed length instructions

– Single cycle execution of instructions

– The control unit is hardwired, not microprogrammed



39Central Processing Unit

Computer Organization Computer Architectures Lab

REDUCED INSTRUCTION SET COMPUTERS 

• Since all but the load and store instructions use only registers for 
operands, only a few addressing modes are needed

• By having all instructions the same length, reading them in is 
easy and fast

• The fetch and decode stages are simple, looking much more like 
Mano’s Basic Computer than a CISC machine

• The instruction and address formats are designed to be easy to 
decode

• Unlike the variable length CISC instructions, the opcode and 
register fields of RISC instructions can be decoded 
simultaneously

• The control logic of a RISC processor is designed to be simple 
and fast

• The control logic is simple because of the small number of 
instructions and the simple addressing modes

• The control logic is hardwired, rather than microprogrammed, 
because hardwired control is faster



40Central Processing Unit

Computer Organization Computer Architectures Lab

ARCHITECTURAL  METRIC

A  B + C
B  A + C
D  D  - B 

RISC

• Register-to-register (Reuse of operands)

• Register-to-register (Compiler allocates operands in registers)

• Memory-to-memory

I = 228b 
D = 192b 
M = 420b

I = 60b 
D = 0b 
M = 60b

I = 168b 
D = 288b 
M = 456b

Load rB B
Load rC C
Add rA
Store rA A

rB rC

8 4 16

Add rB rA rC
Store rB B
Load rD D
Sub rD rD rB
Store rD D

Add rA rB rC

Add rB rA rC

Sub rD rD rB

8 4 4 4

Add B C A

8 16 16 16

Add A C B

Sub B D D



41Central Processing Unit

Computer Organization Computer Architectures Lab

CHARACTERISTICS  OF  INITIAL RISC MACHINES

RISC

IBM 801              RISC I MIPS
Year 1980 1982 1983
Number of

instructions 120 39 55
Control memory

size 0 0 0
Instruction

size (bits) 32 32 32
Technology ECL MSI        NMOS VLSI      NMOS VLSI
Execution model reg-reg             reg-reg reg-reg



42Central Processing Unit

Computer Organization Computer Architectures Lab

ADD rA rB
register 

operand
rC

OP DEST SOUR1 SOUR2

ADD rA rA
immediate 

operand
1

SUB rD rD
register 

operand
rB

32b memory port

ADD 

(3 operands)

register 

operand
B register 

operand
C register 

operand
A

INC 

(1 operands)
register 

operand
A

SUB 

(2 operands)
register 

operand
B

register 

operand
D

3 operands 

in memory
B C ...

... C A
A
D
D

A
D
D

1 operand 

in memory
A

I
N
C

I
N
C

2 operands 

in memory D ...
B

... D SUB

RISC 1

VAX

432

RISC

COMPARISON  OF  INSTRUCTION  SEQUENCE

A  B + C
A  A + 1
D  D - B



43Central Processing Unit

Computer Organization Computer Architectures Lab

REGISTERS 

• By simplifying the instructions and addressing modes, there is 
space available on the chip or board of a RISC CPU for more 
circuits than with a CISC processor

• This extra capacity is used to

– Pipeline instruction execution to speed up instruction execution

– Add a large number of registers to the CPU



44Central Processing Unit

Computer Organization Computer Architectures Lab

PIPELINING 

• A very important feature of many RISC processors is the ability 
to execute an instruction each clock cycle

• This may seem nonsensical, since it takes at least once clock 
cycle each to fetch, decode and execute an instruction. 

