
1Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

BASIC COMPUTER ORGANIZATION AND DESIGN
• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

2Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INTRODUCTION

• Every different processor type has its own design (different
registers, buses, microoperations, machine instructions, etc)

• Modern processor is a very complex device
• It contains

– Many registers
– Multiple arithmetic units, for both integer and floating point calculations
– The ability to pipeline several consecutive instructions to speed execution
– Etc.

• However, to understand how processors work, we will start with
a simplified processor model

• This is similar to what real processors were like ~25 years ago
• M. Morris Mano introduces a simple processor model he calls

the Basic Computer
• We will use this to introduce processor organization and the

relationship of the RTL model to the higher level computer
processor

3Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

THE BASIC COMPUTER

• The Basic Computer has two components, a processor and
memory

• The memory has 4096 words in it
– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

CPU RAM
0

4095

015

4Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INSTRUCTIONS
Instruction codes

• Program
– A sequence of (machine) instructions

• (Machine) Instruction
– A group of bits that tell the computer to perform a specific operation

(a sequence of micro-operation)

• The instructions of a program, along with any needed data
are stored in memory

• The CPU reads the next instruction from memory
• It is placed in an Instruction Register (IR)
• Control circuitry in control unit then translates the

instruction into the sequence of microoperations
necessary to implement it

5Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INSTRUCTION FORMAT
Instruction codes

• A computer instruction is often divided into two parts
– An opcode (Operation Code) that specifies the operation for that

instruction
– An address that specifies the registers and/or locations in memory to

use for that operation
• In the Basic Computer, since the memory contains 4096 (=

212) words, we needs 12 bit to specify which memory
address this instruction will use

• In the Basic Computer, bit 15 of the instruction specifies
the addressing mode (0: direct addressing, 1: indirect
addressing)

• Since the memory words, and hence the instructions, are
16 bits long, that leaves 3 bits for the instruction’s opcode

Opcode Address

Instruction Format
15 14 12 0
I

11

Addressing
mode

6Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

ADDRESSING MODES
Instruction codes

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the

operand), or
– Indirect address: the address in memory of the address in memory of the data

to use

• Effective Address (EA)
– The address, that can be directly used without modification to access an

operand for a computation-type instruction, or as the target address for a
branch-type instruction

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+
AC

+
AC

Direct addressing Indirect addressing

7Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

PROCESSOR REGISTERS
Instruction codes

• A processor has many registers to hold instructions,
addresses, data, etc

• The processor has a register, the Program Counter (PC) that
holds the memory address of the next instruction to get
– Since the memory in the Basic Computer only has 4096 locations, the PC

only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep
track of what locations in memory it is addressing: The
Address Register (AR) is used for this
– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect
addressing, it is placed in the Data Register (DR). The
processor then uses this value as data for its operation

• The Basic Computer has a single general purpose register –
the Accumulator (AC)

8Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

PROCESSOR REGISTERS
Instruction codes

• The significance of a general purpose register is that it can be
referred to in instructions
– e.g. load AC with the contents of a specific memory location; store the

contents of AC into a specified memory location

• Often a processor will need a scratch register to store
intermediate results or other temporary data; in the Basic
Computer this is the Temporary Register (TR)

• The Basic Computer uses a very simple model of input/output
(I/O) operations
– Input devices are considered to send 8 bits of character data to the processor
– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an
input device

• The Output Register (OUTR) holds an 8 bit character to be send
to an output device

9Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

BASIC COMPUTER REGISTERS

List of BC Registers
DR 16 Data Register Holds memory operand
AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction Register Holds instruction code
PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data
INPR 8 Input Register Holds input character
OUTR 8 Output Register Holds output character

