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Logic Gates

LOGIC  GATES

Digital Computers

- Imply that the computer deals with digital information, i.e., it deals 
with the information that is represented by binary digits

- Why BINARY ? instead of Decimal or  other number system ?

* Consider electronic signal

signal
range

0

1 7
6
5
4
3
2
1
0

binary         octal
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BASIC  LOGIC  BLOCK  - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block
Logic Blocks whose output logic value
depends only on the input logic values

- Sequential Logic Block
Logic Blocks whose output logic value
depends on the input values and the
state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

Logic Gates

Gate.
.
.

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal
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COMBINATIONAL  GATES
Logic Gates

A                                    
X           X = (A + B)’

B

Name          Symbol           Function    Truth Table

AND 
A                                              X = A • B

X                 or
B                                              X = AB

0     0     0
0     1     0
1     0     0
1     1     1 

0     0     0
0     1     1
1     0     1
1     1     1

OR 
A                                             

X          X = A + B
B                                  

I A                                 X          X = A 0        1
1        0

Buffer     A                                 X          X = A

A       X
0        0
1        1

NAND
A                                    

X           X = (AB)’
B

0     0      1
0     1      1
1     0      1
1     1      0  

NOR
0     0      1
0     1      0
1     0      0
1     1      0  

XOR
Exclusive OR

A                                             X = A  B
X                or

B                                          X = A’B + AB’

0     0      0
0     1      1
1     0      1
1     1      0  

A                                             X = (A  B)’
X                or

B                                          X = A’B’+ AB

0     0      1
0     1      0
1     0      0
1     1      1  

XNOR
Exclusive NOR
or Equivalence

A     B    X

A     B    X

A        X

A     B     X

A     B     X

A     B     X

A     B     X
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BOOLEAN  ALGEBRA

Boolean Algebra

* Algebra with Binary(Boolean) Variable and Logic Operations
* Boolean Algebra is useful in Analysis and Synthesis of 

Digital Logic Circuits

- Input and Output signals can be 
represented by Boolean Variables, and

- Function of the Digital Logic Circuits can be represented by 
Logic Operations, i.e., Boolean Function(s)

- From a Boolean function, a logic diagram
can be constructed using AND, OR, and I 

Truth Table

* The most elementary specification of the function of a Digital Logic 
Circuit is the Truth Table

- Table that describes the Output Values for all the combinations 
of the Input Values, called MINTERMS

- n input variables → 2n minterms 

Boolean Algebra
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LOGIC  CIRCUIT  DESIGN

x    y    z       F
0    0    0       0
0    0    1       1
0    1    0       0
0    1    1       0
1    0    0       1
1    0    1       1
1    1    0       1
1    1    1       1

F = x + y’z

Boolean Algebra 

x

y

z

F

Truth
Table

Boolean
Function

Logic
Diagram
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BASIC  IDENTITIES  OF  BOOLEAN  ALGEBRA

[1]   x + 0 = x 
[3]   x + 1 = 1
[5]   x + x = x
[7]   x + x’ = 1
[9]   x + y = y + x
[11] x + (y + z) = (x + y) + z
[13] x(y + z) = xy +xz
[15] (x + y)’ = x’y’
[17] (x’)’ = x                    

[2]   x • 0 = 0
[4]   x • 1 = x
[6]   x • x = x
[8]   x • X’ = 0
[10] xy = yx
[12] x(yz) = (xy)z
[14] x + yz = (x + y)(x + z)
[16] (xy)’ = x’ + y’

[15] and [16] : De Morgan’s Theorem
Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions

to obtain logic diagrams utilizing different logic gates
-- Ordinarily ANDs, ORs, and Inverters 
-- But a certain different form of Boolean function may be convenient 

to obtain circuits with NANDs or NORs
→ Applications of De Morgans Theorem

x’y’ = (x + y)’          x’+ y’= (xy)’
I, AND → NOR             I, OR → NAND

Boolean Algebra 



8Digital Logic Circuits

Computer Organization Computer Architectures Lab

EQUIVALENT  CIRCUITS

F = ABC + ABC’ + A’C       .......…… (1)          
= AB(C + C’) + A’C          [13] ..…. (2)   
= AB • 1 + A’C                  [7]  
= AB + A’C                       [4]  ...…. (3)

(1)

(2)

(3)

Many different logic diagrams are possible for a given Function

Boolean Algebra 

A
B
C

F

A
B

C F

F

A

B

C
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SIMPLIFICATION

Truth
Table

Boolean
Function

Unique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain

a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for
simplifying Boolean expressions.