• It is however possible, because of a technique known as 
pipelining

– We’ll study this in detail later

• Pipelining is the use of the processor to work on different 
phases of multiple instructions in parallel



45Central Processing Unit

Computer Organization Computer Architectures Lab

PIPELINING 

• For instance, at one time, a pipelined processor may be

– Executing instruction it

– Decoding instruction it+1

– Fetching instruction it+2 from memory

• So, if we’re running three instructions at once, and it takes an 
average instruction three cycles to run, the CPU is executing an 
average of an instruction a clock cycle

• As we’ll see when we cover it in depth, there are complications

– For example, what happens to the pipeline when the processor branches

• However, pipelined execution is an integral part of all modern 
processors, and plays an important role



46Central Processing Unit

Computer Organization Computer Architectures Lab

REGISTERS 

• By having a large number of general purpose registers, a 
processor can minimize the number of times it needs to access 
memory to load or store a value

• This results in a significant speed up, since memory accesses 
are much slower than register accesses

• Register accesses are fast, since they just use the bus on the 
CPU itself, and any transfer can be done in one clock cycle

• To go off-processor to memory requires using the much slower 
memory (or system) bus

• It may take many clock cycles to read or write to memory 
across the memory bus
– The memory bus hardware is usually slower than the processor

– There may even be competition for access to the memory bus by other 
devices in the computer (e.g. disk drives)

• So, for this reason alone, a RISC processor may have an 
advantage over a comparable CISC processor, since it only 
needs to access memory 
– for its instructions, and 

– occasionally to load or store a memory value



47Central Processing Unit

Computer Organization Computer Architectures Lab

UTILIZING RISC REGISTERS – REGISTER WINDOW

<Weighted Relative Dynamic Frequency of HLL Operations>

The procedure (function) call/return is the most time-consuming 
operations in typical HLL programs

RISC

Pascal C Pascal C Pascal C

Dynamic
Occurrence

Machine-
Instruction
Weighted

Memory
Reference
Weighted

ASSIGN 45 38 13 13 14 15

LOOP 5 3 42 32 33 26

CALL 15 12 31 33 44 45

IF 29 43 11 21 7 13

GOTO 3

Other 6 1 3 1 2 1



48Central Processing Unit

Computer Organization Computer Architectures Lab

RISC

CALL-RETURN BEHAVIOR

Call-return behavior as a function of nesting depth and time



49Central Processing Unit

Computer Organization Computer Architectures Lab

• Observations

- Weighted Dynamic Frequency of HLL Operations 

 Procedure call/return is the most time consuming operations

- Locality of Procedure Nesting 

 The depth of procedure activation fluctuates 

within a relatively narrow range

- A typical procedure employs only a few passed 

parameters and local variables
• Solution

- Use multiple small sets of registers (windows), 
each assigned to a different procedure

- A procedure call automatically switches the CPU to use a different 
window of registers, rather than saving registers in memory

- Windows for adjacent procedures are overlapped 
to allow parameter passing

RISC

REGISTER  WINDOW  APPROACH



50Central Processing Unit

Computer Organization Computer Architectures Lab

CIRCULAR  OVERLAPPED  REGISTER WINDOWS
RISC



51Central Processing Unit

Computer Organization Computer Architectures Lab

OVERLAPPED  REGISTER  WINDOWS

RISC

R15

R10

R15

R10

R25

R16

Common 
to D and A

Local to D

Common to C and D

Local to C

Common to B and C

Local to B

Common to A and B

Local to A

Common to A and D

Proc D

Proc C

Proc B

Proc AR9

R0

Common to all
procedures

Global
registers

R31

R26

R9

R0

R15

R10

R25

R16

R31

R26

R41

R32

R47

R42

R57

R48

R63

R58

R73

R64

R25

R16

R31

R26

R15

R10

R25

R16

R31

R26

R15

R10

R25

R16

R31

R26



52Central Processing Unit

Computer Organization Computer Architectures Lab

OVERLAPPED REGISTER WINDOWS 

• There are three classes of registers:

– Global Registers

» Available to all functions

– Window local registers

» Variables local to the function

– Window shared registers

» Permit data to be shared without actually needing to copy it

• Only one register window is active at a time

– The active register window is indicated by a pointer

• When a function is called, a new register window is activated

– This is done by incrementing the pointer

• When a function calls a new function, the high numbered 
registers of the calling function window are shared with the 
called function as the low numbered registers in its register 
window

• This way the caller’s high and the called function’s low registers 
overlap and can be used to pass parameters and results



53Central Processing Unit

Computer Organization Computer Architectures Lab

OVERLAPPED REGISTER WINDOWS 

• In addition to the overlapped register windows, the processor 
has some number of registers, G, that are global registers
– This is, all functions can access the global registers.

