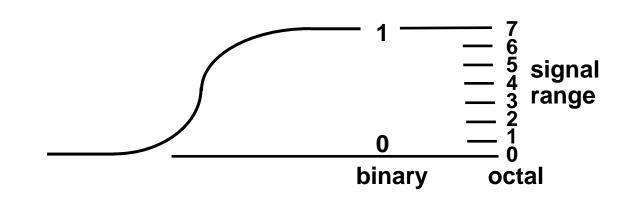
LOGIC GATES

Digital Computers

- Imply that the computer deals with digital information, i.e., it deals with the information that is represented by binary digits
- Why BINARY? instead of Decimal or other number system?
 - * Consider electronic signal



BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block
 Logic Blocks whose output logic value
 depends only on the input logic values
- Sequential Logic Block
 Logic Blocks whose output logic value
 depends on the input values and the
 state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

COMBINATIONAL GATES

	Name	Symbol	Function	Truth Table		
	AND	A X	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1		
	OR	А X	X = A + B	A B X 0 0 0 0 1 1 1 1 1 1 1		
	I	A — X	X = A	A X 0 1 1 0		
	Buffer	A ————————————————————————————————————	X = A	A X 0 0 1 1		
	NAND	A X	X = (AB)'	A B X 0 0 1 0 1 1 1 1 1 0		
	NOR	A D X	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 1 0 1 0		
	XOR Exclusive OR	$A \longrightarrow X$	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 0 1 1 1 1 1 0		
	XNOR Exclusive NOR or Equivalence	А X	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1		

BOOLEAN ALGEBRA

Boolean Algebra

- * Algebra with Binary(Boolean) Variable and Logic Operations
- * Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
 - Input and Output signals can be represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram can be constructed using AND, OR, and I

Truth Table

- * The most elementary specification of the function of a Digital Logic Circuit is the Truth Table
 - Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*
 - n input variables \rightarrow 2ⁿ minterms

BASIC IDENTITIES OF BOOLEAN ALGEBRA

```
[1] x + 0 = x

[3] x + 1 = 1

[5] x + x = x

[6] x \cdot x = x

[7] x + x' = 1

[8] x \cdot x' = 0

[9] x + y = y + x

[10] xy = yx

[11] x + (y + z) = (x + y) + z

[12] x(y) = (x + y) = (x + y)
```

[15] and [16] : De Morgan's Theorem

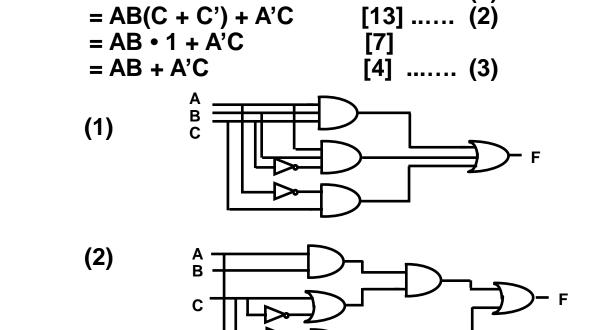
Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates
 - -- Ordinarily ANDs, ORs, and Inverters
- -- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs
 - → Applications of De Morgans Theorem

F = ABC + ABC' + A'C

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function



Map Simplification

Boolean Function

Many different expressions exist

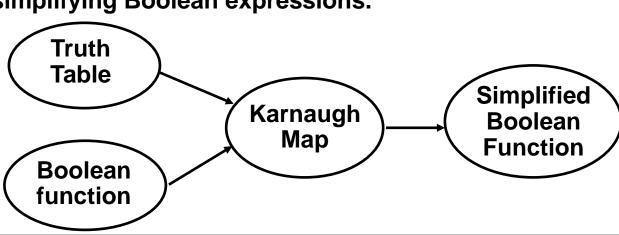
Simplification from Boolean function

Table

Unique

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for simplifying Boolean expressions.

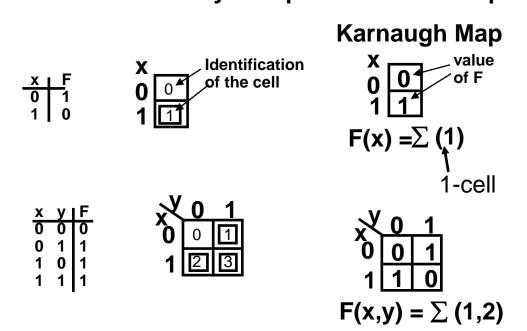


KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is

- Rectangle divided into 2ⁿ cells
- Each cell is associated with a *Minterm*
- An output(function) value for each input value associated with a mintern is written in the cell representing the minterm
 → 1-cell, 0-cell

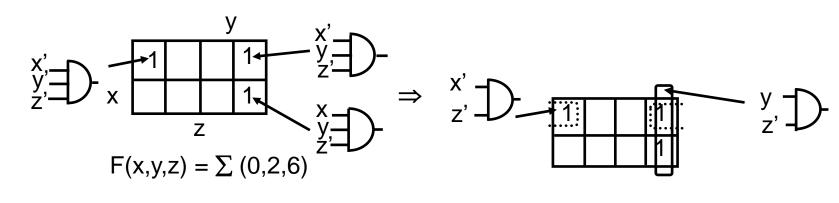
Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm.

