
C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 1

 المعرفات والكلمات الرئيسية

Identifiers and Keywords

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 2

1. Identifiers and Keywords

Identifiers are the names of variables, functions, labels, and various other

user-defined objects. Rules of a valid identifier:

 An identifier must begin with an alphabetic character or

 underscore _

 Alphabetic characters in an identifier can be lowercase or

uppercase letters

 An identifier can contain digits, but not as the first character

 An identifier can be of any length

Keywords are the commands that make up the C++ language. These

keywords cannot be used for identifiers.

Example:

Determine which of the following names are valid identifiers.

1. xsum 2. x_sum 3. tax-rate

4. perimeter 5. sec^2 6. degrees_C

7. count 8. void 9. f(x)

10. m/s 11. Final_Value 12. w1.1

 Solution

1. valid

2. valid

3. invalid character (-), replacement tax_rate

4. valid

5. invalid character (^), replacement sec_sqrd

6. valid

7. valid

8. invalid, keyword, replacement void_term

9. invalid characters (()), replacement fx

10. invalid character (/), replacement m_per_s

11. valid

12. invalid character (.), replacement w1_1

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 3

2. Constants and Variables

Constants are specific values such as 2 , 3.1416 , or -15.

Variables are memory locations that are assigned a name or identifier.

Example:

int x , y=1;

 float mark;

 double total , average;

 char ch = ‘A’;

Notes:

 We can declare variables anywhere in the main()function.

 We must declare a variable before we use it.

 C++ is case sensitive, i.e. it distinguishes uppercase letters from

lowercase letters. Thus, Total, TOTAL, and total represent three

different variables.

3. Standard Input and Output

In order to use input and output statements in our programs, we must

include the library:

 #include <iostream.h>

3.1 cout STATEMENT

is used to print values and explanatory text to the screen.

 cout << “age = ” << age << “ years” << endl;

if the value of age is 20, the output of the statement is

 age = 20 years

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 4

3.2 cin STATEMENT

is used to enter values from the keyboard when a program is executed.

 cin >> age;

cin also allows us to enter multiple input values:

 cin >> length >> width;

Note:

cin statement is usually preceded by cout statement to describe the

information the user should enter from the keyboard:

 cout<< “Enter the length and width:” << endl;

cin >> length >> width;

The output of the above statements is:

Enter the length and width of a rectangle:

15.5 10

4. Escape sequences

are used with cout statement to produce a formatted output. The

backslash (\) is used to form these sequences.

Sequence Character represented

\a alert (bell) character

\b backspace

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\? question mark

\’ single quote

\” double quote

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 5

Examples:

cout << “\”The End.\”” << endl;

Output is:

“The End.”

cout << “Column1\tColumn2\tColumn3” << endl;

Output is:

Column1 Column2 Column3

cout << “Your mark is: \n90”;

Output is:

Your mark is

90

5. Data Types

are used to specify the types of values that will be contained in variables.

In C++, data types are classified into:

 Numeric data types are either integers (short, int, long) or floating-

point values (float, double, long double).

 Nonnumeric data types are alphabetic and special characters (char).

Type Size

(Bytes)

Range

Char 1 -128 to 127

short 2 -32,768 to 32,767

Int 2 -32,768 to 32,767

Long 4 -2,147,483,648 to 2,147,483,647

Float 4 3.4 × (10-38) to 3.4 × (10+38)

Double 8 1.7 × (10-308) to 1.7 × (10+308)

long double 10 3.4 × (10-4932) to 1.1 × (10+4932)

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 6

Example:

Write a C++ program that computes the area of rectangle with given

(fixed) length and width.

#include <iostream.h>

void main()

{

 int length , width , area;

 length = 4;

 width = 5;

 area = length * width;

 cout<<“The area of rectangle is: ” << area << endl;

}

Example:

Write a C++ program that reads the length and width of a rectangle, and

prints its area.

#include <iostream.h>

void main()

{

 int length , width , area;

 cout << “Enter length :” << endl;

 cin >> length;

 cout << “Enter width :” << endl;

 cin >> width;

 area = length * width;

 cout <<“The area of rectangle is: ”<< area <<endl;

}

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 7

6. Character
Each character in the computer is represented by ASCII (American

Standard Code for Information Interchange). Examples of ASCII Codes:

Character ASCII Code Integer Equivalent

new line, \n 0001010 10

$ 0100100 36

% 0100101 37

3 0110011 51

A 1000001 65

a 1100001 97

b 1100010 98

A total of 128 characters can be represented in ASCII.

