
1Register Transfer & -operations

Computer Organization Computer Architectures Lab

REGISTER TRANSFER AND MICROOPERATIONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

2Register Transfer & -operations

Computer Organization Computer Architectures Lab

SIMPLE DIGITAL SYSTEMS

• Combinational and sequential circuits (learned in Chapters 1 and 2)

can be used to create simple digital systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of

– the registers they contain, and

– the operations that they perform.

• Typically,

– What operations are performed on the data in the registers

– What information is passed between registers

3Register Transfer & -operations

Computer Organization Computer Architectures Lab

MICROOPERATIONS (1)

Register Transfer Language

• The operations on the data in registers are called
microoperations.

• The functions built into registers are examples of
microoperations

– Shift

– Load

– Clear

– Increment

– …

4Register Transfer & -operations

Computer Organization Computer Architectures Lab

MICROOPERATION (2)

An elementary operation performed (during
one clock pulse), on the information stored
in one or more registers

R  f(R, R)

f: shift, load, clear, increment, add, subtract, complement,

and, or, xor, …

ALU
(f)

Registers
(R)

1 clock cycle

Register Transfer Language

5Register Transfer & -operations

Computer Organization Computer Architectures Lab

REGISTER TRANSFER LANGUAGE

Register Transfer Language

• Rather than specifying a digital system in words, a specific
notation is used, register transfer language

• For any function of the computer, the register transfer
language can be used to describe the (sequence of)
microoperations

• Register transfer language

– A symbolic language

– A convenient tool for describing the internal organization of digital
computers

– Can also be used to facilitate the design process of digital systems.

6Register Transfer & -operations

Computer Organization Computer Architectures Lab

DESIGNATION OF REGISTERS

Register Transfer Language

• Registers are designated by capital letters, sometimes
followed by numbers (e.g., A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Registers and their contents can be viewed and represented in
various ways

– A register can be viewed as a single entity:

– Registers may also be represented showing the bits of data they contain

MAR

7Register Transfer & -operations

Computer Organization Computer Architectures Lab

DESIGNATION OF REGISTERS

Register Transfer Language

R1
Register

Numbering of bits

Showing individual bits

Subfields

PC(H) PC(L)
15 8 7 0

- a register

- portion of a register

- a bit of a register

• Common ways of drawing the block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

• Designation of a register

8Register Transfer & -operations

Computer Organization Computer Architectures Lab

REGISTER TRANSFER

Register Transfer

• Copying the contents of one register to another is a register
transfer

• A register transfer is indicated as

R2  R1

– In this case the contents of register R2 are copied (loaded) into
register R1

– A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

9Register Transfer & -operations

Computer Organization Computer Architectures Lab

REGISTER TRANSFER

Register Transfer

• A register transfer such as

R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination
register (R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

10Register Transfer & -operations

Computer Organization Computer Architectures Lab

CONTROL FUNCTIONS

Register Transfer

• Often actions need to only occur if a certain condition is true

• This is similar to an “if” statement in a programming language

• In digital systems, this is often done via a control signal, called
a control function

– If the signal is 1, the action takes place

• This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P = 1) then (R2  R1)

11Register Transfer & -operations

Computer Organization Computer Architectures Lab

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 R1

Block diagram

Timing diagram

Clock

Register Transfer

Transfer occurs here

R2

R1

Control
Circuit

LoadP

n

Clock

Load

t t+1

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

12Register Transfer & -operations

Computer Organization Computer Architectures Lab

SIMULTANEOUS OPERATIONS

Register Transfer

• If two or more operations are to occur
simultaneously, they are separated with commas

P: R3  R5, MAR  IR

• Here, if the control function P = 1, load the contents
of R5 into R3, and at the same time (clock), load the
contents of register IR into register MAR

13Register Transfer & -operations

Computer Organization Computer Architectures Lab

BASIC SYMBOLS FOR REGISTER TRANSFERS

Capital letters Denotes a register MAR, R2

& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2  R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A  B, B  A

