
1Digital Logic Circuits

Computer Organization Computer Architectures Lab

Logic Gates

Boolean Algebra

Map Specification

Combinational Circuits

Flip-Flops

Sequential Circuits

Memory Components

Integrated Circuits

DIGITAL LOGIC CIRCUITS

Introduction

2Digital Logic Circuits

Computer Organization Computer Architectures Lab

Logic Gates

LOGIC GATES

Digital Computers

- Imply that the computer deals with digital information, i.e., it deals
with the information that is represented by binary digits

- Why BINARY ? instead of Decimal or other number system ?

* Consider electronic signal

signal
range

0

1 7
6
5
4
3
2
1
0

binary octal

3Digital Logic Circuits

Computer Organization Computer Architectures Lab

BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block
Logic Blocks whose output logic value
depends only on the input logic values

- Sequential Logic Block
Logic Blocks whose output logic value
depends on the input values and the
state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

Logic Gates

Gate.
.
.

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

4Digital Logic Circuits

Computer Organization Computer Architectures Lab

COMBINATIONAL GATES
Logic Gates

A
X X = (A + B)’

B

Name Symbol Function Truth Table

AND
A X = A • B

X or
B X = AB

0 0 0
0 1 0
1 0 0
1 1 1

0 0 0
0 1 1
1 0 1
1 1 1

OR
A

X X = A + B
B

I A X X = A 0 1
1 0

Buffer A X X = A

A X
0 0
1 1

NAND
A

X X = (AB)’
B

0 0 1
0 1 1
1 0 1
1 1 0

NOR
0 0 1
0 1 0
1 0 0
1 1 0

XOR
Exclusive OR

A X = A  B
X or

B X = A’B + AB’

0 0 0
0 1 1
1 0 1
1 1 0

A X = (A  B)’
X or

B X = A’B’+ AB

0 0 1
0 1 0
1 0 0
1 1 1

XNOR
Exclusive NOR
or Equivalence

A B X

A B X

A X

A B X

A B X

A B X

A B X

5Digital Logic Circuits

Computer Organization Computer Architectures Lab

BOOLEAN ALGEBRA

Boolean Algebra

* Algebra with Binary(Boolean) Variable and Logic Operations
* Boolean Algebra is useful in Analysis and Synthesis of

Digital Logic Circuits

- Input and Output signals can be
represented by Boolean Variables, and

- Function of the Digital Logic Circuits can be represented by
Logic Operations, i.e., Boolean Function(s)

- From a Boolean function, a logic diagram
can be constructed using AND, OR, and I

Truth Table

* The most elementary specification of the function of a Digital Logic
Circuit is the Truth Table

- Table that describes the Output Values for all the combinations
of the Input Values, called MINTERMS

- n input variables → 2n minterms

Boolean Algebra

6Digital Logic Circuits

Computer Organization Computer Architectures Lab

LOGIC CIRCUIT DESIGN

x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F = x + y’z

Boolean Algebra

x

y

z

F

Truth
Table

Boolean
Function

Logic
Diagram

7Digital Logic Circuits

Computer Organization Computer Architectures Lab

BASIC IDENTITIES OF BOOLEAN ALGEBRA

[1] x + 0 = x
[3] x + 1 = 1
[5] x + x = x
[7] x + x’ = 1
[9] x + y = y + x
[11] x + (y + z) = (x + y) + z
[13] x(y + z) = xy +xz
[15] (x + y)’ = x’y’
[17] (x’)’ = x

[2] x • 0 = 0
[4] x • 1 = x
[6] x • x = x
[8] x • X’ = 0
[10] xy = yx
[12] x(yz) = (xy)z
[14] x + yz = (x + y)(x + z)
[16] (xy)’ = x’ + y’

[15] and [16] : De Morgan’s Theorem
Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions

to obtain logic diagrams utilizing different logic gates
-- Ordinarily ANDs, ORs, and Inverters
-- But a certain different form of Boolean function may be convenient

to obtain circuits with NANDs or NORs
→ Applications of De Morgans Theorem

x’y’ = (x + y)’ x’+ y’= (xy)’
I, AND → NOR I, OR → NAND

Boolean Algebra

8Digital Logic Circuits

Computer Organization Computer Architectures Lab

EQUIVALENT CIRCUITS

F = ABC + ABC’ + A’C …… (1)
= AB(C + C’) + A’C [13] ..…. (2)
= AB • 1 + A’C [7]
= AB + A’C [4] ...…. (3)

(1)

(2)

(3)

Many different logic diagrams are possible for a given Function

Boolean Algebra

A
B
C

F

A
B

C F

F

A

B

C

9Digital Logic Circuits

Computer Organization Computer Architectures Lab

SIMPLIFICATION

Truth
Table

Boolean
Function

Unique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain

a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for
simplifying Boolean expressions.