Registers

Registers in the Basic Computer

11 0
PC

15 0
IR

15 0
TR

7 0
OUTR

15 0
DR

15 0
AC

11 0
AR

INPR
0 7

Memory
4096 x 16

CPU

10Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMMON BUS SYSTEM
Registers

• The registers in the Basic Computer are connected using a
bus

• This gives a savings in circuitry over complete
connections between registers

11Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMMON BUS SYSTEM
Registers

S2S1S0 Bus

Memory unit
4096 x 16

LD INR CLR

Address
ReadWrite

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

ACALU
E

INPR
IR

LD

LD INR CLR

TR

OUTR
LD

Clock

16-bit common bus

7

1

2

3

4

5

6

12Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMMON BUS SYSTEM
Registers

AR

PC

DR

L I C

L I C

L I C

AC

L I C

ALUE

IR

L

TR

L I C

OUTR LD

INPR
Memory

4096 x 16
Address

Read

Write

16-bit Common Bus
7 1 2 3 4 5 6

S0 S1 S2

13Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMMON BUS SYSTEM
Registers

• Three control lines, S2, S1, and S0 control which register the
bus selects as its input

• Either one of the registers will have its load signal
activated, or the memory will have its read signal activated
– Will determine where the data from the bus gets loaded

• The 12-bit registers, AR and PC, have 0’s loaded onto the
bus in the high order 4 bit positions

• When the 8-bit register OUTR is loaded from the bus, the
data comes from the low order 8 bits on the bus

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

14Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

BASIC COMPUTER INSTRUCTIONS
Instructions

• Basic Computer Instruction Format

15 14 12 11 0
I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0
Register operation0 1 1 1

15 12 11 0
I/O operation1 1 1 1

15Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

BASIC COMPUTER INSTRUCTIONS
Hex Code

Symbol I = 0 I = 1 Description
AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Instructions

16Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INSTRUCTION SET COMPLETENESS

• Instruction Types

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function
that is known to be computable.

Functional Instructions
- Arithmetic, logic, and shift instructions
- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions
- Data transfers between the main memory

and the processor registers
- LDA, STA

Control Instructions
- Program sequencing and control
- BUN, BSA, ISZ

Input/Output Instructions
- Input and output
- INP, OUT

Instructions

17Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

CONTROL UNIT
Instruction codes

• Control unit (CU) of a processor translates from machine
instructions to the control signals for the microoperations
that implement them

• Control units are implemented in one of two ways
• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the
control signals

• Microprogrammed Control
– A control memory on the processor contains microprograms that

activate the necessary control signals

• We will consider a hardwired implementation of the control
unit for the Basic Computer

18Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

TIMING AND CONTROL

Control unit of Basic Computer

Timing and control

Instruction register (IR)
15 14 13 12 11 - 0

3 x 8
decoder

7 6 5 4 3 2 1 0

I
D0

15 14 2 1 0
4 x 16

decoder

4-bit
sequence

counter
(SC)

Increment (INR)
Clear (CLR)
Clock

Other inputs

Control
signals

D

T
T

7

15

0

Combinational
Control

logic

19Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

TIMING SIGNALS

Clock
T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC
0

Timing and control

20Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INSTRUCTION CYCLE

• In Basic Computer, a machine instruction is executed in the
following cycle:
1. Fetch an instruction from memory
2. Decode the instruction
3. Read the effective address from memory if the instruction has an

indirect address
4. Execute the instruction

• After an instruction is executed, the cycle starts again at
step 1, for the next instruction

• Note: Every different processor has its own (different)
instruction cycle

21Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

FETCH and DECODE

• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)
T1: IR M [AR], PC PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7 Decode IR(12-14), AR IR(0-11), I IR(15)

S2

S1

S0

Bus

7Memory
unit

Address
Read

AR

LD
PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

Instruction Cycle

22Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

DETERMINE THE TYPE OF INSTRUCTION

= 0 (direct)

D'7IT3: AR M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

Instrction Cycle

Start
SC

AR PC
T0

IR M[AR], PC PC + 1
T1

AR IR(0-11), I IR(15)
Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction
SC 0

Execute
input-output
instruction
SC 0

M[AR]AR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction
SC 0

T4

23Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

REGISTER REFERENCE INSTRUCTIONS

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

Instruction Cycle

Register Reference Instructions are identified when

r: SC 0
CLA rB11: AC 0
CLE rB10: E 0
CMA rB9: AC AC’
CME rB8: E E’
CIR rB7: AC shr AC, AC(15) E, E AC(0)
CIL rB6: AC shl AC, AC(0) E, E AC(15)
INC rB5: AC AC + 1
SPA rB4: if (AC(15) = 0) then (PC PC+1)
SNA rB3: if (AC(15) = 1) then (PC PC+1)
SZA rB2: if (AC = 0) then (PC PC+1)
SZE rB1: if (E = 0) then (PC PC+1)
HLT rB0: S 0 (S is a start-stop flip-flop)

24Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

MEMORY REFERENCE INSTRUCTIONS

AND to AC
D0T4: DR M[AR] Read operand
D0T5: AC AC DR, SC 0 AND with AC

ADD to AC
D1T4: DR M[AR] Read operand
D1T5: AC AC + DR, E Cout, SC 0 Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

MR Instructions

Symbol Operation
Decoder Symbolic Description

AND D0 AC AC M[AR]
ADD D1 AC AC + M[AR], E Cout
LDA D2 AC M[AR]
STA D3 M[AR] AC
BUN D4 PC AR
BSA D5 M[AR] PC, PC AR + 1
ISZ D6 M[AR] M[AR] + 1, if M[AR] + 1 = 0 then PC PC+1

25Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

MEMORY REFERENCE INSTRUCTIONS

Memory, PC after execution

21

0 BSA 135
Next instruction

Subroutine

20
PC = 21

AR = 135
136

1 BUN 135

Memory, PC, AR at time T4

0 BSA 135
Next instruction

Subroutine

20
21

135
PC = 136

1 BUN 135
Memory Memory

LDA: Load to AC
D2T4: DR M[AR]
D2T5: AC DR, SC 0

STA: Store AC
D3T4: M[AR] AC, SC 0

BUN: Branch Unconditionally
D4T4: PC AR, SC 0

BSA: Branch and Save Return Address
M[AR] PC, PC AR + 1

26Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

MEMORY REFERENCE INSTRUCTIONS
MR Instructions

BSA:
D5T4: M[AR] PC, AR AR + 1
D5T5: PC AR, SC 0

ISZ: Increment and Skip-if-Zero
D6T4: DR M[AR]
D6T5: DR DR + 1
D6T4: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

27Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS
MR Instructions

Memory-reference instruction

DR M[AR] DR M[AR] DR M[AR] M[AR] AC
SC 0

AND ADD LDA STA

AC AC DR
SC 0

AC AC + DR
E Cout
SC 0

AC DR
SC 0

D T0 4 D T1 4 D T2 4 D T3 4

D T0 5 D T1 5 D T2 5

PC AR
SC 0

M[AR] PC
AR AR + 1

DR M[AR]

BUN BSA ISZ

D T4 4 D T5 4 D T6 4

DR DR + 1
D T5 5 D T6 5

PC AR
SC 0

M[AR] DR
If (DR = 0)
then (PC PC + 1)
SC 0

D T6 6

28Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INPUT-OUTPUT AND INTERRUPT

• Input-Output Configuration

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal

serially and with the AC in parallel.
- The flags are needed to synchronize the timing

difference between I/O device and the computer

A Terminal with a keyboard and a Printer

I/O and Interrupt

Input-output
terminal

Serial
communication

interface
Computer
registers and
flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path
Parallel Communications Path

29Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

PROGRAM CONTROLLED DATA TRANSFER

loop: If FGI = 1 goto loop
INPR new data, FGI 1

loop: If FGO = 1 goto loop
consume OUTR, FGO 1

-- CPU -- -- I/O Device --
/* Input */ /* Initially FGI = 0 */

loop: If FGI = 0 goto loop
AC INPR, FGI 0

/* Output */ /* Initially FGO = 1 */
loop: If FGO = 0 goto loop

OUTR AC, FGO 0

I/O and Interrupt

Start Input

FGI 0

FGI=0

AC INPR

More
Character

END

Start Output

FGO 0

FGO=0

More
Character

END

OUTR AC

AC Data
yes

no
yes

no

FGI=0 FGO=1

yes

yes
no

no

30Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC 0 Clear SC
INP pB11: AC(0-7) INPR, FGI 0 Input char. to AC
OUT pB10: OUTR AC(0-7), FGO 0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC PC + 1) Skip on input flag
SKO pB8: if(FGO = 1) then (PC PC + 1) Skip on output flag
ION pB7: IEN 1 Interrupt enable on
IOF pB6: IEN 0 Interrupt enable off

31Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

PROGRAM-CONTROLLED INPUT/OUTPUT

• Program-controlled I/O
- Continuous CPU involvement

I/O takes valuable CPU time
- CPU slowed down to I/O speed
- Simple
- Least hardware

I/O and Interrupt

Input

LOOP, SKI DEV
BUN LOOP
INP DEV

Output
LOOP, LDA DATA
LOP, SKO DEV

BUN LOP
OUT DEV

32Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

INTERRUPT INITIATED INPUT/OUTPUT
- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,
it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task
it is doing, branches to the service routine to process the data
transfer, and then returns to the task it was performing.

* IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions
- when cleared, the computer cannot be interrupted

33Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

FLOWCHART FOR INTERRUPT CYCLE
R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

- At the beginning of the next instruction cycle, the
instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction
that sends the control to an interrupt service routine

- The instruction that returns the control to the original
program is "indirect BUN 0"

I/O and Interrupt

Store return address

R =1=0

in location 0
M[0] PC

Branch to location 1
PC 1

IEN 0
R 0

Interrupt cycleInstruction cycle

Fetch and decode
instructions

IEN

FGI

FGO

Execute
instructions

R 1

=1
=1

=1

=0

=0

=0

34Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Register Transfer Statements for Interrupt Cycle
- R F/F 1 if IEN (FGI + FGO)T0T1T2

 T0T1T2 (IEN)(FGI + FGO): R 1

- The fetch and decode phases of the instruction cycle
must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :
RT0: AR 0, TR PC
RT1: M[AR] TR, PC 0
RT2: PC PC + 1, IEN 0, R 0, SC 0

After interrupt cycle

0 BUN 1120
0
1

PC = 256
255

1 BUN 0

Before interrupt

Main
Program

1120
I/O

Program

0 BUN 1120
0

PC = 1

256
255

1 BUN 0

Memory

Main
Program

1120
I/O

Program

256

I/O and Interrupt

35Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

FURTHER QUESTIONS ON INTERRUPT

How can the CPU recognize the device
requesting an interrupt ?

Since different devices are likely to require
different interrupt service routines, how can
the CPU obtain the starting address of the
appropriate routine in each case ?

Should any device be allowed to interrupt the
CPU while another interrupt is being serviced ?

How can the situation be handled when two or
more interrupt requests occur simultaneously ?

I/O and Interrupt

36Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMPLETE COMPUTER DESCRIPTION
Flowchart of Operations

Description

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

start
SC 0, IEN 0, R 0

R

AR PC
R’T0

IR M[AR], PC PC + 1
R’T1

AR IR(0~11), I IR(15)
D0...D7 Decode IR(12 ~ 14)

R’T2

AR 0, TR PC
RT0

M[AR] TR, PC 0
RT1

PC PC + 1, IEN 0
R 0, SC 0

RT2

D7

I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle
D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

=0(Instruction =1(Interrupt
Cycle) Cycle)

=1(Register or I/O) =0(Memory Ref)

D7’T4

37Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

COMPLETE COMPUTER DESCRIPTION
Microoperations

Description

Fetch

Decode

Indirect
Interrupt

Memory-Reference
AND

ADD

LDA

STA
BUN
BSA

ISZ

RT0:
RT1:
RT2:

D7IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR PC
IR M[AR], PC PC + 1
D0, ..., D7 Decode IR(12 ~ 14),

AR IR(0 ~ 11), I IR(15)
AR M[AR]

R 1
AR 0, TR PC
M[AR] TR, PC 0
PC PC + 1, IEN 0, R 0, SC 0

DR M[AR]
AC AC DR, SC 0
DR M[AR]
AC AC + DR, E Cout, SC 0
DR M[AR]
AC DR, SC 0
M[AR] AC, SC 0
PC AR, SC 0
M[AR] PC, AR AR + 1
PC AR, SC 0
DR M[AR]
DR DR + 1
M[AR] DR, if(DR=0) then (PC PC + 1),
SC 0

T0T1T2(IEN)(FGI + FGO):

38Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

Register-Reference

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
OUT
SKI
SKO
ION
IOF

D7IT3 = r
IR(i) = Bi
r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

D7IT3 = p
IR(i) = Bi
p:
pB11:
pB10:
pB9:
pB8:
pB7:
pB6:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC 0
AC 0
E 0
AC AC
E E
AC shr AC, AC(15) E, E AC(0)
AC shl AC, AC(0) E, E AC(15)
AC AC + 1
If(AC(15) =0) then (PC PC + 1)
If(AC(15) =1) then (PC PC + 1)
If(AC = 0) then (PC PC + 1)
If(E=0) then (PC PC + 1)
S 0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC 0
AC(0-7) INPR, FGI 0
OUTR AC(0-7), FGO 0
If(FGI=1) then (PC PC + 1)
If(FGO=1) then (PC PC + 1)
IEN 1
IEN 0

Description
COMPLETE COMPUTER DESCRIPTION

Microoperations

39Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

DESIGN OF BASIC COMPUTER(BC)
Hardware Components of BC

A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

I, S, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder
Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates
- Input Controls of the nine registers
- Read and Write Controls of memory
- Set, Clear, or Complement Controls of the flip-flops
- S2, S1, S0 Controls to select a register for the bus
- AC, and Adder and Logic circuit

Design of Basic Computer

40Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

CONTROL OF REGISTERS AND MEMORY

Scan all of the register transfer statements that change the content of AR:

LD(AR) = R'T0 + R'T2 + D'7IT3CLR(AR) = RT0INR(AR) = D5T4

Address Register; AR

R’T0: AR PC LD(AR)
R’T2: AR IR(0-11) LD(AR)
D’7IT3: AR M[AR] LD(AR)
RT0: AR 0 CLR(AR)
D5T4: AR AR + 1 INR(AR)

Design of Basic Computer

AR

LD
INR

CLR

Clock

To bus
12From bus 12

D'
I

T
T

R
T
D
T

7

3
2

0

4

41Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

CONTROL OF FLAGS

pB7: IEN 1 (I/O Instruction)
pB6: IEN 0 (I/O Instruction)
RT2: IEN 0 (Interrupt)

p = D7IT3 (Input/Output Instruction)

IEN: Interrupt Enable Flag

Design of Basic Computer

D
I

T3

7
J

K

Q IEN
p
B7

B6

T2
R

42Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

CONTROL OF COMMON BUS

For AR D4T4: PC AR
D5T5: PC AR

x1 = D4T4 + D5T5

Design of Basic Computer

x1
x2
x3
x4
x5
x6
x7

Encoder

S 2

S 1

S 0

Multiplexer
bus select

inputs

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0
selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

43Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

DESIGN OF ACCUMULATOR LOGIC
Circuits associated with AC

All the statements that change the content of AC

Design of AC Logic

16

16

8

Adder and
logic
circuit

16 ACFrom DR

From INPR

Control
gates

LD INR CLR

16

To bus

Clock

D0T5: AC AC DR AND with DR
D1T5: AC AC + DR Add with DR
D2T5: AC DR Transfer from DR
pB11: AC(0-7) INPR Transfer from INPR
rB9: AC AC Complement
rB7 : AC shr AC, AC(15) E Shift right
rB6 : AC shl AC, AC(0) E Shift left
rB11 : AC 0 Clear
rB5 : AC AC + 1 Increment

44Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

CONTROL OF AC REGISTER

Gate structures for controlling
the LD, INR, and CLR of AC

AC

LD
INR

CLR

Clock

To bus16From Adder
and Logic

16

AND

ADD

DR

INPR

COM

SHR

SHL

INC

CLR

D0

D1

D2

B11

B9

B7

B6

B5

B11

r

p

T 5

T 5

Design of AC Logic

45Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

ALU (ADDER AND LOGIC CIRCUIT)

One stage of Adder and Logic circuit

Design of AC Logic

AND

ADD

DR

INPR

COM

SHR

SHL

J

K

Q
AC(i)

LD

FA

C

C

From
INPR
bit(i)

DR(i) AC(i)

AC(i+1)

AC(i-1)

i

i

i+1

I