Example:
#include <iostream.h>

void main()

{

 char letter = ‘a’ , symbol = ‘$’;

char c = 97;

char ch;

cout << “Enter character :” << endl;

cin >> ch;

cout << “letter = ” << letter << endl

 << “Symbol = ” << symbol << endl

 << “c = ” << c << endl

 << “ch = ” << ch << endl;

}

7. Symbolic Constant

is declared by using the keyword const. It is usually defined with

uppercase identifier. For example:

const double PI = 3.141593;

Now statements that need to use the value of π can use the symbolic

constant PI instead of 3.141593.

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 8

Note: The value of symbolic constant cannot be changed.

Example:

Write a C++ Program that reads the radius of a circle and prints its area

and perimeter)المحيط(.
#include <iostream.h>

void main()

{

 const double PI = 3.141593;

 double radius , area , perimeter;

cout << “Enter the radius: ” << endl;

cin >> radius;

area = PI * radius * radius;

perimeter = 2 * PI * radius;

cout << “The area of circle: ” << area << endl;

cout << “The perimeter of circle: ” << perimeter

 << endl;

}

8. Assignment Statements

An assignment statement is used to assign a value to an identifier.

 identifier = expression;

where expression can be constant, another variable, or the result of an

operation.

double sum = 10.5; double sum;

int x = 3; int x;

 .

 .

 sum = 10.5;

 x = 3;

Multiple assignments are also allowed in C++:

 x = y = z = 0;

We can also assign a value from one variable to another:

 sum = total_marks;

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 9

If we assign a value of one data type to a variable of a different data type

then a conversion must occur during the execution of the statement.

Sometimes the conversion can result in information being lost.

int a;

.

.

a = 12.8;

Here, the variable a will store only 12 because it is defined as integer.

To make the numeric conversion works properly, we convert the value

to a higher data type according to the following order:

high: long double

 double

 float

 long

 int

low: short

9. Operators

Operators in C++ are classified into: arithmetic, logical, relational, and

bitwise operators.

Arithmetic operators

Operator Action

- Subtraction, also unary minus

+ Addition

* Multiplication

/ Division

% Modulus

-- Decrement

++ Increment

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 10

Examples:

 z = x + y;

 area_square = side * side;

 area_triangle = (base*height)/2;

 z = x % y;

Notes:

 The result of a binary operation with values of the same type is

another value of the same type.

 If a binary operation is performed between values with different

types, then the value with the lower type is converted to the higher

type, and thus the operation is performed with values of the same

type.

 When you apply / to an integer, any remainder will be truncated.

 The modulus operator % produces the remainder of an integer

division. It cannot be used with floating-point types.

10. Cast (الملقى ، المرمي) operator

A cast is a special operator that forces one data type to be converted into

another.

Example

Write a C++ program that reads two marks and prints the average.

#include <iostream.h>

void main()

{

int mark1, mark2, sum, count = 2;

float average;

cout << “Enter first mark: ” << endl;

cin >> mark1;

cout << “Enter second mark: ” << endl;

cin >> mark2;

sum = mark1 + mark2;

average = sum/count;

cout << “The average is: ” << average << endl;

}

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 11

if mark1 is 90 and mark2 is 91 then average is 90.0 not 90.5.

To compute the average correctly, we use cast operator as follows:

average = (float)sum/(float)count;

Note that that cast operator affects only the value used in the

computation, it does not change the type of the variables sum and count.

Priority of arithmetic operations

Precedence Operator Associativity

1

() innermost first

2 Unary

+ - cast

right to left

3 Binary

* / %

left to right

4 Binary

+ -

left to right

Example:

Let us solve the following equation according to the priority of

operations:

12*m + (m*n % 13 + m/n) * k/10

Assume m = 12 , n = 5 and k = 20

Sub expression Result Expression after each step

m * n 60 12*m+(60%13+m/n)*k/10

60 % 13 8 12*m+(8+m/n)*k/10

m / n 2 12*m +(8+2)*k/10

8 + 2 10 12*m+10*k/10

12 * m 144 144+10*k/10

10 * k 200 144+200/10

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 12

200 /10 20 144+20

144 + 20 164 164

Example:

Write a C++ program to compute the volume of a sphere.