Truth
Table

Boolean
function

Karnaugh
Map

Simplified
Boolean
Function

Map Simplification

10Digital Logic Circuits

Computer Organization Computer Architectures Lab

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products
form of Boolean Function, or Truth Table) is

- Rectangle divided into 2n cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a

mintern is written in the cell representing the minterm
→ 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation
is identical to the binary interpretation of the input values of the minterm.

x F
0 1
1 0

x
0
1

0

1

x
0
1

0

1

Karnaugh Map
value
of F

Identification
of the cell

x y F
0 0 0
0 1 1
1 0 1
1 1 1

x
y 0 1

0

1

0 1

2 3

x
y 0 1

0

1
0 1
1 0

F(x) =

F(x,y) =  (1,2)

1-cell

 (1)

Map Simplification

11Digital Logic Circuits

Computer Organization Computer Architectures Lab

KARNAUGH MAP

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

0 1 0 1

1 0 0 0

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

x
yz

00 01 11 10
0 0 1 3 2

4 5 7 6

x
yz

00 01 11 10
0

1

F(x,y,z) =  (1,2,4)

1x

y

z

uv
wx

00 01 11 10
00
01

11

10

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

uv
wx

00 01 11 10
00

01

11 0 0 0 1

10 1 1 1 0

0 1 1 0

0 0 0 1

F(u,v,w,x) =  (1,3,6,8,9,11,14)

u

v

w

x

Map Simplification

x y z F

u v w x F

12Digital Logic Circuits

Computer Organization Computer Architectures Lab

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can
be realized by an AND gate, with some inversion of the input variables.

x

y

z

x’
y’
z’

x’
y
z’

x
y
z’

1 1

1

F(x,y,z) =  (0,2,6)

1 1

1

x’

z’
y
z’

Map Simplification



x’
y

x
y
z’

x’
y’
z’

F

x

z

y

z

F

I AND OR

z’



13Digital Logic Circuits

Computer Organization Computer Architectures Lab

IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells,
the complement of F, i.e., F’, can be obtained.
Thus, by complementing F’ using DeMorgan’s
theorem F can be obtained

F(x,y,z) = (0,2,6)

x

y

zx

y’

z
F’ = xy’ + z

F = (xy’)z’
= (x’ + y)z’

x
y

z
F

I OR AND

Map Simplification

0 01 1

0 0 0 1

14Digital Logic Circuits

Computer Organization Computer Architectures Lab

IMPLEMENTATION OF K-MAPS
- Don’t-Care Conditions -

In some logic circuits, the output responses
for some input conditions are don’t care
whether they are 1 or 0.

In K-maps, don’t-care conditions are represented
by d’s in the corresponding cells.

Don’t-care conditions are useful in minimizing
the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
--> Reduce the number of variables in the product terms

x

y

z

1 d d 1

d 1

x’

yz’

x

y
z

F

Map Simplification

15Digital Logic Circuits

Computer Organization Computer Architectures Lab

COMBINATIONAL LOGIC CIRCUITS

Half Adder

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cn = xy + xcn-1+ ycn-1

= xy + (x  y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1

= x  y  cn-1 = (x  y)  cn-1

x

y

cn-1

x

y

cn-1

cn s

Combinational Logic Circuits

x

y

x

y

c = xy s = xy’ + x’y
= x  y

x
y c

s

x
y

cn-1

S

cn

Full Adder

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s
0

1
0

0
0

0
1

1

x y cn-1 cn s
0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

0

16Digital Logic Circuits

Computer Organization Computer Architectures Lab

COMBINATIONAL LOGIC CIRCUITS

Other Combinational Circuits

Multiplexer
Encoder
Decoder
Parity Checker
Parity Generator
etc

Combinational Logic Circuits

17Digital Logic Circuits

Computer Organization Computer Architectures Lab

MULTIPLEXER

Combinational Logic Circuits

4-to-1 Multiplexer

I0

I1

I2

I3

S0

S1

Y

0 0 I0
0 1 I1
1 0 I2
1 1 I3

Select Output
S1 S0 Y

18Digital Logic Circuits

Computer Organization Computer Architectures Lab

ENCODER/DECODER

Octal-to-Binary Encoder

Combinational Logic Circuits

D1

D2

D3

D5

D6

D7

D4

A0

A1

A2

A0

A1

E

D0

D1

D2

D3

0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
1 d d 1 1 1 1

E A1 A0 D0 D1 D2 D3

2-to-4 Decoder

19Digital Logic Circuits

Computer Organization Computer Architectures Lab

FLIP FLOPS

Characteristics
- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

0-state 1-state

In order to be used in the computer circuits, state of the flip flop should
have input terminals and output terminals so that it can be set to a certain
state, and its state can be read externally.