Truth
Table

Boolean
function

Karnaugh
Map

Simplified
Boolean
Function

Map Simplification
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KARNAUGH  MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products 
form of Boolean Function, or Truth Table) is

- Rectangle divided into 2n cells
- Each cell is associated with a Minterm
- An output(function) value for each input value associated with a 

mintern is written in the cell representing the minterm
→ 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation 
is identical to the binary interpretation of the input values of the minterm.

x     F
0     1
1     0

x
0
1

0

1

x
0
1

0

1

Karnaugh Map 
value
of F

Identification
of the cell

x   y   F
0   0   0
0   1   1
1   0   1
1   1   1

x
y 0   1

0

1

0     1

2     3

x
y 0   1

0

1
0   1
1   0

F(x) =

F(x,y) =  (1,2)

1-cell

 (1)

Map Simplification
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KARNAUGH  MAP

0   0   0   0
0   0   1   1
0   1   0   1
0   1   1   0
1   0   0   1
1   0   1   0
1   1   0   0
1   1   1   0

0   1   0   1

1   0   0   0

0   0   0    0   0
0   0   0    1   1
0   0   1    0   0
0   0   1    1   1
0   1   0    0   0
0   1   0    1   0
0   1   1    0   1
0   1   1    1   0
1   0   0    0   1
1   0   0    1   1
1   0   1    0   0
1   0   1    1   1
1   1   0    0   0
1   1   0    1   0
1   1   1    0   1
1   1   1    1   0   

x
yz

00 01 11 10
0 0      1     3      2

4     5      7      6

x
yz

00 01 11 10
0

1

F(x,y,z) =  (1,2,4)

1x

y

z

uv
wx

00  01  11  10
00
01

11

10

0       1       3      2

4       5       7      6

12     13     15     14

8       9      11     10

uv
wx

00   01   11  10
00

01

11    0     0    0     1

10    1     1    1     0

0     1    1     0

0     0    0     1

F(u,v,w,x) =  (1,3,6,8,9,11,14)

u

v

w

x

Map Simplification

x   y   z   F

u   v   w   x   F
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IMPLEMENTATION  OF  K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can
be realized by an AND gate, with some inversion of the input variables.

x

y

z

x’
y’
z’

x’
y
z’

x
y
z’

1 1

1

F(x,y,z) =  (0,2,6)

1            1

1

x’

z’
y
z’

Map Simplification



x’
y

x
y
z’

x’
y’
z’

F

x

z

y

z

F

I   AND     OR

z’


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IMPLEMENTATION  OF  K-MAPS - Product-of-Sums Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells,
the complement of F, i.e., F’, can be obtained.
Thus, by complementing F’ using DeMorgan’s
theorem F can be obtained

F(x,y,z) = (0,2,6)

x

y

zx

y’

z
F’ = xy’ + z

F = (xy’)z’
= (x’ + y)z’

x
y

z
F

I      OR                  AND

Map Simplification

0 01 1

0 0 0 1
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IMPLEMENTATION  OF  K-MAPS
- Don’t-Care  Conditions -

In some logic circuits, the output responses
for some input conditions are don’t care 
whether they are 1 or 0.

In K-maps, don’t-care conditions are represented
by d’s in the corresponding cells.

Don’t-care conditions are useful in minimizing
the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
--> Reduce the number of variables in the product terms

x

y

z

1   d   d    1

d         1

x’

yz’

x

y
z

F

Map Simplification
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COMBINATIONAL  LOGIC  CIRCUITS

Half Adder

0   0   0       0    0
0   0   1       0    1
0   1   0       0    1
0   1   1       1    0
1   0   0       0    1
1   0   1       1    0
1   1   0       1    0
1   1   1       1    1

cn = xy + xcn-1+ ycn-1

= xy + (x  y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1

= x  y  cn-1 = (x  y)  cn-1

x

y

cn-1

x

y

cn-1

cn s

Combinational Logic Circuits

x

y

x

y

c = xy          s = xy’ + x’y
= x   y

x
y c

s

x
y

cn-1

S

cn

Full Adder

0   0   0     0
0   1   0     1
1   0   0     1
1   1   1     0

x   y    c     s
0

1
0

0
0

0
1

1

x   y   cn-1     cn s
0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

0
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COMBINATIONAL  LOGIC  CIRCUITS

Other Combinational Circuits

Multiplexer
Encoder
Decoder
Parity Checker
Parity Generator
etc

Combinational Logic Circuits
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MULTIPLEXER

Combinational Logic Circuits

4-to-1 Multiplexer

I0

I1

I2

I3

S0

S1

Y

0       0          I0
0       1          I1
1       0          I2
1       1          I3

Select      Output
S1 S0 Y
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ENCODER/DECODER

Octal-to-Binary Encoder

Combinational Logic Circuits

D1

D2

D3

D5

D6

D7

D4

A0

A1

A2

A0

A1

E

D0

D1

D2

D3

0    0    0       0    1    1    1
0    0    1       1    0    1    1
0    1    0       1    1    0    1
0    1    1       1    1    1    0
1    d    d       1    1    1    1

E   A1 A0 D0 D1 D2 D3

2-to-4 Decoder



19Digital Logic Circuits

Computer Organization Computer Architectures Lab

FLIP  FLOPS

Characteristics
- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

0-state                       1-state

In order to be used in the computer circuits, state of the flip flop should 
have input terminals and output terminals so that it can be set to a certain
state, and its state can be read externally.

