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Inside the CPU 
• The CPU is the brain of the computer. 

• It is the part that actually executes 
the instructions. 

 

• Let’s take a look inside. 



Inside the CPU (cont.) 
Memory Registers 
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Temporary Memory. 
Computer “Loads” data 
from RAM to registers, 
performs operations on 
data in registers, and 
“stores” results from 

registers back to RAM 

Remember our initial example: “read value of A from memory; read value 
of B from memory; add values of A and B; put result in memory in 
variable C.”  The reads are done to registers, the addition is done in 
registers, and the result is written to memory from a register.  
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The Control Unit 
• It all comes down to the Control Unit. 

• This is just a State Machine. 

 

• How does it work? 



The Control Unit 
• Control Unit State Machine has very simple 

structure: 

• 1) Fetch:   Ask the RAM for the instruction 
  whose address is stored in IP. 

• 2) Execute: There are only a small number 
  of possible instructions. 
  Depending on which it is, do 
  what is necessary to execute it. 

• 3) Repeat: Add 1 to the address stored in 
  IP, and go back to Step 1 ! 



The Control Unit is a State Machine 
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A Simple Program 

• Want to add values of variables a and b 
(assumed to be in memory), and put the 
result in variable c in memory, I.e. c  a+b 

• Instructions in program 
– Load a into register r1 
– Load b into register r3 
– r2  r1 + r3 
– Store r2 in c 
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Running the Program 
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Putting it all together 
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• Computer has many parts, connected by a Bus: 
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• The RAM is the computer’s main memory. 

• This is where programs and data are stored. 
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• The CPU goes in a never-ending cycle, reading 
instructions from RAM and executing them.  



Putting it all together 
• This cycle is orchestrated by the Control Unit 

in the CPU. 
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Back to the Control Unit 
• It simply looks at where IP is pointing, reads the 

instruction there from RAM, and executes it. 
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Putting it all together 
• To execute an instruction, the Control Unit uses 

the ALU plus Memory and/or the Registers. 
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Programming 



Where we are 

• Examined the hardware for a computer 
– Truth tables 
– Logic gates 
– States and transitions in a state machine 
– The workings of a CPU and Memory 

 
• Now, want to program the hardware 



Specifying a Program and its 
Instructions 

• High-level programs: each statement 
translates to many instructions 
• E.g.   c  a + b to:  
 

• Assembly language: specify each machine 
instruction, using mnemonic form 
• E.g.  Load r1, A 

• Machine language: specify each machine 
instruction, using bit patterns 
• E.g. 1101101000001110011 

Load a into r1 
Load b into r3 
r2  r1 + r3 
Store r2 into c 



Machine/Assembly Language 
• We have a machine that can execute 

instructions 

• Basic Questions: 

• What instructions? 

• How are these instructions represented to 
the computer hardware? 



Complex vs Simple Instructions 

• Computers used to have very complicated 
instruction sets – this was known as: 

• CISC = Complex Instruction Set Computer 

• Almost all computers 20 years ago were  
CISC. 

 

• 80s introduced RISC: 

• RISC = Reduced Instruction Set Computer 



Complex vs Simple Instructions 
• RISC = Reduced Instruction Set Computer 

• Fewer, Less powerful basic instructions 

• But Simpler, Faster, Easier to design CPU’s 

• Can make “powerful” instructions by 
combining several wimpy ones 

 

• Shown to deliver better performance than 
Complex Instruction Set Computer (CISC) for 
several types of applications. 



Complex vs Simple Instructions 
• Nevertheless, Pentium is actually CISC ! 

• Why? 



Complex vs Simple Instructions 
• Nevertheless, Pentium is actually CISC ! 

• Why: Compatibility with older software 

 

• Newer application types (media processing etc) 
perform better with specialized instructions 

 

• The world has become too complex to talk about 
RISC versus CISC 



Typical Assembly Instructions 
• Some common assembly instructions include: 

• 1) “Load” –  Load a value from RAM into  
 one of the registers 

• 2) “Load Direct” – Put a fixed value in one of 
                            the registers (as specified) 

• 3) “Store” - Store the value in a specified 
 register to the RAM 

• 4) “Add” -  Add the contents of two 
 registers and put the result in a 
 third register 



Typical Assembly Instructions 
• Some common instructions include: 

• 5) “Compare” -  If the value in a specified 
 register is larger than the 
 value in a second register, put 
 a “0” in Register r0 

• 6) “Jump” - If the value in Register r0 is 
 “0”, change Instruction Pointer 
 to the value in a given register 

• 7) “Branch” - If the value in a specified 
 register is larger  than that in 
 another register, change 
 IP to a specified value 
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