R

S

Q

Q’

S R Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 indeterminate

(forbidden)

Flip Flops

1 0 0 1

0 1 1 0

20Digital Logic Circuits

Computer Organization Computer Architectures Lab

CLOCKED FLIP FLOPS

In a large digital system with many flip flops, operations of individual flip flops
are required to be synchronized to a clock pulse. Otherwise,
the operations of the system may be unpredictable.

R

S

Q

Q’

c
(clock)

Flip Flops

S Q

c

R Q’

S Q

c

R Q’

operates when operates when
clock is high clock is low

Clock pulse allows the flip flop to change state only
when there is a clock pulse appearing at the c terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

21Digital Logic Circuits

Computer Organization Computer Architectures Lab

RS-LATCH WITH PRESET AND CLEAR INPUTS

Flip Flops

R

S

Q

Q’

c
(clock)

P(preset)

clr(clear)

S Q

c

R Q’

S Q

c

R Q’

P

clr

P

clr

S Q

c

R Q’

P

clr

S Q

c

R Q’

P

clr

22Digital Logic Circuits

Computer Organization Computer Architectures Lab

D-LATCH

D-Latch
Forbidden input values are forced not to occur
by using an inverter between the inputs

Flip Flops

Q

Q’
D(data)

E
(enable)

D Q

E Q’

E Q’

D Q

D Q(t+1)
0 0
1 1

23Digital Logic Circuits

Computer Organization Computer Architectures Lab

EDGE-TRIGGERED FLIP FLOPS

Characteristics
- State transition occurs at the rising edge or
falling edge of the clock pulse

Latches

Edge-triggered Flip Flops (positive)

respond to the input only during these periods

respond to the input only at this time

Flip Flops

24Digital Logic Circuits

Computer Organization Computer Architectures Lab

POSITIVE EDGE-TRIGGERED

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make
T input. Toggles whenever there is a pulse on T input.

Flip Flops

D-Flip Flop

JK-Flip Flop

S1 Q1

C1

R1 Q1'

S2 Q2

C2

R2 Q2'

D

C

Q

Q'

D

C

Q

Q'

SR1 SR2

SR1 active

SR2 active

D-FF

S1 Q1

C1

R1 Q1'

S2 Q2

C2

R2 Q2'

SR1 SR2
J

K

C

Q

Q'

J Q

C

K Q'

SR1 active

SR2 inactive SR2 inactive

SR1 inactive

25Digital Logic Circuits

Computer Organization Computer Architectures Lab

CLOCK PERIOD

Clock period determines how fast the digital circuit operates.
How can we determine the clock period ?

Usually, digital circuits are sequential circuits which has some flip flops

Combinational
Logic
Circuit

FF FF

Combinational logic Delay
FF Setup Time
FF Hold TimeFF Delay

td
ts,th

clock period T = td + ts + th

Flip Flops

.

.

.

...FF

C

Combinational
Logic
Circuit

FF FF

.

.

.

26Digital Logic Circuits

Computer Organization Computer Architectures Lab

DESIGN EXAMPLE

Design Procedure:
Specification  State Diagram  State Table 
Excitation Table  Karnaugh Map  Circuit Diagram

Example: 2-bit Counter -> 2 FF's

current next
state input state FF inputs
A B x A B Ja Ka Jb Kb
0 0 0 0 0 0 d 0 d
0 0 1 0 1 0 d 1 d
0 1 0 0 1 0 d d 0
0 1 1 1 0 1 d d 1
1 0 0 1 0 d 0 0 d
1 0 1 1 1 d 0 1 d
1 1 0 1 1 d 0 d 0
1 1 1 0 0 d 1 d 1

A

B

x

Ja

1

d d
d d

x

A

B

Ka

d d
d d

1

Kb

A

B

x1

1

d

d

d
d

Ja = Bx Ka = Bx Jb = x Kb = x
clock

00

01

10

11

x=0

x=1

x=0

x=1

x=0

x=1

x=0

x=1

Sequential Circuits

J Q

C

K Q'

J Q

C

K Q'

x A
A

B

x1 d
1 d

d

d
Jb

B

27Digital Logic Circuits

Computer Organization Computer Architectures Lab

SEQUENTIAL CIRCUITS - Registers

Bidirectional Shift Register with Parallel Load

Sequential Circuits

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2 A3

Clock
I0 I1 I2 I3

Shift Registers

D Q
C

D Q
C

D Q
C

D Q
C

Serial
Input

Clock

Serial
Output

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2
A3

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

Clock S0S1
SeriaI
Input

I0 I1 I2 I3Serial
Input

28Digital Logic Circuits

Computer Organization Computer Architectures Lab

SEQUENTIUAL CIRCUITS - Counters

Sequential Circuits

J K

Q

J K

Q

J K

Q

J K

Q

Clock

Counter
Enable

A0 A1
A2 A3

Output
Carry