Symbols Description Examples

Register Transfer

14Register Transfer & -operations

Computer Organization Computer Architectures Lab

CONNECTING REGISTRS

Register Transfer

• In a digital system with many registers, it is impractical to
have data and control lines to directly allow each register
to be loaded with the contents of every possible other
registers

• To completely connect n registers  n(n-1) lines

• O(n2) cost

– This is not a realistic approach to use in a large digital system

• Instead, take a different approach

• Have one centralized set of circuits for data transfer – the
bus

• Have control circuits to select which register is the source,
and which is the destination

15Register Transfer & -operations

Computer Organization Computer Architectures Lab

BUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is

transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x

y
select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Bus and Memory Transfers

16Register Transfer & -operations

Computer Organization Computer Architectures Lab

TRANSFER FROM BUS TO A DESTINATION REGISTER

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4

Decoder

Load

D0 D1 D2 D3z

w
Select E (enable)

Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Select

Enable

0
1
2
3

S0

S1

A0

B0

C0

D0

Bus line for bit 0

Bus and Memory Transfers

17Register Transfer & -operations

Computer Organization Computer Architectures Lab

BUS TRANSFER IN RTL

Bus and Memory Transfers

• Depending on whether the bus is to be mentioned
explicitly or not, register transfer can be indicated as
either

or

• In the former case the bus is implicit, but in the latter, it is
explicitly indicated

R2 R1

BUS R1, R2  BUS

18Register Transfer & -operations

Computer Organization Computer Architectures Lab

MEMORY (RAM)

Bus and Memory Transfers

• Memory (RAM) can be thought as a sequential circuits
containing some number of registers

• These registers hold the words of memory

• Each of the r registers is indicated by an address

• These addresses range from 0 to r-1

• Each register (word) can hold n bits of data

• Assume the RAM contains r = 2k words. It needs the
following

– n data input lines

– n data output lines

– k address lines

– A Read control line

– A Write control line

data input lines

data output lines

n

n

k

address lines

Read

Write

RAM
unit

19Register Transfer & -operations

Computer Organization Computer Architectures Lab

MEMORY TRANSFER

Bus and Memory Transfers

• Collectively, the memory is viewed at the register level as a
device, M.

• Since it contains multiple locations, we must specify
which address in memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by
putting the desired address in a special register, the
Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get
sent to the memory unit’s address lines

AR
Memory

unit

Read

Write

Data inData out

M

20Register Transfer & -operations

Computer Organization Computer Architectures Lab

MEMORY READ

Bus and Memory Transfers

• To read a value from a location in memory and load it into
a register, the register transfer language notation looks
like this:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s
output data lines

– These get sent over the bus to be loaded into register R1

R1  M[MAR]

21Register Transfer & -operations

Computer Organization Computer Architectures Lab

MEMORY WRITE

Bus and Memory Transfers

• To write a value from a register to a location in memory
looks like this in register transfer language:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Write (= 1) gets sent to the memory unit

– The values in register R1 get sent over the bus to the data input lines
of the memory

– The values get loaded into the specified address in the memory

M[MAR]  R1

22Register Transfer & -operations

Computer Organization Computer Architectures Lab

SUMMARY OF R. TRANSFER MICROOPERATIONS

Bus and Memory Transfers

A  B Transfer content of reg. B into reg. A

AR  DR(AD) Transfer content of AD portion of reg. DR into reg. AR

A  constant Transfer a binary constant into reg. A

ABUS  R1, Transfer content of R1 into bus A and, at the same time,

R2  ABUS transfer content of bus A into R2

AR Address register

DR Data register

M[R] Memory word specified by reg. R

M Equivalent to M[AR]

DR  M Memory read operation: transfers content of

memory word specified by AR into DR

M  DR Memory write operation: transfers content of

DR into memory word specified by AR

23Register Transfer & -operations

Computer Organization Computer Architectures Lab

MICROOPERATIONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic Microoperations