𝑣 = 4 ∗ 𝜋 ∗ 𝑟3/3

#include <iostream.h>

void main()

{

 const float PI = 3.141593;

 float radius , volume;

 cout << “Enter the radius: ” << endl;

 cin >> radius;

 volume = (4.0 * PI * radius * radius * radius)/3.0;

 cout << “The volume of sphere: ” << volume << endl;

}

Example

Write a C++ program to compute the following equation:

𝑓 =
𝑥3 − 2𝑥2 + 𝑥 − 6.3

𝑥2 + 0.505𝑥 − 3.14

#include <iostream.h>

void main()

{

float x, f;

cout << “Enter a value of x: ” << endl;

cin >> x;

f = (x*x*x – 2*x*x + x – 6.3)/(x*x + 0.505*x – 3.14);

cout << “f = ” << f << endl;

}

The statement

f = (x*x*x – 2*x*x + x – 6.3)/(x*x + 0.505*x – 3.14);

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 13

can also be written as

f = (x*x*x – 2*x*x + x – 6.3)/

 (x*x + 0.505*x – 3.14);

Or
float numerator, denominator;

numerator = x*x*x – 2*x*x + x – 6.3;

denominator = x*x + 0.505*x – 3.14;

f = numerator / denominator;

11. Overflow and Underflow

When the result of an arithmetic operation exceeds the range of the

variable’s data type, an error called overflow occurs.

Example

 float x = 2.5e30; // x = 2.5 × 1030

 float y = 1.0e30; // y = 1.0 × 1030

float z;

 z = x * y;

Here, the value of z will be 2.5e60, i.e. overflow. C++ generates an error

message “Floating-point error: Overflow”.

Similarly, when the result of an operation is too small to store in the

memory allocated for the variable, an error called underflow occurs.

Example

 float x = 2.5e-30; // x = 2.5 × 10-30

 float y = 1.0e-30; // y = 1.0 × 10-30

float z;

 z = x * y;

Here, the value of z will be 2.5e-60, i.e. underflow. C++ replaces this

value by zero.

12. Increment / Decrement operators

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 14

are applied either in a prefix position (before the identifier) as in

++count, or in a postfix position (after the identifier) as in count++.

The statement

x++;

is equal to the statement

 x = x + 1;

and

 --y;

is equal to the statement

 y = y - 1;

However, there is a difference between the prefix and postfix forms when

you use these operators in an expression.

The statement

w = ++x – y;

is equivalent to the statements

x = x + 1;

w = x – y;

while the statement

w = x++ - y;

is equivalent to the statements

w = x – y;

x = x + 1;

Example

#include <iostream.h>

void main()

{

int x , y , z;

x = 2;

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 15

y = 5;

z = x++ + y;

cout<<“x=“<< x <<“ y=”<< y <<“ z=”<< z << endl;

z = ++x + y--;

cout<<“x=“<< x <<“ y=”<< y <<“ z=”<< z << endl;

}

13. Logical operators

Operator Action

&& AND

| | OR

! NOT

Example:

(a || b) && !(a && b)

14. Relational operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Is equal

!= Not equal

 Result: 1 True

 0 False

Example:

10>5 && !(10<9) || 3<=4

In this case the result is true.

15. Bitwise operators

Operator Action

& AND

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 16

| OR

^ Exclusive OR (XOR)

~ One's complement (NOT)

>> Shift right

<< Shift left

Example:

int x=10, y=2, r;

r = x & y;

r= x | y;

r = x ^ y;

r = x >> 1;

16. Assignment Operators

=

+=

-=

*=

/=

%=

Example:

x = x + 3; sum = sum + x; d = d / 4.5;

x += 3; sum += x; d /= 4.5;

r = r % 2;

r %= 2;

Exercises

1. Write a C++ program that asks for a temperature in Fahrenheit and

 displays it in Celsius. Use the formula:

𝐶0 =
5

9
(𝐹 − 32)

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 17

2. Write a C++ program to perform the following equations:

𝐚) 𝑧 = 1 −
𝑥2

2!
+

𝑥4

4!

𝐛) 𝑧 =
𝑥3 − 4𝑥2 + 𝑥

𝑥2 + 2𝑥 + 2

𝐜) 𝑧 = [(𝑥 − 𝑦)2 − (𝑥 + 𝑦)]/32

3. Consider the arithmetic expressions

1. a * b / (-c * 31 % 13) * d

2. a * (b * b) – (c * b) + d

Write the order in which the operations will be executed?

4. What is the computation sequence of the following expression

(a + b / (c - 5)) / ((d + 7) / (e - 37) / 3)

 if a=10 , b=20 , c=14 , d=8, and e=40.

5. For each the following algebraic expressions write an equivalent

C++ arithmetic expression.

𝐚)
𝑎3 − 𝑏2

𝑐2 + 25

𝐛)
1

𝑥
+

1

𝑥2 +
1

𝑥3 +
1

𝑥4

 c) 𝑥 + 𝑦2 +
𝑡
𝑧

6. Determine the values of the variables for each of the following C++

statements:

a) z = x++*y;

b) z = 2*++x*y;

C++ Programming Identifiers and Keywords

Msc. Mohammed Rashid Subhi Page 18

c) x += 4+--y/x---3;

d) y %= x;

Assume that x=4 , y=6. Assume that all variables are integers.