• The advantage of overlapped register windows is that the 
processor does not have to push registers on a stack to save 
values and to pass parameters when there is a function call
– Conversely, pop the stack on a function return

• This saves 
– Accesses to memory to access the stack.

– The cost of copying the register contents at all

• And, since function calls and returns are so common, this 
results in a significant savings relative to a stack-based 
approach



54Central Processing Unit

Computer Organization Computer Architectures Lab

BERKELEY  RISC I

- 32-bit integrated circuit CPU
- 32-bit address, 8-, 16-, 32-bit data
- 32-bit instruction format
- total 31 instructions
- three addressing modes: 

register; immediate; PC relative addressing
- 138 registers

10 global registers 
8 windows of 32 registers each

Berkeley  RISC I  Instruction Formats

RISC

Opcode RsRd 0 Not used S2
31 24  23 19  18 14 13 12 5 4 0

8 5 5 1 8 5

Opcode RsRd 1 S2

31 24  23 19  18 14 13 12 0

8 5 5 1 13

Opcode COND Y

31 24  23 19  18 0

8 5 19

Regsiter mode: (S2 specifies a register)

Register-immediate mode (S2 specifies an operand)

PC relative mode



55Central Processing Unit

Computer Organization Computer Architectures Lab

BERKELEY RISC I 

• Register 0 was hard-wired to a value of 0.

• There are eight memory access instructions

– Five load-from-memory instructions

– Three store-to-memory instructions.

• The load instructions:
LDL load long
LDSU load short unsigned
LDSS load short signed
LDBU load byte unsigned
LDBS load byte signed

– Where long is 32 bits, short is 16 bits and a byte is 8 bits

• The store instructions:
STL store long
STS store short
STB store byte



56Central Processing Unit

Computer Organization Computer Architectures Lab

Berkeley RISC I 

LDL Rd  M[(Rs) + S2] load long

LDSU Rd  M[(Rs) + S2] load short unsigned
LDSS Rd  M[(Rs) + S2] load short signed

LDBU Rd  M[(Rs) + S2] load byte unsigned
LDBS Rd  M[(Rs) + S2] load byte signed

STL M[(Rs) + S2]  Rd store long
STS M[(Rs) + S2]  Rd store short
STB M[(Rs) + S2]  Rd store byte

• Here the difference between the lengths is 
– A long is simply loaded, since it is the same size as the register  (32 bits).

– A short or a byte can be loaded into a register 

» Unsigned - in which case the upper bits of the register are loaded with 0’s.

» Signed - in which case the upper bits of the register are loaded with the 
sign bit of the short/byte loaded.



