DATA REPRESENTATION

Data Types

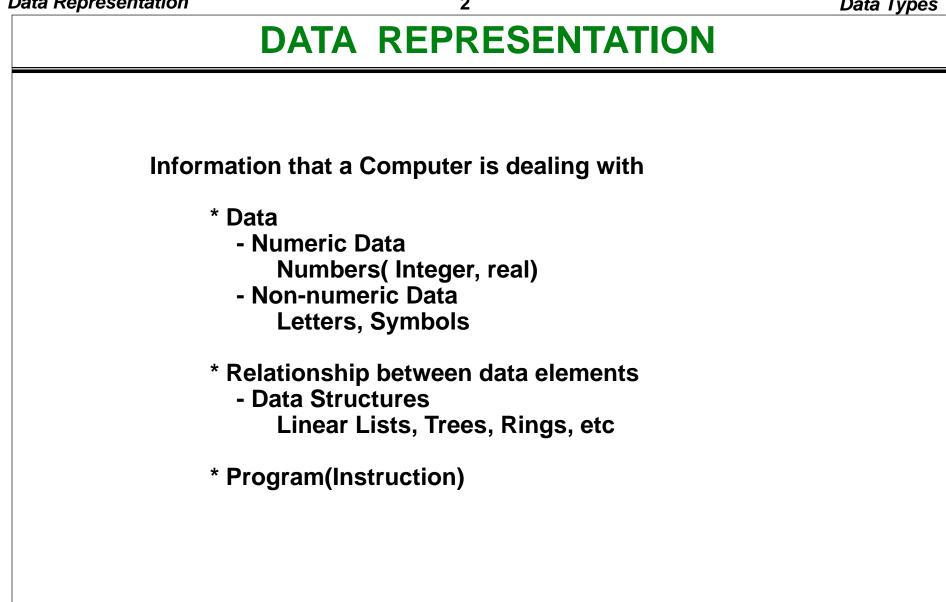
Complements

Fixed Point Representations

Floating Point Representations

Other Binary Codes

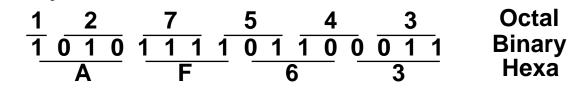
Error Detection Codes



NUMERIC DATA REPF	RESENTATION
Data Numeric data - numbers(integer, i Non-numeric data - symbols, lette	
Number System	
Nonpositional number system	
- Roman number system	
Positional number system	a value called a <i>weight</i>
- Each digit position has a associated with it	a value calleu a weigin
- Decimal, Octal, Hexadeci	imal Rinary
Base (or radix) R number	innai, Dinai y
- Uses R distinct symbols for each dig	git
- Example $A_R = a_{n-1}a_{n-2} \dots a_1 a_0 \dots a_{-1} \dots a_{-1}$	•
$-V(\Delta_{-}) = \sum_{i=1}^{n-1} -i$	Radix point(.) separates the integer
$- V(A_R) = \sum_{i=1}^{n-1} a_i R^i$	portion and the fractional portion
i=-m	
R = 10 Decimal number system,	R = 2 Binary
R = 8 Octal,	R = 16 Hexadecimal
Computer Organization	Computer Architectures Lab

Decimal	Binary	Octal	Hexadecimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Binary, octal, and hexadecimal conversion



Computer Organization

Computer Architectures Lab

Β

ase R to Decimal Conversion

$$A = a_{n-1} a_{n-2} a_{n-3} \dots a_0 \dots a_{-1} \dots a_{-m}$$

$$V(A) = \sum a_k R^k$$

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

$$= 7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$$

$$(110110)_2 = \dots = (54)_{10}$$

$$(110.111)_2 = \dots = (6.785)_{10}$$

$$(F3)_{16} = \dots = (243)_{10}$$

$$(0.325)_6 = \dots = (0.578703703 \dots)_{10}$$

Decimal to Base R number

- Separate the number into its *integer* and *fraction* parts and convert each part separately.
- Convert integer part into the base R number
 - \rightarrow successive divisions by R and accumulation of the remainders.
- Convert fraction part into the base R number
 - \rightarrow successive multiplications by R and accumulation of integer digits

EXAMPLE

Convert 41.6875 ₁₀ to base 2.	Fraction = 0.6875 0.6875
Integer = 41	x 2
41	1.3750
20 1	x 2
10 0	0.7500
5 0	x 2
2 1	1.5000
1 0	x 2
0 1	1.0000
$(41)_{10} = (101001)_2$	$(0.6875)_{10} = (0.1011)_2$