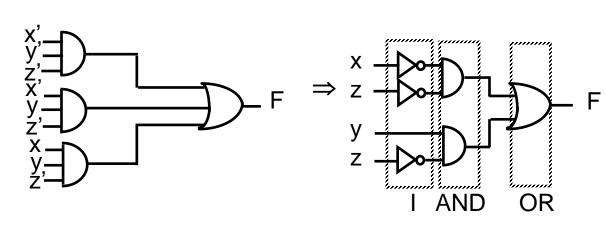


IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can be realized by an AND gate, with some inversion of the input variables.

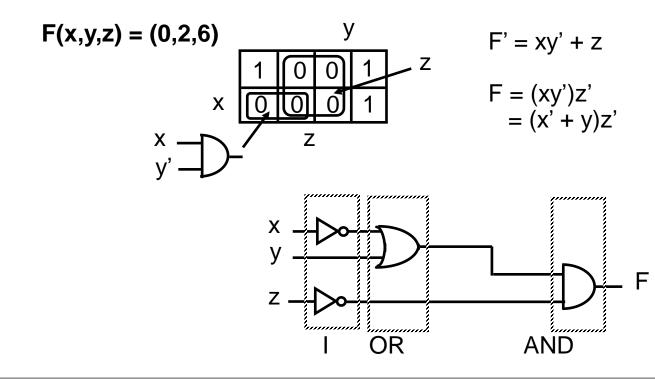




IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

Logic function represented by a Karnaugh map can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells, the complement of F, i.e., F', can be obtained. Thus, by complementing F' using DeMorgan's theorem F can be obtained



IMPLEMENTATION OF K-MAPS

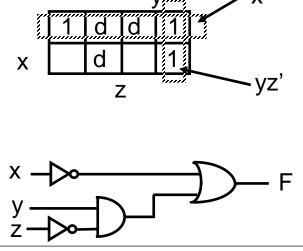
- Don't-Care Conditions -

In some logic circuits, the output responses for some input conditions are don't care whether they are 1 or 0.

In K-maps, don't-care conditions are represented by d's in the corresponding cells.

Don't-care conditions are useful in minimizing the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
 - --> Reduce the number of variables in the product terms



COMBINATIONAL LOGIC CIRCUITS

Other Combinational Circuits

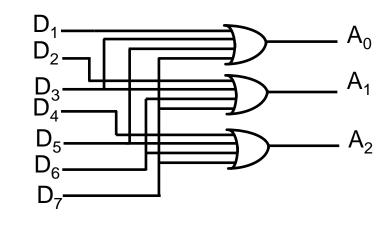
Encoder
Decoder
Parity Checker
Parity Generator
etc

Multiplexer

 I_3

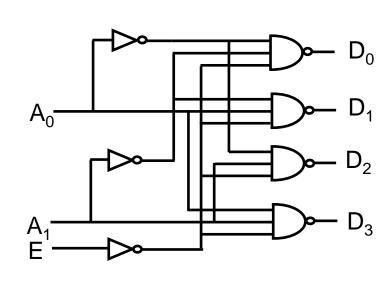
ENCODER/DECODER

Octal-to-Binary Encoder



2-to-4 Decoder

E	A_1	A_0	D_0	D_1	D_2	D_3
0	0	0	0	1	1	_
0	0	1	1	0	1	1
0	1	0	1	1		
0	1	1	1	1	1	0
1	d	d	1	1	1	1

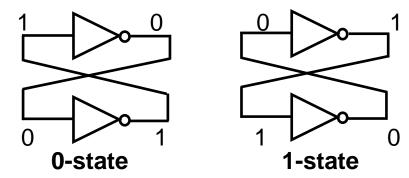


Combinational Logic Circuits

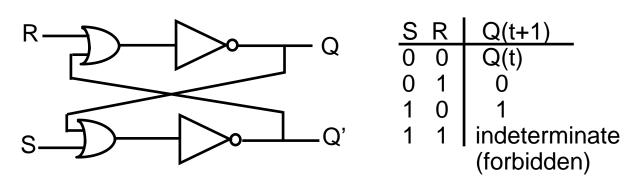
FLIP FLOPS

Characteristics

- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

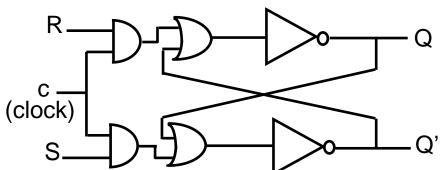


In order to be used in the computer circuits, state of the flip flop should have input terminals and output terminals so that it can be set to a certain state, and its state can be read externally.