57Central Processing Unit

Computer Organization Computer Architectures Lab

INSTRUCTION  SET  OF  BERKELEY  RISC I

Data manipulation instructions

ADD Rs,S2,Rd Rd  Rs + S2 Integer add

ADDC Rs,S2,Rd Rd  Rs + S2 + carry Add with carry

SUB Rs,S2,Rd Rd  Rs - S2 Integer subtract

SUBC Rs,S2,Rd Rd  Rs - S2 - carry Subtract with carry

SUBR Rs,S2,Rd Rd  S2 - Rs Subtract reverse

SUBCR Rs,S2,Rd Rd  S2 - Rs - carry Subtract with carry

AND Rs,S2,Rd Rd  Rs  S2 AND

OR Rs,S2,Rd Rd  Rs  S2 OR

XOR Rs,S2,Rd Rd  Rs  S2 Exclusive-OR

SLL Rs,S2,Rd Rd  Rs shifted by S2 Shift-left

SRL Rs,S2,Rd Rd  Rs shifted by S2 Shift-right logical

SRA Rs,S2,Rd Rd  Rs shifted by S2 Shift-right arithmetic

Data transfer instructions

LDL (Rs)S2,Rd Rd  M[Rs + S2] Load long

LDSU (Rs)S2,Rd Rd  M[Rs + S2] Load short unsigned

LDSS (Rs)S2,Rd Rd  M[Rs + S2] Load short signed

LDBU (Rs)S2,Rd Rd  M[Rs + S2] Load byte unsigned

LDBS (Rs)S2,Rd Rd  M[Rs + S2] Load byte signed

LDHI Rd,Y Rd  Y Load immediate high

STL Rd,(Rs)S2 M[Rs + S2]  Rd Store long

STS Rd,(Rs)S2 M[Rs + S2]  Rd Store short

STB Rd,(Rs)S2 M[Rs + S2]  Rd Store byte

GETPSW Rd Rd  PSW Load status word

PUTPSW Rd PSW  Rd Set status word

Opcode     Operands           Register Transfer           Description

RISC



58Central Processing Unit

Computer Organization Computer Architectures Lab

Program control instructions

JMP COND,S2(Rs) PC  Rs + S2 Conditional jump

JMPR COND,Y PC  PC + Y Jump relative

CALL Rd,S2(Rs) Rd  PC, PC  Rs + S2 Call subroutine and

CWP  CWP - 1 change window

CALLR Rd,Y Rd  PC, PC  PC + Y Call relative and

CWP  CWP - 1 change window

RET Rd,S2 PC  Rd + S2 Return and

CWP  CWP + 1 change window

CALLINT Rd Rd  PC,CWP  CWP - 1 Call an interrupt pr.

RETINT Rd,S2 PC  Rd + S2 Return from

CWP  CWP + 1 interrupt pr.

GTLPC Rd Rd  PC Get last PC

Opcode     Operands           Register Transfer           Description

INSTRUCTION  SET  OF  BERKELEY  RISC I



59Central Processing Unit

Computer Organization Computer Architectures Lab

CHARACTERISTICS  OF  RISC

• RISC Characteristics

• Advantages of RISC

- VLSI Realization
- Computing Speed
- Design Costs and Reliability
- High Level Language Support

RISC

- Relatively few instructions
- Relatively few addressing modes
- Memory access limited to load and store instructions
- All operations done within the registers of the CPU
- Fixed-length, easily decoded instruction format
- Single-cycle instruction format
- Hardwired rather than microprogrammed control



60Central Processing Unit

Computer Organization Computer Architectures Lab

ADVANTAGES  OF  RISC

• Computing Speed
- Simpler, smaller control unit  faster
- Simpler instruction set; addressing modes; instruction format 

 faster decoding
- Register operation  faster than memory operation
- Register window  enhances the overall speed of execution
- Identical instruction length, One cycle instruction execution

 suitable for pipelining  faster

RISC

• VLSI Realization

Control area is considerably reduced

Example:
RISC I:  6%
RISC II: 10%
MC68020: 68%
general CISCs: ~50%

 RISC chips allow a large number of registers on the chip

- Enhancement of performance and HLL support
- Higher regularization factor and lower VLSI design cost

The GaAs VLSI chip realization is possible



61Central Processing Unit

Computer Organization Computer Architectures Lab

ADVANTAGES  OF  RISC

• Design Costs and Reliability

- Shorter time to design 
 reduction in the overall design cost and 

reduces the problem that the end product will 
be obsolete by the time the design is completed

- Simpler, smaller control unit  
 higher reliability

- Simple instruction format (of fixed length)
 ease of virtual memory management

• High Level Language Support

- A single choice of instruction 
 shorter, simpler compiler

- A large number of CPU registers 
 more efficient code

- Register window 
 Direct support of HLL

- Reduced burden on compiler writer

RISC