 $(41.6875)_{10} = (101001.1011)_2$

Exercise

Convert $(63)_{10}$ to base 5: $(223)_5$ Convert $(1863)_{10}$ to base 8: $(3507)_8$ Convert $(0.63671875)_{10}$ to hexadecimal: $(0.A3)_{16}$

COMPLEMENT OF NUMBERS

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

The (R-1)'s Complement

Subtract each digit of a number from (R-1)

Example

- 9's complement of 835₁₀ is 164₁₀
- 1's complement of 1010₂ is 0101₂(bit by bit complement operation)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Example

- 10's complement of 835_{10} is $164_{10} + 1 = 165_{10}$
- 2's complement of 1010_2 is $0101_2 + 1 = 0110_2$

FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

 $X = x_{n}x_{n-1}x_{n-2} \dots x_{1}x_{0} \dots x_{-1}x_{-2} \dots x_{-m}$

Sign Bit(x_n): 0 for positive - 1 for negative

Remaining Bits($x_{n-1}x_{n-2} \dots x_1x_0 \dots x_{-1}x_{-2} \dots x_{-m}$)

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

Signed magnitude: Complement *only* the sign bit Signed 1's complement: Complement *all* the bits including sign bit Signed 2's complement: Take the 2's complement of the number, *including* its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

 $X = X_n X_{n-1} \dots X_0 \dots X_{-1} \dots X_{-m}$

Signed Magnitude

Max: 2 ⁿ - 2 ^{-m}	011 11.11 1
Min: -(2 ⁿ - 2 ^{-m})	111 11.11 1
Zero: +0	000 00.00 0
-0	100 00.00 0