R

S

Q

Q’

S  R     Q(t+1)
0   0     Q(t)
0   1       0
1   0       1
1   1    indeterminate

(forbidden)

Flip Flops

1                  0              0                  1

0                  1             1                  0
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CLOCKED  FLIP  FLOPS

In a large digital system with many flip flops, operations of individual flip flops 
are required to be synchronized to a clock pulse. Otherwise, 
the operations of the system may be unpredictable.

R

S

Q

Q’

c
(clock)

Flip Flops

S         Q

c

R         Q’

S         Q

c

R         Q’

operates when           operates when
clock is high               clock is low

Clock pulse allows the flip flop to change state only 
when there is a clock pulse appearing at the c terminal.

We call above flip flop  a Clocked RS Latch, and symbolically as



21Digital Logic Circuits

Computer Organization Computer Architectures Lab

RS-LATCH  WITH  PRESET  AND  CLEAR  INPUTS

Flip Flops

R

S

Q

Q’

c
(clock)

P(preset)

clr(clear)

S        Q

c

R        Q’

S        Q

c

R        Q’

P

clr

P

clr

S        Q

c

R        Q’

P

clr

S        Q

c

R        Q’

P

clr
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D-LATCH

D-Latch
Forbidden input values are forced not to occur
by using an inverter between the inputs

Flip Flops

Q

Q’
D(data)

E
(enable)

D       Q

E    Q’

E     Q’

D       Q

D      Q(t+1)
0          0
1          1
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EDGE-TRIGGERED  FLIP  FLOPS

Characteristics
- State transition occurs at the rising edge or
falling edge of the clock pulse

Latches

Edge-triggered Flip Flops (positive)

respond to the input only during these periods

respond to the input only at this time

Flip Flops
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POSITIVE  EDGE-TRIGGERED  

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make 
T input.  Toggles whenever there is a pulse on T input.

Flip Flops

D-Flip Flop

JK-Flip Flop

S1       Q1

C1

R1      Q1'

S2       Q2

C2

R2      Q2'

D

C

Q

Q'

D

C

Q

Q'

SR1                            SR2

SR1 active

SR2 active

D-FF

S1       Q1

C1

R1      Q1'

S2       Q2

C2

R2      Q2'

SR1                            SR2
J

K

C

Q

Q'

J      Q

C

K     Q'

SR1 active

SR2 inactive SR2 inactive

SR1 inactive
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CLOCK  PERIOD

Clock period determines how fast the digital circuit operates.
How can we determine the clock period ?

Usually, digital circuits are sequential circuits which has some flip flops 

Combinational
Logic
Circuit

FF FF

Combinational logic Delay
FF Setup Time
FF Hold TimeFF Delay

td
ts,th

clock period T = td + ts + th

Flip Flops

.

.

.

...FF

C

Combinational
Logic 
Circuit

FF FF

.

.

.
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DESIGN  EXAMPLE

Design Procedure:
Specification  State Diagram  State Table 
Excitation Table  Karnaugh Map  Circuit Diagram

Example:  2-bit Counter -> 2 FF's

current                 next  
state       input   state        FF inputs
A   B           x       A   B    Ja  Ka  Jb  Kb
0   0            0       0    0      0    d    0    d
0   0            1       0    1      0    d    1    d
0   1            0       0    1      0    d    d    0
0   1            1       1    0      1    d    d    1
1   0            0       1    0      d    0    0    d
1   0            1       1    1      d    0    1    d
1   1            0       1    1      d    0    d    0
1   1            1       0    0      d    1    d    1

A

B

x

Ja

1

d   d
d   d

x

A

B

Ka

d   d
d   d

1

Kb

A

B

x1

1

d

d

d
d

Ja = Bx      Ka = Bx    Jb = x         Kb = x
clock

00

01

10

11

x=0

x=1

x=0

x=1

x=0

x=1

x=0

x=1

Sequential Circuits

J     Q

C

K    Q'

J     Q

C

K    Q'

x A
A

B

x1   d
1   d

d

d
Jb

B
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SEQUENTIAL  CIRCUITS  - Registers

Bidirectional Shift Register with Parallel Load

Sequential Circuits

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2 A3

Clock
I0 I1 I2 I3

Shift Registers

D    Q
C

D    Q
C

D    Q
C

D    Q
C

Serial
Input

Clock

Serial
Output

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2
A3

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

Clock S0S1
SeriaI
Input

I0 I1 I2 I3Serial
Input
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SEQUENTIUAL  CIRCUITS  - Counters

Sequential Circuits

J          K

Q

J          K

Q

J          K

Q

J          K

Q

Clock

Counter
Enable

A0 A1
A2 A3

Output
Carry




