
RAM (cont.)

220

bytes of
RAM

(1 Mega-byte)

Write

Address

Data input Data Output

20 bits of
 address

8 bits (1 byte)
of data

Computer Architecture

Bus

CPU

RAM

Input/
Output
Devices

Central Processing
Unit

Computer Architecture

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

Computer Architecture

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

Inside the CPU
• The CPU is the brain of the computer.

• It is the part that actually executes
the instructions.

• Let’s take a look inside.

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Temporary Memory.
Computer “Loads” data
from RAM to registers,
performs operations on
data in registers, and
“stores” results from

registers back to RAM

Remember our initial example: “read value of A from memory; read value
of B from memory; add values of A and B; put result in memory in
variable C.” The reads are done to registers, the addition is done in
registers, and the result is written to memory from a register.

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Arithmetic
/ Logic

Unit

For doing basic
Arithmetic / Logic

Operations on Values stored
in the Registers

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register

Arithmetic
/ Logic

Unit

To hold the current
instruction

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

To hold the
address of the

current instruction
in RAM

Inside the CPU (cont.)
Memory Registers

Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

The Control Unit
• It all comes down to the Control Unit.

• This is just a State Machine.

• How does it work?

The Control Unit
• Control Unit State Machine has very simple

structure:

• 1) Fetch: Ask the RAM for the instruction
 whose address is stored in IP.

• 2) Execute: There are only a small number
 of possible instructions.
 Depending on which it is, do
 what is necessary to execute it.

• 3) Repeat: Add 1 to the address stored in
 IP, and go back to Step 1 !

The Control Unit is a State Machine

Add
Load

Store
Goto …

… … … … …

Add 1
to IP

Fetch

Exec Exec Exec Exec Exec

A Simple Program

• Want to add values of variables a and b
(assumed to be in memory), and put the
result in variable c in memory, I.e. c  a+b

• Instructions in program
– Load a into register r1
– Load b into register r3
– r2  r1 + r3
– Store r2 in c

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2005
Load a into r1

r1
r2
r3
r4

IR
IP

Logic

CPU

2

b

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2006
Load b into r3

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2007
r2  r1 + r3

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2008
Store r2 into c

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Running the Program

a

c

2

5

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2008
Store r2 into c

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• Computer has many parts, connected by a Bus:

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• The RAM is the computer’s main memory.

• This is where programs and data are stored.

Putting it all together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• The CPU goes in a never-ending cycle, reading
instructions from RAM and executing them.

Putting it all together
• This cycle is orchestrated by the Control Unit

in the CPU.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Back to the Control Unit
• It simply looks at where IP is pointing, reads the

instruction there from RAM, and executes it.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Putting it all together
• To execute an instruction, the Control Unit uses

the ALU plus Memory and/or the Registers.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Programming

Where we are

• Examined the hardware for a computer
– Truth tables
– Logic gates
– States and transitions in a state machine
– The workings of a CPU and Memory

• Now, want to program the hardware

Specifying a Program and its
Instructions

• High-level programs: each statement
translates to many instructions
• E.g. c  a + b to:

• Assembly language: specify each machine
instruction, using mnemonic form
• E.g. Load r1, A

• Machine language: specify each machine
instruction, using bit patterns
• E.g. 1101101000001110011

Load a into r1
Load b into r3
r2  r1 + r3
Store r2 into c

Machine/Assembly Language
• We have a machine that can execute

instructions

• Basic Questions:

• What instructions?

• How are these instructions represented to
the computer hardware?

Complex vs Simple Instructions

• Computers used to have very complicated
instruction sets – this was known as:

• CISC = Complex Instruction Set Computer

• Almost all computers 20 years ago were
CISC.

• 80s introduced RISC:

• RISC = Reduced Instruction Set Computer

Complex vs Simple Instructions
• RISC = Reduced Instruction Set Computer

• Fewer, Less powerful basic instructions

• But Simpler, Faster, Easier to design CPU’s

• Can make “powerful” instructions by
combining several wimpy ones

• Shown to deliver better performance than
Complex Instruction Set Computer (CISC) for
several types of applications.

Complex vs Simple Instructions
• Nevertheless, Pentium is actually CISC !

• Why?

Complex vs Simple Instructions
• Nevertheless, Pentium is actually CISC !

• Why: Compatibility with older software

• Newer application types (media processing etc)
perform better with specialized instructions

• The world has become too complex to talk about
RISC versus CISC

Typical Assembly Instructions
• Some common assembly instructions include:

• 1) “Load” – Load a value from RAM into
 one of the registers

• 2) “Load Direct” – Put a fixed value in one of
 the registers (as specified)

• 3) “Store” - Store the value in a specified
 register to the RAM

• 4) “Add” - Add the contents of two
 registers and put the result in a
 third register

Typical Assembly Instructions
• Some common instructions include:

• 5) “Compare” - If the value in a specified
 register is larger than the
 value in a second register, put
 a “0” in Register r0

• 6) “Jump” - If the value in Register r0 is
 “0”, change Instruction Pointer
 to the value in a given register

• 7) “Branch” - If the value in a specified
 register is larger than that in
 another register, change
 IP to a specified value

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	A Simple Program
	Running the Program
	Running the Program
	Running the Program
	Running the Program
	Running the Program
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Programming
	Where we are
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