Signed 1's Complement

 Max: 2ⁿ - 2^{-m}
 011 ... 11.11 ... 1

 Min: -(2ⁿ - 2^{-m})
 100 ... 00.00 ... 0

 Zero: +0
 000 ... 00.00 ... 0

 -0
 111 ... 11.11 ... 1

Signed 2's Complement

Max: 2 ⁿ - 2 ^{-m}	011 11.11 1
Min: -2 ⁿ	100 00.00 0
Zero: 0	000 00.00 0

Fixed Point Representations

ARITHMETIC ADDITION: SIGNED MAGNITUDE

[1] Compare their signs

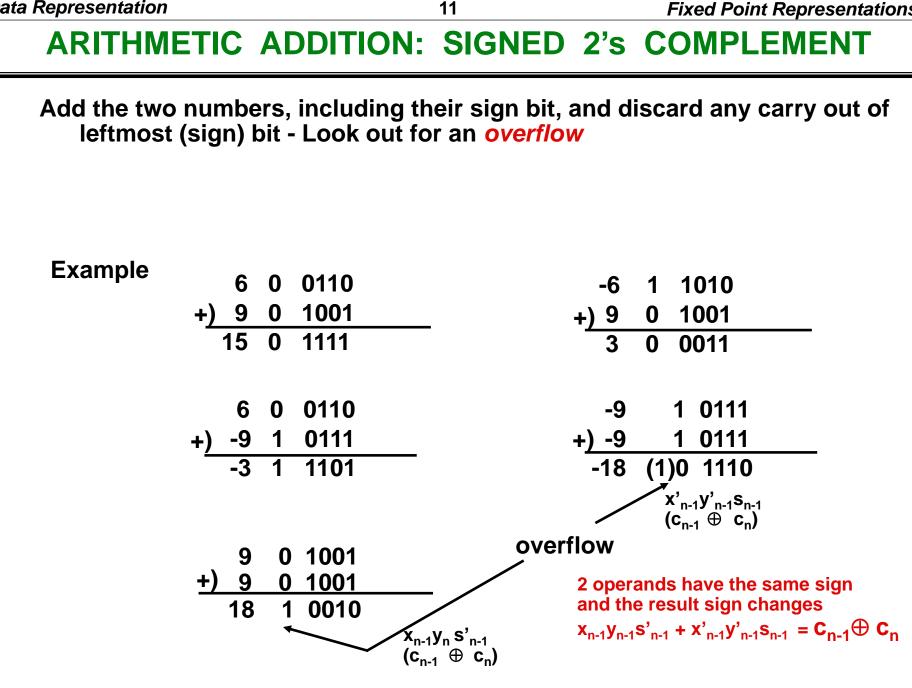
[2] If two signs are the same,

ADD the two magnitudes - Look out for an overflow

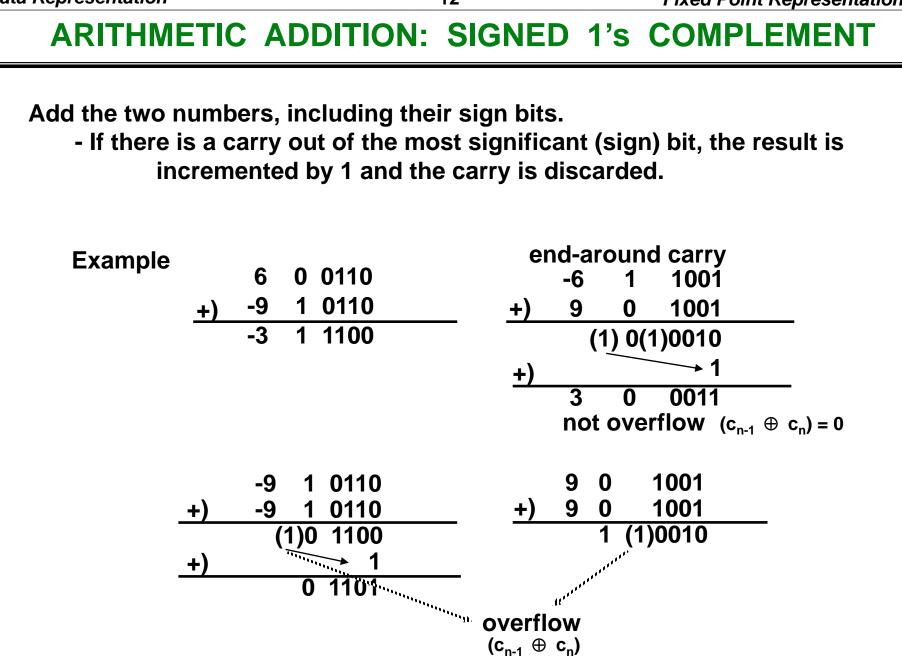
 [3] If not the same, compare the relative magnitudes of the numbers and then SUBTRACT the smaller from the larger --> need a subtractor to add
 [4] Determine the sign of the result

6 + 9	-6 + 9
6 0110	9 1001
<u>+) 9 1001</u>	- <u>) 6 0110</u>
15 1111 -> 01111	3 0011 -> 00011
6 + (- 9)	-6 + (-9)
9 1001	6 0110
- <u>) 6 0110</u>	+ <u>)</u> 9 1001
- 3 0011 -> 10011 Overflow 9 + 9 or (-9) + (-9) 9 1001 +) 9 1001 overflow (1)0010	-15 1111 -> 11111

Fixed Point Representations



Computer Architectures Lab



Computer Organization

FLOATING POINT NUMBER REPRESENTATION

- * The location of the fractional point is not fixed to a certain location
- * The range of the representable numbers is wide

F = EM

- Mantissa

Signed fixed point number, either an integer or a fractional number

- Exponent

Designates the position of the radix point

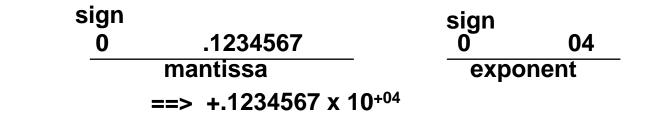
Decimal Value

$$V(F) = V(M) * R^{V(E)}$$
 M: Mantissa

- E: Exponent
- R: Radix

FLOATING POINT NUMBERS

Example



Note:

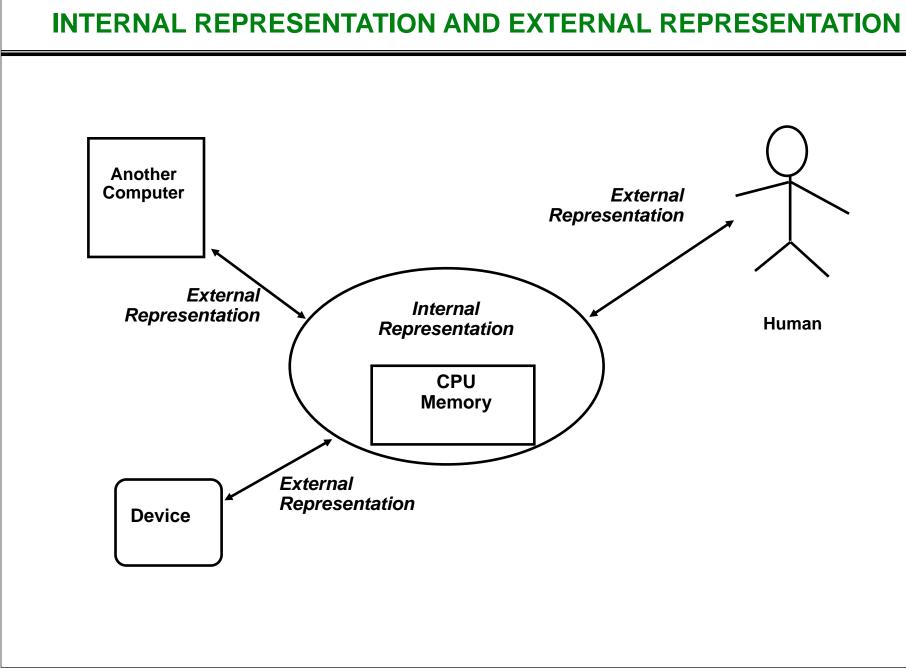
In Floating Point Number representation, only Mantissa(M) and Exponent(E) are explicitly represented. The Radix(R) and the position of the Radix Point are implied.

Example

A binary number +1001.11 in 16-bit floating point number representation (6-bit exponent and 10-bit fractional mantissa)

0 00100	100111000
Sign Exponent	Mantissa
0 00101	010011100

or



Computer Organization

EXTERNAL REPRESENTATION

Numbers

Most of numbers stored in the computer are eventually changed by some kinds of calculations

- \rightarrow Internal Representation for calculation efficiency
- → Final results need to be converted to as *External Representation* for presentability

Alphabets, Symbols, and some Numbers

- Elements of these information do not change in the course of processing
- \rightarrow No needs for Internal Representation since they are not used for calculations
- \rightarrow External Representation for processing and presentability

	Decimal	BCD Code
	0	0000
Example Decimal Number: 4-bit Binary Code BCD(Binary Coded Decimal)	1	0001
	2	0010
	3	0011
	4	0100
	5	0101
	6	0110
	7	0111
	8	1000
	9	1001

CHARACTER REPRESENTATION ASCII

ASCII (American Standard Code for Information Interchange) Code

		•	,						
		0	1	2	3	4	5	6	7
LSB	0	NUL	DLE	SP	0	@	Ρ	"	Ρ
(4 bits)	1	SOH	DC1	!	1	Α	Q	а	q
\	2	STX	DC2	"	2	В	R	b	r
	3	ETX	DC3	#	3	С	S	С	S
	4	EOT	DC4	\$	4	D	Т	d	t
	5	ENQ	NAK	%	5	Ε	U	е	u
	6	ACK	SYN	&	6	F	V	f	V
	7	BEL	ETB	"	7	G	W	g	W
	8	BS	CAN	(8	н	Χ	h	X
	9	НТ	EM)	9	I	Y	I	у
	Α	LF	SUB	*	:	J	Ζ	j	Z
	В	VT	ESC	+	;	Κ	[k	{
	С	FF	FS	,	<	L	١	I	
	D	CR	GS	-	=	Μ]	m	}
	Е	SO	RS		>	Ν	m	n	~
	F	SI	US	1	?	Ο	n	Ο	DEL

MSB (3 bits)

Computer Organization

ERROR DETECTING CODES

Parity System

- Simplest method for error detection
- One parity bit attached to the information
- Even Parity and Odd Parity

Even Parity

- One bit is attached to the information so that the total number of 1 bits is an even number

10110010 10100101

Odd Parity

- One bit is attached to the information so that the total number of 1 bits is an odd number

PARITY BIT GENERATION

Parity Bit Generation

For b₆b₅... b₀(7-bit information); even parity bit b_{even}

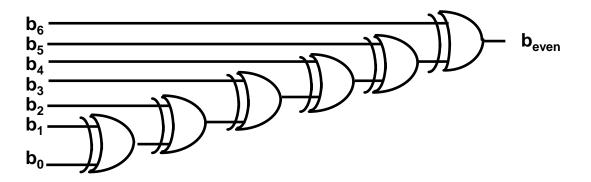
 $\mathbf{b}_{\mathsf{even}} = \mathbf{b}_6 \oplus \mathbf{b}_5 \oplus \ldots \oplus \mathbf{b}_0$

For odd parity bit

 $\mathbf{b}_{odd} = \mathbf{b}_{even} \oplus \mathbf{1} = \overline{\mathbf{b}}_{even}$

PARITY GENERATOR AND PARITY CHECKER

Parity Generator Circuit (even parity)



Parity Checker