24Register Transfer & -operations

Computer Organization Computer Architectures Lab

ARITHMETIC MICROOPERATIONS

Summary of Typical Arithmetic Micro-Operations

Arithmetic Microoperations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

• The basic arithmetic microoperations are
– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are
– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

25Register Transfer & -operations

Computer Organization Computer Architectures Lab

BINARY ADDER / SUBTRACTOR / INCREMENTER

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

Binary Incrementer

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Binary Adder

Arithmetic Microoperations

26Register Transfer & -operations

Computer Organization Computer Architectures Lab

ARITHMETIC CIRCUIT

S1
S0
0
1
2
3

4x1
MUX

X0

Y0

C0

C1

D0FA

S1
S0
0
1
2
3

4x1
MUX

X1

Y1

C1

C2

D1FA

S1
S0
0
1
2
3

4x1
MUX

X2

Y2

C2

C3

D2FA

S1
S0
0
1
2
3

4x1
MUX

X3

Y3

C3

C4

D3FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1
Cin

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

Arithmetic Microoperations

27Register Transfer & -operations

Computer Organization Computer Architectures Lab

LOGIC MICROOPERATIONS

Logic Microoperations

• Specify binary operations on the strings of bits in registers

– Logic microoperations are bit-wise operations, i.e., they work on the
individual bits of data

– useful for bit manipulations on binary data

– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can
be defined over two binary input variables

• However, most systems only implement four of these

– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

A B F0 F1 F2 … F13 F14 F15

28Register Transfer & -operations

Computer Organization Computer Architectures Lab

LIST OF LOGIC MICROOPERATIONS

• List of Logic Microoperations

- 16 different logic operations with 2 binary vars.

- n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the

corresponding 16 logic micro-operations
Boolean

Function

Micro-

Operations
Name

x 0 0 1 1

y 0 1 0 1

Logic Microoperations

0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's

29Register Transfer & -operations

Computer Organization Computer Architectures Lab

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR

1 1 F = A’ Complement

S1 S0 Output -operation

Function table

Logic Microoperations

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
MUX

Select

30Register Transfer & -operations

Computer Organization Computer Architectures Lab

SHIFT MICROOPERATIONS

Shift Microoperations

• There are three types of shifts

– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into
the serial input

Serial
input

• A right shift operation

• A left shift operation Serial
input

31Register Transfer & -operations

Computer Organization Computer Architectures Lab

LOGICAL SHIFT

Shift Microoperations

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

• A left logical shift operation:

• In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

» R2  shr R2

» R3  shl R3

0

0

32Register Transfer & -operations

Computer Organization Computer Architectures Lab

CIRCULAR SHIFT

Shift Microoperations

• In a circular shift the serial input is the bit that is shifted out of
the other end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left

– cir for a circular shift right

– Examples:

» R2  cir R2

» R3  cil R3

33Register Transfer & -operations

Computer Organization Computer Architectures Lab

ARITHMETIC SHIFT

Shift Microoperations

• An arithmetic shift is meant for signed binary numbers
(integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• The main distinction of an arithmetic shift is that it must keep
the sign of the number the same as it performs the
multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:
0

sign
bit

sign
bit

34Register Transfer & -operations

Computer Organization Computer Architectures Lab

ARITHMETIC SHIFT

Shift Microoperations

• An left arithmetic shift operation must be checked for the
overflow

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

sign
bit

35Register Transfer & -operations

Computer Organization Computer Architectures Lab

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

Shift Microoperations

S

0
1

H0MUX

S

0
1

H1MUX

S

0
1

H2MUX

S

0
1

H3MUX

Select
0 for shift right (down)
1 for shift left (up)Serial

input (IR)

A0

A1

A2

A3

Serial
input (IL)

36Register Transfer & -operations

Computer Organization Computer Architectures Lab

ARITHMETIC LOGIC SHIFT UNIT

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Shift Microoperations

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