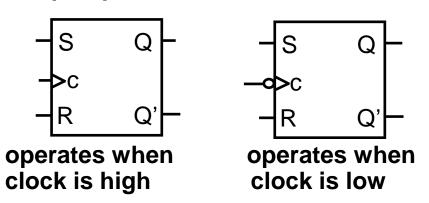
CLOCKED FLIP FLOPS

In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable.



Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the c terminal.

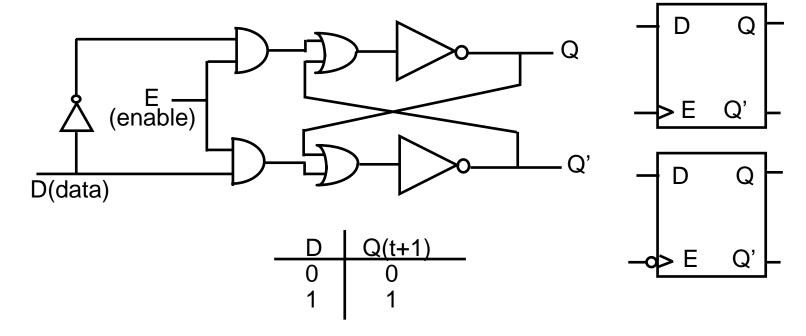
We call above flip flop a Clocked RS Latch, and symbolically as



Flip Flops

D-Latch

Forbidden input values are forced not to occur by using an inverter between the inputs



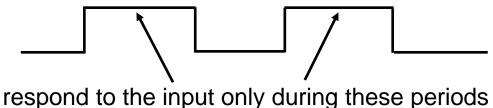
22

EDGE-TRIGGERED FLIP FLOPS

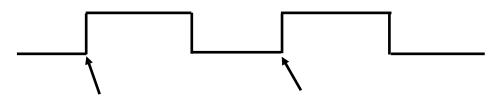
Characteristics

- State transition occurs at the rising edge or falling edge of the clock pulse

Latches



Edge-triggered Flip Flops (positive)



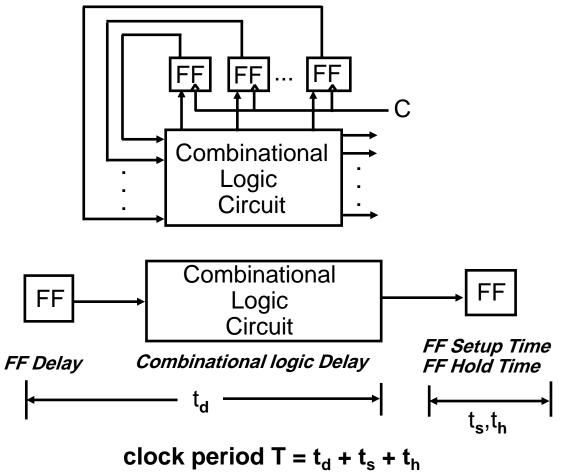
respond to the input only at this time

Flip Flops

CLOCK PERIOD

Clock period determines how fast the digital circuit operates. How can we determine the clock period?

Usually, digital circuits are sequential circuits which has some flip flops



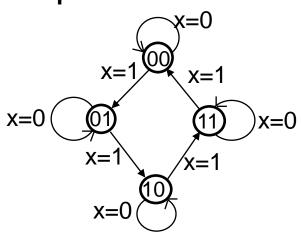
DESIGN EXAMPLE

Design Procedure:

Specification ⇒ State Diagram ⇒ State Table ⇒

Excitation Table ⇒ **Karnaugh Map** ⇒ **Circuit Diagram**

Example: 2-bit Counter -> 2 FF's



current	current next						
state	input	state		FF inputs			
A B	X	Α	В	Ja	Ka	Jb	Kb
0 0	0	0	0	0	d	0	d
0 0	1	0	1	0	d	1	d
0 1	0	0	1	0	d	d	0
0 1	1	1	0	1	d	d	1
1 0	0	1	0	d	0	0	d
1 0	1	1	1	d	0	1	d
1 1	0	1	1	d	0	d	0
1 1	1	0	0	d	1	d	1

